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Abstract
This paper is concerned with the semilinear fractional integrodifferential system with
Riemann–Liouville fractional derivative. Firstly, we introduce the suitable C1–α-solution
to Riemann–Liouville fractional integrodifferential equations in the new frame of
fractional resolvents. Some properties of fractional resolvents are given. Then we
discuss the sufficient conditions for the existence of solutions without the Lipschitz
assumptions to nonlinear item. Finally, an example on fractional partial differential
equations is presented to illustrate our abstract results.
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1 Introduction
Fractional differential equations have received much attention over the past two decades,
as they are found to be important models in many physical, biological, and engineering
problems. In fact, they can be regarded as alternative models to nonlinear differential
equations and many physical phenomena with memory characteristics can be described
by fractional differential equations; see, for instance, [1–7]. Recently, the theories of frac-
tional differential equations with classical Caputo and Riemann–Liouville derivative have
been developed and some basic properties are obtained including existence and control-
lability, see [8–27]. Among them, the differential equations with Caputo fractional deriva-
tive are studied extensively. By probability density functions, Wang and Zhou [13] gave
a suitable concept of mild solutions to Caputo fractional evolution equations. Balachan-
dran and Kiruthika [11], Balasubramaniam and Tamilalagan [23] proved the existence of
solutions to Caputo fractional integrodifferential equations by using resolvent operators.
Mallika and Baleanu et al. [26] studied the fractional neutral integrodifferential equation
with nonlocal conditions by fixed point theorems and resolvent operators.

On the other hand, in the papers of Heymans and Podlubny [28], Agarwal et al. [29],
Baleanu et al. [30], it was shown that Riemann–Liouville fractional differential equations
are useful in physics to model viscoelasticity and have different properties from the Ca-
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puto derivative. As the Riemann–Liouville fractional derivative has a singularity at zero,
the mathematical analysis to Riemann–Liouville fractional differential equations is more
complicated. In this paper we will consider the following semilinear integrodifferential
system with a Riemann–Liouville fractional derivative:

⎧
⎨

⎩

Dαx(t) = Ax(t) + f (t, x(t),
∫ t

0 h(t, s, x(s)) ds), t ∈ J ′ := (0, b],

limt→0+ Γ (α)t1–αx(t) = x0,
(1.1)

where 0 < α < 1, Dα is the Riemann–Liouville fractional derivative of order α, A : D(A) ⊆
X → X is the infinitesimal generator of an order-α fractional resolvent {Sα(t), t > 0} on a
Banach space X, the operators h : � × X → X, f : J × X × X → X are nonlinear functions,
where � = {(t, s), 0 ≤ s ≤ t ≤ b}, J := [0, b].

Some authors have discussed the solutions to fractional differential equations with
Riemann–Liouville fractional derivative [18, 31–33]. For the mild solution, there are two
different types of representation that have been given. The first one was constructed in
terms of a probability density function. By Laplace transformation and probability density
function, Liu and Li [31] gave an appropriate concept of solutions to a semilinear differen-
tial system when A generates a C0-semigroup. The second one was presented in terms of
fractional resolvents. In [32], based on (α, k)-regularized operators, Lizama got the repre-
sentation of solutions for linear fractional order differential equations. Using order-α re-
solvents, Li and Peng [21], Fan [33] discussed the solutions to fractional homogeneous and
inhomogeneous linear differential system, respectively. As is well known, C0-semigroup is
a useful tool in the study of first order differential equations in Banach spaces. In a similar
way, fractional resolvents play an important role in the theory of fractional integrodifferen-
tial equations. For a compact C0-semigroup T(t), it is continuous in the sense of operator
norm for t > 0. Then it is a natural question to ask whether the result is valid in the case
of Riemann–Liouville fractional resolvents; see Lemma 2.5. This is one motivation of this
paper.

Recently some interesting results on Caputo fractional resolvents have been given in
[11, 12, 26]. We note that the properties of resolvent operators for Caputo derivative and
Riemann–Liouville derivative are different in essence, though neither of them has the
semigroup property. For Caputo fractional resolvents Tα(t), Tα(0)x = x for every x ∈ X,
but it is not valid in the case of Riemann–Liouville fractional resolvents. So another mo-
tivation of this paper is to formulate the suitable solution to problem (1.1) by Riemann–
Liouville fractional resolvents in a Banach space C1–α(J , X), which is constructed to solve
the difficulty of fractional resolvents’ unboundedness at t = 0. Then without the Lipschitz
conditions, the existence of solutions to problem (1.1) is discussed.

The paper is organized as follows. In Sect. 2, we recall some concepts and facts about
the fractional resolvents. Section 3 is devoted to the sufficient conditions for solutions to
problem (1.1). Finally, an example is presented to illustrate the application of our results.

2 Preliminaries
We denote by C(J , X) the space of X-valued continuous functions on J with the norm
‖x‖ = sup{‖x(t)‖, t ∈ J}, B(X) the space of all bounded linear operators from X to it-
self, Lp(J , X) the space of X-valued Bochner integrable functions with the norm ‖f ‖Lp =
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(
∫ b

0 ‖f (t)‖p dt)
1
p . In order to define the solution to problem (1.1), we consider the space

C1–α(J , X) :=
{

x(·) : ·1–αx(·) ∈ C(J , X), 0 < α < 1
}

,

with the norm ‖x‖C1–α
= sup{‖t1–αx(t)‖X : t ∈ J}, where t1–αx(t)|t=0 = limt→0+ t1–αx(t). Ob-

viously C1–α(J , X) is a Banach space.
Now we recall some definitions and results on fractional derivative and fractional dif-

ferential equations.

Definition 2.1 ([3]) The Riemann–Liouville fractional integral of a function f ∈ L1(J , X)
of order α ∈R

+ is defined by

Iα
t f (t) =

1
Γ (α)

∫ t

0
(t – s)α–1f (s) ds, t > 0,

where Γ (·) is the gamma function.

Definition 2.2 ([3]) The Riemann–Liouville fractional order derivative of order α ∈ R
+

of a function f ∈ L1(J , X) is defined by

Dαf (t) =
1

Γ (n – α)
dn

dtn

∫ t

0
(t – s)n–α–1f (s) ds, t > 0,

where α ∈ (n – 1, n], n ∈N.

Especially for 0 < α < 1, Dαf (t) = 1
Γ (1–α)

d
dt

∫ t
0 (t – s)–αf (s) ds, t > 0.

Let the symbol ∗ be the convolution (f ∗ g)(t) =
∫ t

0 f (t – s)g(s) ds. For the sake of conve-
nience, we take gα(t) := tα–1

Γ (α) for t > 0 and gα(t) = 0 for t ≤ 0. Then, for 0 < α < 1,

Iα
t f (t) = (gα ∗ f )(t), Dαf (t) =

d
dt

(g1–α ∗ f )(t).

Definition 2.3 ([21]) Let 0 < α < 1. A family {Sα(t), t > 0} ⊆ B(X) is called an order-α frac-
tional resolvent if it satisfies the following assumptions:

(a) Sα(·)x ∈ C(R+, X) and limt→0+ Γ (α)t1–αSα(t)x = x, x ∈ X ;
(b) Sα(t)Sα(s) = Sα(s)Sα(t), s, t > 0;
(c) Sα(t)Iα

s Sα(s) – Iα
t Sα(t)Sα(s) = gα(t)Iα

s Sα(s) – gα(s)Iα
t Sα(t), s, t > 0.

The linear operator A defined by

Ax = Γ (2α) lim
t→0+

t1–αSα(t)x – 1
Γ (α) x

tα
, x ∈ D(A),

is the infinitesimal generator of the fractional resolvent Sα(t), where

D(A) =
{

x ∈ X : lim
t→0+

t1–αSα(t)x – 1
Γ (α) x

tα
exists

}

.

Note that the fractional resolvent Sα(t) is unbounded when t is sufficiently small, but
t1–αSα(t) is bounded on J = [0, b]. We denote M = supt∈J ‖t1–αSα(t)‖.
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Lemma 2.4 ([21]) Let {Sα(t), t > 0} be an order-α fractional resolvent and A be its infinites-
imal generator. Then:

(a) Sα(t)x ∈ D(A) and ASα(t)x = Sα(t)Ax for all x ∈ D(A), t > 0.
(b) For all x ∈ X , t > 0, Sα(t)x = tα–1

Γ (α) x + AIα
t Sα(t)x.

(c) For all x ∈ D(A), t > 0, Sα(t)x = tα–1

Γ (α) x + Iα
t Sα(t)Ax.

(d) A is closed and densely defined.

As fractional resolvents do not satisfy the property of semigroups, we need the following
convergence results for resolvents in the uniform operator topology.

Lemma 2.5 Let {t1–αSα(t), t > 0} be equicontinuous and compact. Then, for every t > 0,
(a) limh→0+ ‖(t + h)1–αSα(t + h) – Γ (α)h1–αSα(h) · t1–αSα(t)‖ = 0;
(b) limh→0+ ‖t1–αSα(t) – Γ (α)h1–αSα(h) · (t – h)1–αSα(t – h)‖ = 0.

Proof As t1–αSα(t) is compact for t > 0, we have the set

Pt =
{

t1–αSα(t)x : ‖x‖ ≤ 1
}

,

is precompact in X for every t > 0. Then we can find a finite family {t1–αSα(t)xi : ‖xi‖ ≤
1}m

i=1 ⊂ Pt satisfying for every x, ‖x‖ ≤ 1, there exists xi, i = 1, . . . , m, such that

∥
∥t1–αSα(t)x – t1–αSα(t)xi

∥
∥ <

ε

3(1 + Γ (α)M)
. (2.1)

From Definition 2.3(a), there exists h1 > 0 such that

∥
∥t1–αSα(t)xi – Γ (α)h1–αSα(h) · t1–αSα(t)xi

∥
∥ <

ε

3
, (2.2)

for every 0 < h ≤ h1 and 1 ≤ i ≤ m.
Moreover, as t1–αSα(t) is equicontinuous for t > 0, we can find h2 > 0 such that

∥
∥(t + h)1–αSα(t + h)x – t1–αSα(t)x

∥
∥ <

ε

3
, (2.3)

for every 0 < h ≤ h2 and ‖x‖ ≤ 1.
Now for 0 < h ≤ min{h1, h2} and ‖x‖ ≤ 1, it follows from (2.1)–(2.3) that

∥
∥(t + h)1–αSα(t + h)x – Γ (α)h1–αSα(h) · t1–αSα(t)x

∥
∥

≤ ∥
∥(t + h)1–αSα(t + h)x – t1–αSα(t)x

∥
∥

+
∥
∥t1–αSα(t)x – t1–αSα(t)xi

∥
∥

+
∥
∥t1–αSα(t)xi – Γ (α)h1–αSα(h) · t1–αSα(t)xi

∥
∥

+
∥
∥Γ (α)h1–αSα(h) · t1–αSα(t)xi – Γ (α)h1–αSα(h) · t1–αSα(t)x

∥
∥

<
ε

3
+

ε

3(1 + Γ (α)M)
+

ε

3

+ Γ (α))
∥
∥h1–αSα(h)

[
t1–αSα(t)xi – t1–αSα(t)x

]∥
∥

≤ ε

3
+

ε

3(1 + Γ (α)M)
+

ε

3
+ Γ (α)M

ε

3(1 + Γ (α)M)

≤ ε,
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which implies that, for every t > 0,

lim
h→0

∥
∥(t + h)1–αSα(t + h) – Γ (α)h1–αSα(h) · t1–αSα(t)

∥
∥ = 0.

(b) Let t > 0 and 0 < h < min{t, b}. Then, for ‖x‖ ≤ 1, we have

∥
∥t1–αSα(t)x – Γ (α)h1–αSα(h) · (t – h)1–αSα(t – h)x

∥
∥

=
∥
∥t1–αSα(t)x – (t + h)1–αSα(t + h)x

∥
∥

+
∥
∥(t + h)1–αSα(t + h)x – Γ (α)h1–αSα(h) · t1–αSα(t)x

∥
∥

+
∥
∥Γ (α)h1–αSα(h) · [t1–αSα(t)x – (t – h)1–αSα(t – h)x

]∥
∥

≤ ∥
∥t1–αSα(t)x – (t + h)1–αSα(t + h)x

∥
∥

+
∥
∥(t + h)1–αSα(t + h)x – Γ (α)h1–αSα(h) · t1–αSα(t)x

∥
∥

+ Γ (α)M
∥
∥t1–αSα(t)x – (t – h)1–αSα(t – h)x

∥
∥,

which implies the corresponding result by the conclusion of Lemma 2.5(a) and the
equicontinuity of {t1–αSα(t), t > 0}. �

Definition 2.6 A function x ∈ C1–α(J , X) is called a solution to problem (1.1) if it satisfies

x(t) =
tα–1

Γ (α)
x0 + AIα

t x(t) + Iα
t f

(

t, x(t),
∫ t

0
h
(
t, s, x(s)

)
ds

)

, t ∈ J ′.

Lemma 2.7 ([34]) Let f ∈ Lp(J , X) with 1 ≤ p < ∞. Then

lim
h→0

∫ b

0

∥
∥f (t + h) – f (t)

∥
∥p dt = 0,

where f (t) = 0 for t �= J .

3 Main results
In this section we shall discuss the concept of solution to problem (1.1) by fractional resol-
vent method and give its existence theorem without Lipschitz assumptions to nonlinear
item f . Let r be a finite positive constant and set Wr = {x ∈ C1–α(J , X) : ‖x‖C1–α

≤ r}. For
brevity, we define the integral operator H by (Hx)(t) =

∫ t
0 h(t, s, x(s)) ds, x ∈ C1–α(J , X). We

give the following hypotheses on fractional integrodifferential system (1.1).
(H1) {t1–αSα(t), t > 0} is equicontinuous and compact.
(H2) The function h : � × X → X satisfies the following:

(1) For a.e. (t, s) ∈ �, the function h(t, s, ·) : X → X is continuous and for all x ∈ X ,
the function h(·, ·, x) : � → X is strongly measurable;

(2) There exists m ∈R
+ such that ‖h(t, s, x)‖ ≤ m‖x‖.

(H3) The function f : J × X × X → X satisfies the following:
(1) f (t, ·, ·) is continuous for a.e. t ∈ [0, b] and f (·, x, y) : [0, b] → X is measurable

for all x, y ∈ X ;
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(2) For a.e. t ∈ [0, b] and x, y ∈ X ,

∥
∥f (t, x, y)

∥
∥ ≤ θ (t) + ρt1–α

(‖x‖ + ‖y‖),

where θ (t) ∈ Lp(J , X), p > 1
α

and 0 < ρ < α2

Mbα+Mb2m .

Lemma 3.1 Let f ∈ Lp(J , X), p > 1
α

and hypothesis (H1) be satisfied. Then the convolution

(Sα ∗ f )(t) =
∫ t

0
Sα(t – s)f (s) ds, t ∈ J ′,

exists and defines a continuous function on J ′.

Proof From Proposition 1.3.4 in [35], we know that Sα(t – ·)f (·) is measurable on (0, t).
Moreover, we have

∥
∥(Sα ∗ f )(t)

∥
∥ =

∥
∥
∥
∥

∫ t

0

(
(t – s)1–αSα(t – s)

) · (t – s)α–1f (s) ds
∥
∥
∥
∥

≤ M
∫ t

0

∥
∥(t – s)α–1f (s)

∥
∥ds

≤ M‖f ‖Lp

(∫ t

0

(
(t – s)α–1)

p
p–1 ds

) p–1
p

≤ M‖f ‖Lp

((
p – 1
αp – 1

)

t
αp–1
p–1

) p–1
p

≤ M‖f ‖Lp bα– 1
p

(
p – 1
αp – 1

)1– 1
p

,

which shows that Sα ∗ f exists.
Next we show that Sα ∗ f ∈ C(J ′, X). Let 0 < ε < t1 < t2 ≤ b, then we have

∥
∥(Sα ∗ f )(t2) – (Sα ∗ f )(t1)

∥
∥

=
∥
∥
∥
∥

∫ t2

0
Sα(t2 – s)f (s) ds –

∫ t1

0
Sα(t1 – s)f (s) ds

∥
∥
∥
∥

≤
∥
∥
∥
∥

∫ t1–ε

0

[
(t2 – s)1–αSα(t2 – s) – (t1 – s)1–αSα(t1 – s)

] · (t2 – s)α–1f (s) ds
∥
∥
∥
∥

+
∥
∥
∥
∥

∫ t1

t1–ε

[
(t2 – s)1–αSα(t2 – s) – (t1 – s)1–αSα(t1 – s)

] · (t2 – s)α–1f (s) ds
∥
∥
∥
∥

+
∥
∥
∥
∥

∫ t1

0
(t1 – s)1–αSα(t1 – s) · [(t2 – s)α–1 – (t1 – s)α–1]f (s) ds

∥
∥
∥
∥

+
∥
∥
∥
∥

∫ t2

t1

(t2 – s)1–αSα(t2 – s) · (t2 – s)α–1f (s) ds
∥
∥
∥
∥

≤ sup
s∈[0,t1–ε]

∥
∥(t2 – s)1–αSα(t2 – s) – (t1 – s)1–αSα(t1 – s)

∥
∥ · ‖f ‖Lp bα– 1

p

(
p – 1
αp – 1

)1– 1
p

+ 2M‖f ‖Lp ·
(

p – 1
αp – 1

)1– 1
p [

(t2 – t1 + ε)
αp–1
p–1 – (t2 – t1)

αp–1
p–1

]1– 1
p
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+ M‖f ‖Lp

(∫ t1

0

[
(t2 – s)α–1 – (t1 – s)α–1]

p
p–1 ds

)1– 1
p

+ M‖f ‖Lp

(
p – 1
αp – 1

)1– 1
p

(t2 – t1)α– 1
p . (3.1)

Then due to the equicontinuity of {t1–αSα(t), t > 0}, Lemma 2.7 and the arbitrariness of ε,
we get

∥
∥(Sα ∗ f )(t2) – (Sα ∗ f )(t1)

∥
∥ → 0, as t1 → t2,

which shows that (Sα ∗ f )(t) is continuous on (0, b]. �

Lemma 3.2 Suppose that conditions (H1)–(H3) are satisfied. Then x ∈ C1–α(J , X) is a so-
lution to problem (1.1) if and only if x satisfies

x(t) = Sα(t)x0 +
∫ t

0
Sα(t – s)f

(
s, x(s), Hx(s)

)
ds, t ∈ J ′. (3.2)

Proof By Lemma 2.4(b), we know that, for t > 0,

gα(t) = Sα(t) – (Agα ∗ Sα)(t).

Let x(·) be a solution to problem (1.1). Then we have

gα ∗ x = (Sα – Agα ∗ Sα) ∗ x

= Sα ∗ x – Sα ∗ (Agα ∗ x)

= Sα ∗ (x – Agα ∗ x)

= Sα ∗ (
gαx0 + gα ∗ f

(·, x(·), Hx(·)))

= gα ∗ (
Sαx0 + Sα ∗ f

(·, x(·), Hx(·))),

which implies

x(t) = Sα(t)x0 +
∫ t

0
Sα(t – s)f

(
s, x(s), Hx(s)

)
ds.

Conversely, suppose x(·) satisfies Eq. (3.2). From Lemma 3.1, we know that x is well
defined on J ′. For the result of AIα

t x(t), by Definition 2.3(c), we have

(

s1–αSα(s) –
1

Γ (α)

)

Iα
t x(t)

=
(
s1–αSα(s) – s1–αgα(s)

)(
Iα

t Sα(t)x0 + gα ∗ Sα ∗ f
(·, x(·), Hx(·))(t)

)

= s1–α
[
Sα(s)Iα

t Sα(t)x0 – gα(s)Iα
t Sα(t)x0

]

+ s1–α
[
Sα(s) · (Iα

t Sα

) ∗ f
(·, x(·), Hx(·))(t) – gα(s) · (Iα

t Sα

) ∗ f
(·, x(·), Hx(·))(t)

]

= s1–α
[
Sα(t)Iα

s Sα(s)x0 – gα(t)Iα
s Sα(s)x0

]
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+ s1–α
[
Iα

s Sα(s)Sα(t) – Iα
s Sα(s)gα(t)

] ∗ f
(·, x(·), Hx(·))(t)

= s1–αIα
s Sα(s)

[
Sα(t)x0 – gα(t)x0 + Sα ∗ f

(·, x(·), Hx(·))(t) – gα ∗ f
(·, x(·), Hx(·))(t)

]

= s1–αIα
s Sα(s)

[
x(t) – gα(t)x0 – Iα

t f
(
t, x(t), Hx(t)

)]
.

It follows that

AIα
t x(t)

= lim
s→0+

Γ (2α)
(s1–αSα(s) – 1

Γ (α) )Iα
t x(t)

sα

= lim
s→0+

Γ (2α)s1–2αIα
s Sα(s)

[
x(t) – gα(t)x0 – Iα

t f
(
t, x(t), Hx(t)

)]
. (3.3)

Noticing that

∥
∥Γ (2α)s1–2αIα

s Sα(s)x – x
∥
∥

=
∥
∥
∥
∥
Γ (2α)
Γ (α)

∫ s

0
s1–2α(s – τ )α–1Sα(τ )x dτ – x

∥
∥
∥
∥

=
∥
∥
∥
∥
Γ (2α)
Γ (α)

∫ 1

0
s1–α(1 – τ )α–1Sα(sτ )x dτ – x

∥
∥
∥
∥

=
∥
∥
∥
∥

Γ (2α)
[Γ (α)]2

∫ 1

0
s1–αΓ (α)(1 – τ )α–1Sα(sτ )x dτ – x

∥
∥
∥
∥

=
∥
∥
∥
∥

Γ (2α)
[Γ (α)]2

∫ 1

0
(1 – τ )α–1τα–1Γ (α)(sτ )1–αSα(sτ )x dτ

–
Γ (2α)

[Γ (α)]2

∫ 1

0
(1 – τ )α–1τα–1x dτ

∥
∥
∥
∥

≤ Γ (2α)
[Γ (α)]2

∫ 1

0
(1 – τ )α–1τα–1 dτ · sup

τ∈[0,1]

∥
∥Γ (α)(sτ )1–αSα(sτ )x – x

∥
∥

≤ sup
τ∈[0,1]

∥
∥Γ (α)(sτ )1–αSα(sτ )x – x

∥
∥.

By Definition 2.3(a), we get

∥
∥Γ (2α)s1–2αIα

s Sα(s)x – x
∥
∥ → 0, as s → 0+. (3.4)

Combining (3.3) and (3.4), we have

AIα
t x(t) = x(t) – gα(t)x0 – Iα

t f
(
t, x(t), Hx(t)

)
.

That is,

x(t) = gα(t)x0 + AIα
t x(t) + Iα

t f
(
t, x(t), Hx(t)

)
,

which shows that x is a solution to problem (1.1). �
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Lemma 3.3 Suppose that assumptions (H1)–(H3) are satisfied. Let Wr = {x ∈ C1–α(J , X) :
‖x‖C1–α

≤ r}. Then the mapping G : Wr → C1–α(J , X) defined by

(Gx)(t) =
∫ t

0
Sα(t – s)f

(
s, x(s), Hx(s)

)
ds

is compact.

Proof In view of the relationship between (C1–α(J , X),‖ · ‖C1–α
) and (C(J , X),‖ · ‖C), for the

compactness of GWr in C1–α(J , X), it is sufficient to prove that the set

B =
{

y ∈ C(J , X) : y(t) = t1–α(Gx)(t), x ∈ Wr , t ∈ J
}

is precompact in C(J , X).
Firstly, we show that B(t) = {y(t) : y ∈ B} ⊆ X is precompact in X for every t ∈ J . If t = 0,

then B(0) = 0 is obviously satisfied. If t > 0, we can define a set Bε(t) = {yε(t), x ∈ Wr , t ∈
J ′} ⊆ X, where

yε(t) = ε1–αSα(ε) · Γ (α)t1–α

∫ t–ε

0
Sα(t – s – ε)f

(
s, x(s), Hx(s)

)
ds.

For x ∈ Wr , s ∈ [0, b], we have

∥
∥f

(
s, x(s), Hx(s)

)∥
∥ ≤ θ (s) + ρs1–α

(
∥
∥x(s)

∥
∥ +

∥
∥
∥
∥

∫ s

0
h
(
s, τ , x(τ )

)
dτ

∥
∥
∥
∥

)

≤ θ (s) + ρs1–α

(
∥
∥x(s)

∥
∥ +

∫ s

0
m

∥
∥x(τ )

∥
∥dτ

)

≤ θ (s) + ρs1–α
∥
∥x(s)

∥
∥ + ρs1–α

∫ s

0
mτα–1∥∥τ 1–αx(τ )

∥
∥dτ

≤ θ (s) + ρr + ρs1–αm
sα

α
r

≤ θ (s) + ρr + ρ
ms
α

r

≤ θ (s) + ρr + ρ
mb
α

r. (3.5)

By (3.5), for x ∈ Wr , t ∈ (0, b], we get

∥
∥
∥
∥t1–α

∫ t–ε

0
Sα(t – s – ε)f

(
s, x(s), Hx(s)

)
ds

∥
∥
∥
∥

≤ b1–α

∫ t–ε

0

∥
∥(t – s – ε)1–αSα(t – s – ε) · (t – s – ε)α–1f

(
s, x(s), Hx(s)

)∥
∥ds

≤ Mb1–α

∫ t–ε

0

∥
∥(t – s – ε)α–1f

(
s, x(s), Hx(s)

)∥
∥ds

≤ Mb1–α

∫ t–ε

0
(t – s – ε)α–1

(

θ (s) + ρr + ρ
mb
α

r
)

ds
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≤ Mb1–α

∫ t–ε

0
(t – s – ε)α–1θ (s) ds + Mb1–α

∫ t–ε

0
(t – s – ε)α–1

(

ρr + ρ
mb
α

r
)

ds

≤ M
(

b
p – 1
αp – 1

)1– 1
p
‖θ‖Lp +

Mb
α

(

ρr + ρ
mb
α

r
)

< ∞. (3.6)

Moreover, due to hypothesis (H1), for ε > 0, the operator ε1–αSα(ε) is compact. So we know
that Bε(t) is precompact in X for each t ∈ J ′.

Let t ∈ (0, b] and δ ∈ (ε, t). We have

∥
∥y(t) – yε(t)

∥
∥

≤ t1–α

[∥
∥
∥
∥

∫ t–ε

0
(t – s)1–αSα(t – s) · (t – s)α–1f

(
s, x(s), Hx(s)

)
ds

– ε1–αSα(ε)Γ (α)
∫ t–ε

0
(t – s – ε)1–αSα(t – s – ε) · (t – s)α–1f

(
s, x(s), Hx(s)

)
ds

∥
∥
∥
∥

+
∥
∥
∥
∥ε1–αSα(ε)Γ (α)

∫ t–ε

0
(t – s – ε)1–αSα(t – s – ε) · ((t – s)α–1 – (t – s – ε)α–1)

× f
(
s, x(s), Hx(s)

)
ds

∥
∥
∥
∥

+
∥
∥
∥
∥

∫ t

t–ε

(t – s)1–αSα(t – s) · (t – s)α–1f
(
s, x(s), Hx(s)

)
ds

∥
∥
∥
∥

]

≤ b1–α

∫ t–ε

0

∥
∥
[
(t – s)1–αSα(t – s) – Γ (α)ε1–αSα(ε)(t – s – ε)1–αSα(t – s – ε)

]

× (t – s)α–1f
(
s, x(s), Hx(s)

)∥
∥ds

+ b1–α
∥
∥ε1–αSα(ε)

∥
∥Γ (α) · M

∫ t–ε

0

∥
∥
[
(t – s)α–1 – (t – s – ε)α–1]f

(
s, x(s), Hx(s)

)∥
∥ds

+ b1–αM
∫ t

t–ε

∥
∥(t – s)α–1f

(
s, x(s), Hx(s)

)∥
∥ds

≤ b1–α

∫ t–δ

0

∥
∥(t – s)1–αSα(t – s) – Γ (α)ε1–αSα(ε)(t – s – ε)1–αSα(t – s – ε)

∥
∥

× (t – s)α–1
(

θ (s) + ρr + ρ
mb
α

r
)

ds

+ b1–α

∫ t–ε

t–δ

∥
∥(t – s)1–αSα(t – s) – Γ (α)ε1–αSα(ε)(t – s – ε)1–αSα(t – s – ε)

∥
∥

× (t – s)α–1
(

θ (s) + ρr + ρ
mb
α

r
)

ds

+ b1–αM2Γ (α)
(∫ t–ε

0

[
(t – s)α–1 – (t – s – ε)α–1]

p
p–1 ds

)1– 1
p
‖f ‖Lp

+ b1–αM
∫ t

t–ε

∥
∥(t – s)α–1f

(
s, x(s), Hx(s)

)∥
∥ds

:= I1 + I2 + I3 + I4,
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where

I1 = b1–α

∫ t–δ

0

∥
∥(t – s)1–αSα(t – s) – Γ (α)ε1–αSα(ε)(t – s – ε)1–αSα(t – s – ε)

∥
∥

× (t – s)α–1
(

θ (s) + ρr + ρ
mb
α

r
)

ds,

I2 = b1–α

∫ t–ε

t–δ

∥
∥(t – s)1–αSα(t – s) – Γ (α)ε1–αSα(ε)(t – s – ε)1–αSα(t – s – ε)

∥
∥

× (t – s)α–1
(

θ (s) + ρr + ρ
mb
α

r
)

ds,

I3 = b1–αM2Γ (α)
(∫ t–ε

0

[
(t – s)α–1 – (t – s – ε)α–1]

p
p–1 ds

)1– 1
p
‖f ‖Lp ,

I4 = b1–αM
∫ t

t–ε

∥
∥(t – s)α–1f

(
s, x(s), Hx(s)

)∥
∥ds.

From Lemma 2.5, we know that I1 → 0, as ε → 0+. By the arbitrariness of ε, δ and absolute
continuity of integral, we get

I2 → 0, I4 → 0,

as ε, δ → 0+. The conclusion of Lemma 2.7 shows that I3 → 0, as ε → 0+. Now for t ∈ J ′,
we get

lim
ε→0+

∥
∥y(t) – yε(t)

∥
∥ = 0,

which implies that B(t) = {y(t) : y ∈ B} is precompact in X as there is a family of precompact
sets arbitrarily close to it.

Next, we show the equicontinuity of B on J . Similar to the computational procedure of
(3.6), we can get

∥
∥
∥
∥

∫ t

0
Sα(t – s)f

(
s, x(s), Hx(s)

)
ds

∥
∥
∥
∥

≤ Mbα– 1
p

(
p – 1
αp – 1

)1– 1
p
‖θ‖Lp +

Mbα

α

(

ρr + ρ
mb
α

r
)

:= Fr < ∞, (3.7)

for t ∈ J , x ∈ Wr . Let y ∈ B, 0 ≤ t1 < t2 ≤ b. Then we have

∥
∥y(t2) – y(t1)

∥
∥

=
∥
∥
∥
∥t1–α

2

∫ t2

0
Sα(t2 – s)f

(
s, x(s), Hx(s)

)
ds – t1–α

1

∫ t1

0
Sα(t1 – s)f

(
s, x(s), Hx(s)

)
ds

∥
∥
∥
∥

≤
∥
∥
∥
∥

(
t1–α
2 – t1–α

1
)
∫ t2

0
Sα(t2 – s)f

(
s, x(s), Hx(s)

)
ds

∥
∥
∥
∥

+ t1–α
1

∥
∥
∥
∥

∫ t2

0
Sα(t2 – s)f

(
s, x(s), Hx(s)

)
ds –

∫ t1

0
Sα(t1 – s)f

(
s, x(s), Hx(s)

)
ds

∥
∥
∥
∥
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≤ (
t1–α
2 – t1–α

1
)
Fr

+ b1–α

∥
∥
∥
∥

∫ t2

0
Sα(t2 – s)f

(
s, x(s), Hx(s)

)
ds –

∫ t1

0
Sα(t1 – s)f

(
s, x(s), Hx(s)

)
ds

∥
∥
∥
∥.

From (3.5), we know

∥
∥f

(
s, x(s), Hx(s)

)∥
∥ ≤ θ (s) + ρr + ρ

mb
α

r, θ ∈ Lp(J , X).

Then due to Eq. (3.1) in Lemma 3.1, we have

∥
∥
∥
∥

∫ t2

0
Sα(t2 – s)f

(
s, x(s), Hx(s)

)
ds –

∫ t1

0
Sα(t1 – s)f

(
s, x(s), Hx(s)

)
ds

∥
∥
∥
∥ → 0,

as t1 → t2, independent of x ∈ Wr . Now we can obtain

lim
t1→t2

∥
∥y(t2) – y(t1)

∥
∥ = 0,

which leads to the equicontinuity of B on J . Thus G : Wr → C1–α(J , X) is a compact map-
ping by the Ascoli–Arzela theorem. This proof is completed. �

Now we can present our main existence result to problem (1.1).

Theorem 3.4 Assume that the hypotheses (H1)–(H3) are satisfied. Then the system (1.1)
has at least one solution.

Proof We transform the existence of solutions into a fixed point problem. For this purpose,
by considering Lemma 3.2, we introduce the solution operator Φ : C1–α(J , X) → C1–α(J , X)
by

Φx(t) = Sα(t)x0 +
∫ t

0
Sα(t – s)f

(
s, x(s), Hx(s)

)
ds.

It is easy to see that the fixed point of Φ is just the solution to problem (1.1). Subsequently,
we shall prove that Φ has a fixed point by Schauder’s fixed point theorem.

Step 1. We claim that ΦWr ⊆ Wr in C1–α(J , X), where

r ≥ α2

α2 – Mb(αρ + ρbm)

[

M‖x0‖ + M
(

b
p – 1
αp – 1

)1– 1
p
‖θ‖Lp

]

.

In fact, for x ∈ Wr , t ∈ J , from (3.7) we have

∥
∥t1–αΦx(t)

∥
∥

≤ ∥
∥t1–αSα(t)x0

∥
∥ + b1–α

∥
∥
∥
∥

∫ t

0
Sα(t – s)f

(
s, x(s), Hx(s)

)
ds

∥
∥
∥
∥

≤ M‖x0‖ + M
(

b
p – 1
αp – 1

)1– 1
p
‖θ‖Lp +

Mb
α

(

ρr + ρ
mb
α

r
)

≤ r.
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Step 2. We show that Φ is continuous on Wr ⊆ C1–α(J , X). For this purpose, we assume
that xn → x in Wr . From hypothesis (H2), (H3), for t ∈ J , we have

(t – s)α–1(f
(
s, xn(s), Hxn(s)

)
– f

(
s, x(s), Hx(s)

)) → 0, a.e. s ∈ [0, t],

and from (3.5), it follows that

(t – s)α–1∥∥f
(
s, xn(s), Hxn(s)

)
– f

(
s, x(s), Hx(s)

)∥
∥

≤ 2(t – s)α–1
(

θ (s) + �r + ρ
mb
α

r
)

, s ∈ [0, t].

Then, by the dominated convergence theorem, we get

t1–α
∥
∥(Φxn)(t) – (Φx)(t)

∥
∥

≤ t1–α

∫ t

0

∥
∥(t – s)1–αSα(t – s)

∥
∥ · (t – s)α–1∥∥f

(
s, xn(s), Hxn(s)

)
– f

(
s, x(s), Hx(s)

)∥
∥ds

≤ Mb1–α

∫ t

0
(t – s)α–1∥∥f

(
s, xn(s), Hxn(s)

)
– f

(
s, x(s), Hx(s)

)∥
∥ds

→ 0, n → ∞,

which implies the continuity of Φ on Wr .
Step 3. We show that the operator Φ is compact. Let

Φ = Φ1 + Φ2,

where Φ1(t) = Sα(t)x0, Φ2(t) =
∫ t

0 Sα(t – s)f (s, x(s), Hx(s)) ds. From Lemma 3.3, we have con-
cluded that Φ2 is compact in Wr . For the compactness of Φ1, it is sufficient to check the
set

V =
{

z ∈ C(J , X) : z(t) = t1–αSα(t)x0, x0 ∈ X, t ∈ J
}

,

is precompact in C(J , X). Obviously, V (0) = { x0
Γ (α) }, V (t) = {t1–αSα(t)x0}, t > 0, is precom-

pact in X. Suppose that 0 ≤ t1 < t2 ≤ b. If t1 = 0, in view of Definition 2.3(a), we get

∥
∥z(t2) – z(0)

∥
∥ =

∥
∥
∥
∥t1–α

2 Sα(t2)x0 –
x0

Γ (α)

∥
∥
∥
∥ → 0,

as t2 → 0. If t1 > 0,

∥
∥z(t2) – z(t1)

∥
∥ ≤ ∥

∥t1–α
2 Sα(t2)x0 – t1–α

2 Sα(t2)x0
∥
∥ → 0.

From hypothesis (H1), we know that ‖z(t2) – z(t1)‖ → 0, as t1 → t2. By the Ascoli–Arzela
theorem, we see that V is precompact in C(J , X). Therefore, Φ = Φ1 + Φ2 is a compact
operator in C1–α(J , X).

Hence, from Schauder’s fixed point theorem, there exists a fixed point x such that Φx = x,
which is the solution to problem (1.1). This completes the proof. �
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4 Application
Consider the following integrodifferential evolution system with Riemann–Liouville frac-
tional derivative:

⎧
⎪⎪⎨

⎪⎪⎩

Dαu(t, x) = ∂2

∂x2 u(t, x) + F(t, u(t, x),
∫ t

0 h1(t, s, u(s, x)) ds), 0 < t ≤ 1, 0 < x < 1,

u(t, 0) = u(t, 1) = 0,

limt→0+ Γ (α)t1–αu(t, x) = u0(x).

(4.1)

Take X = L2(0, 1) and the operator A : D(A) ⊆ X → X defined by Az = z′′, with

D(A) =
{

z ∈ X : z, z′ are absolutely continuous, z′′ ∈ X, z(0) = z(1) = 0
}

.

From Pazy [36], A is the infinitesimal generator of a compact analytic semigroup T(t),
t ≥ 0. It is known that A has the eigenvalues λn = –n2π2, n ∈ N, and the corresponding
eigenvectors en(x) =

√
2 sin(nπx) for n ≥ 1, e0 = 1, which form an orthogonal basis for

L2(0, 1). Then T(t) is given by

T(t)z =
∞∑

n=1

e–n2π2t〈z, en〉en.

If u0(x) =
∑∞

n=1 cn sin nπx, then we have

T(t)u0(x) =
∞∑

n=1

e–n2π2tcn sin nπx.

Moreover, from [21], we know A is the infinitesimal generator of an order-α fractional
resolvent Sα(t) and

Sα(t)u0(x) =
∞∑

n=1

tα–1Eα,α
(
–n2π2tα

)
cn sin nπx.

Employing the method in [13, 31], by Laplace transformation and probability density func-
tions, we can have

t1–αSα(t)u0(x) = α

∫ ∞

0
θξα(θ )T

(
tαθ

)
u0(x) dθ , (4.2)

for any u0 ∈ X, where

ξα(θ ) =
1
α

θ–1– 1
α �α

(
θ– 1

α
)
,

�α(θ ) =
1
π

∞∑

n=1

(–1)n–1θ–nα–1 Γ (nα + 1)
n!

sin(nπα), θ ∈ (0,∞).

Equation (4.2) shows

t1–αSα(t) = α

∫ ∞

0
θξα(θ )T

(
tαθ

)
dθ .
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From Lemma 2.9 of [13], it follows that the family of operators {t1–αSα(t) : t > 0} is equicon-
tinuous, compact and ‖t1–αSα(t)‖ ≤ αM′

Γ (1+α) := M, where M′ = sup{‖T(t)‖ : 0 ≤ t ≤ 1}. Then
hypothesis (H1) is satisfied.

Now, we define a continuous function f : [0, b] × X × X → X by

f (t, u, h)(x) = F
(
t, u(t, x), h(t, x)

)
, 0 < t ≤ 1, 0 < x < 1,

h(t, x) =
∫ t

0
h1

(
t, s, u(s, x)

)
ds.

We take

F
(

t, u(t, x),
∫ t

0
h1

(
t, s, u(s, x)

)
ds

)

= e–t cos
(
u(t, x)

)
+ ρt1–α

(

u(t, x) +
∫ t

0
cos(ts)u(s, x) ds

)

,

where 0 < ρ < α2

Mα+M . So the functions f , h satisfy hypotheses (H2) and (H3). Let u(t)x =
u(t, x), for t, x ∈ (0, 1). Then the differential system (4.1) can be presented in the abstract
form (1.1) and all the conditions of Theorem 3.4 are satisfied. Hence there exists a function
u ∈ C1–α(J , L2(0, 1)) which is a solution of (4.1).

5 Conclusions
By using fractional resolvents, this paper introduces the solution to semilinear Riemann–
Liouville fractional integrodifferential equations and discuss its existence results. There
are two points worth of attention in the study. One is that the Riemann–Liouville fractional
resolvent Sα(t) is not bounded at t = 0, which is essentially different from the case for Ca-
puto fractional resolvents, and the other is Sα(t) does not have the property of semigroups,
which means that the compactness of Sα(t) (or t1–αSα(t)) cannot conclude the equiconti-
nuity of Sα(t) (or t1–αSα(t)). As the existence of solutions is the basis of qualitative study
to differential equations, we can continue to discuss the controllability and stability of
the solution using the similar approach. On the other hand, some new general fractional
derivatives are introduced and studied, such as some types of extended Riemann–Liouville
fractional derivative and the fractional derivative without singular kernel of exponential
function [37–41]. Especially, the Hilfer fractional derivative is often used as a generalized
Riemann–Liouville fractional derivative, which includes Riemann–Liouville and Caputo
derivatives; see [4, 9, 42]. To the best of our knowledge, most of the existence and control-
lability results on the Hilfer fractional differential system are studied under the frame that
A generates a strongly continuous semigroup and the solution is given by semigroup and
probability density functions. It is still an open problem how to define fractional resolvents
to Hilfer and other general fractional equations and it is worth discussing later.
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