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Abstract
It is well known that the feedback mechanism or the individual’s intuitive response to
the epidemic can have a vital effect on the disease’s spreading. In this paper, we
investigate the bifurcation behavior and the optimal feedback mechanism for an SIS
epidemic model on heterogeneous networks. Firstly, we present the bifurcation
analysis when the basic reproduction number is equal to unity. The direction of
bifurcation is also determined. Secondly, different from the constant coefficient in the
existing literature, we incorporate a time-varying feedback mechanism coefficient.
This is more reasonable since the initiative response of people is constantly changing
during different process of disease prevalence. We analyze the optimal feedback
mechanism for the SIS epidemic network model by applying the optimal control
theory. The existence and uniqueness of the optimal control strategy are obtained.
Finally, a numerical example is presented to verify the efficiency of the obtained
results. How the topology of the network affects the optimal feedback mechanism is
also discussed.
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1 Introduction
In order to describe the effect of contact heterogeneity in a population, people have wit-
nessed an increasing interest in epidemic system on networks [1–5]. Generally, the disease
can spread through the interaction among individuals in a population. One can regard the
above interaction as a network. Here the node represents the individual and each edge
indicates the interaction among the individuals. In 2001, Pastor-Satorras and Vespignani
[6] proposed a network-based SIS model to analyze the epidemic spreading. Subsequently,
lots of epidemic models on networks, such as SIS [7–11], SIR [12, 13], SIRS [14, 15], WSIS
[16], and SIQRS model [17], have been proposed to understand the transmission of infec-
tious disease. In addition, the fractional SIR model, the epidemic model with distributed
delay, the stochastic epidemic model, and the discrete-time epidemic model on complex
networks were investigated in [13, 18, 19], and [20], respectively.
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As we know, most of the above literature works pay their attention to finding a threshold
value R0 which is vital to the epidemic spreading. In other words, most of the authors
discuss the disease-free equilibrium and the endemic equilibrium when R0 < 1 and R0 > 1.
For example, Zhang and Sun [7] investigate the following SIS epidemic model:

⎧
⎨

⎩

dSk (t)
dt = δ – δSk(t) – λk(1 – βΘ(t))Sk(t)Θ(t) + ωIk(t),

dIk (t)
dt = λk(1 – βΘ(t))Sk(t)Θ(t) – (ω + d)Ik(t), k = 1, 2, . . . , n.

(1.1)

Here, Sk(t), Ik(t) represent the relative densities of susceptible and infected nodes with
degree k at time t respectively. Θ(t) = 1

〈k〉
∑n

k=1 kP(k)Ik(t) is the probability that any given
link points to the infected and 〈k〉 =

∑n
k=1 kP(k) is the average degree. n is the maximum

degree number. Also, δ is the natural birth rate, d is the death rate, λ is the transmission
rate, and ω is the recovery rate. β is “fear factor” which shows the fear degree when the
individual faces up to the disease spread. As was pointed out in [7], one can assume that
the birth rate equals the death rate, i.e., δ = d. Let R0 = λ〈k2〉

(δ+ω)〈k〉 . The authors in [7] have
obtained the results as follows.

Theorem A When R0 < 1, the disease-free equilibrium is globally asymptotically stable.

Theorem B When R0 > 1, the epidemic equilibrium is asymptotically stable.

Recently, Huang and Li [21] firstly proposed a network-based SIS epidemic model with a
saturated treatment function and the existence of a backward bifurcation was investigated.
Consequently, Li and Yousef in [22] presented the bifurcation analysis of a network-based
SIR epidemic model with saturated treatment function. Motivated by [21] and [22], one
can naturally propose the questions: What about R0 = 1 for system (1.1)? Does there ex-
ist the bifurcation phenomenon? We regard the corresponding bifurcation analysis as an
important study in epidemiology which motivates us to consider this critical case R0 = 1.

At the same time, we notice that most of the above mentioned papers emphasize the
qualitative analysis such as seeking the so-called basic reproduction number and then dis-
cussing the stability of equilibria and periodic orbits. Actually, another important way to
analyze the epidemic spreading is the optimal control theory which pays attention to pre-
senting an optimal strategy to deal with the disease outbreak. For the epidemic on hetero-
geneous networks, in [14] and [15], we firstly succeeded in studying the optimal control
problem for an SIRS epidemic model on scale-free networks. By using the Pontryagin min-
imum principle, we [14, 15] found out an optimal strategy to minimize the total number of
the infected and the cost associated with vaccination and treatment. Subsequently, there
exist a large number of works that pay attention to the corresponding optimal control
problem for the network-based epidemic model. One can see the details for this aspect
in [23–27]. We notice that most of the above literature works consider the optimal strat-
egy such as vaccination, quarantine, and treatment. As we know, once an epidemic dis-
ease outbreaks, people will be more cautious and consequently will reduce contacts with
other people. In other words, people’s initiative response to the disease should be consid-
ered when diseases prevail. Obviously, the feedback mechanism can change the contact
among the individuals, which produces a new network topology structure. For example,
in [7], the coefficient β in system (1.1) can be called “fear factor” or “feedback parame-
ter”. Undoubtedly, it is indispensable to consider the influence of feedback mechanisms on
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disease transmission. Recently, lots of papers have investigated this aspect. In [28], a new
model with a generalized feedback mechanism in weighted networks was investigated. In
[29], a modified SIS network model with infective medium and feedback mechanism was
presented. In [30], the authors obtained that the endemic equilibrium is globally asymp-
totically stable if the feedback parameter is sufficiently large or if the basic reproductive
number belongs to a special interval. We notice that the feedback mechanism in [7, 29],
and [30] is reflected by introducing a constant coefficient. However, we think that the ini-
tiative response of people is constantly changing and it is more reasonable to introduce
the time-varying feedback parameter. If so, one may naturally propose an important and
interesting question: what is the optimal feedback parameter or the optimal fear factor? As
is well known, the public reaction to disease mostly depends on media coverage. In detail,
inadequate media coverage can lead to a lack of awareness of the disease so that the dis-
ease is not easily controlled. However, the media’s excessive reporting on the disease may
cause panic in the whole society. In other words, how should the media reports present
the disease properly? To the best of our knowledge, there exist few results that focus on the
optimal analysis for the feedback coefficient, which can be regarded as an important factor
when considering the transmission in a population. Motivated by the above, in this paper
we propose an optimal control problem and find out the optimal feedback mechanism
which can describe the initiative response to the disease.

Thus far, to the best of the authors’ knowledge, this paper is the first work that addresses
the problem about the bifurcation phenomenon and the optimal feedback mechanism for
an SIS epidemic model on networks. The detailed contribution is in two aspects. One is
to discuss the bifurcation phenomenon for the network-based epidemic model. The other
is to propose the optimal feedback mechanism problem. We believe that this study will
present the effect of the media coverage or the people’s initiative response to the disease.
The results can help the media to report the epidemic spreading suitably and then guide
the individual to have effective protection when the disease outbreaks.

The remainder of this paper is organized as follows. In Sect. 2, we discuss the transcrit-
ical bifurcation analysis for the SIS epidemic network model. In Sect. 3, we propose and
solve the optimal feedback mechanism for the above epidemic model. In Sect. 4, numerical
simulations are presented. The paper ends up with a brief discussion.

2 Bifurcation analysis
In this section, we discuss the occurrence of transcritical bifurcation for system (1.1). As
was pointed out in [7], since Sk(t) + Ik(t) = 1, k = 1, 2, . . . , n, we only need to present the
bifurcation analysis for the following system:

Ik(t) = λk
(
1 – βΘ(t)

)(
1 – Ik(t)

)
Θ(t) – (ω + δ)Ik(t)), k = 1, 2, . . . , n. (2.1)

For system (2.1), there exists a disease-free equilibrium E0(0, 0, . . . , 0
︸ ︷︷ ︸

n

). We have the main

result as follows.

Theorem 2.1 System (2.1) undergoes the transcritical bifurcation at E0 when R0 = 1.
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Proof The corresponding Jacobian matrix A at E0 is as follows:

⎛

⎜
⎜
⎜
⎜
⎝

λ·1·1·P(1)
〈k〉 – (ω + δ) λ·1·2·P(2)

〈k〉 · · · λ·1·n·P(n)
〈k〉

λ·2·1·P(1)
〈k〉

λ·2·2·P(2)
〈k〉 – (ω + δ) · · · λ·2·n·P(n)

〈k〉
· · · · · · · · · · · ·

λ·n·1·P(1)
〈k〉

λ·n·2·P(2)
〈k〉 · · · λ·n·n·P(n)

〈k〉 – (ω + δ)

⎞

⎟
⎟
⎟
⎟
⎠

.

Here, 〈k〉 =
∑n

k=1 kP(k) is the average degree. As was pointed out in [7], the n eigenval-
ues of A are λ1 = λ2 = · · · = λn–1 = –(δ + ω) and λn = (δ + ω)(R0 – 1). One can compute
that the corresponding eigenvectors are e1 = (1, – P(1)

2P(2) , 0, . . . , 0
︸ ︷︷ ︸

n

)T , e2 = (1, 0, – P(1)
3P(3) , . . . , 0

︸ ︷︷ ︸
n

)T ,

en–1 = (1, 0, 0, – P(1)
nP(n)

︸ ︷︷ ︸
n

)T and en = (1, 2, 3, . . . , n)T . Let λ̄ = λ – (δ+ω)〈k〉
〈k2〉 , P = (e1, e2, . . . , en), and

⎛

⎜
⎜
⎜
⎝

I1

I2

· · ·
In

⎞

⎟
⎟
⎟
⎠

= P

⎛

⎜
⎜
⎜
⎝

U1

U2

· · ·
Un

⎞

⎟
⎟
⎟
⎠

.

We obtain the system as follows:

dUk(t)
dt

= –(ω + δ)Uk(t) –
(k + 1)2P(k + 1)

〈k〉
(

λ̄ +
(ω + δ)〈k〉

〈k2〉
) n∑

j=2

(1 – j)Uj–1Un

–
(k + 1)2P(k + 1)

P(1)〈k〉
(

λ̄ +
(ω + δ)〈k〉

〈k2〉
)
(
–2
〈
k2〉 +

〈
k3〉)U2

n

– 2
(

λ̄ +
(ω + δ)〈k〉

〈k2〉
) 〈k2〉

〈k〉 U1Un

+
(k + 1)2P(k + 1)〈k2〉β

P(1)〈k〉2

(

λ̄ +
(ω + δ)〈k〉

〈k2〉
)

·
(

P(1)
n∑

j=2

(1 – j)Uj–1U2
n +

〈
k3〉U3

n

)

–
(k + 1)2P(k + 1)〈k2〉2

β

P(1)〈k〉2

(

λ̄ +
(ω + δ)〈k〉

〈k2〉
)

·
(

–
P(1)

(k + 1)2P(k + 1)
U1U2

n + (k + 1)U3
n

)

, k = 1, 2, . . . , n – 1, (2.2)

dUn(t)
dt

=
〈k2〉
〈k〉 Unλ̄ +

(

λ̄ +
(ω + δ)〈k〉

〈k2〉
) 〈k2〉β

〈k〉2

(

P(1)
n∑

j=2

(1 – j)Uj–1U2
n +

〈
k3〉U3

n

)

–
1

〈k〉
(

λ̄ +
(ω + δ)〈k〉

〈k2〉
)

·
(

P(1)
n∑

j=2

(1 – j)Uj–1Un +
( 〈k2〉α

〈k〉 +
〈
k3〉
)

U2
n

)

(2.3)
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and dλ̄
dt = 0. There exists the following center manifold W c:

{
(U1, U2, . . . , Un–1)T = h(Un, λ̄) =

(
h1(Un, λ̄), h2(Un, λ̄), . . . , hn–1(Un, λ̄)

)T}.

Since h(0, 0) = 0, hUn (0, 0) = ∂h
∂Un

(0, 0) = 0, and hλ̄(0, 0) = ∂h
∂λ̄

(0, 0) = 0, and by use of the Tay-
lor expansion of h(Un, λ̄), we can suppose that Uk = dkU2

n + ekUnλ̄ + fk λ̄
2, k = 1, 2, . . . , n – 1.

Here, the coefficients dk , ek , fk will be determined later. Actually, putting the above equal-
ities about Uk into (2.2) and (2.3), through complicated computing, we can obtain

⎛

⎜
⎜
⎜
⎝

U1

U2

· · ·
Un–1

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

22P(2)(δ+ω)(2〈k2〉–〈k3〉)
P(1)〈k3〉 U2

n + o(U3
n)

32P(3)(δ+ω)(3〈k2〉–〈k3〉)
P(1)〈k3〉 U2

n + o(U3
n)

· · ·
n2P(n)(δ+ω)(n〈k2〉–〈k3〉)

P(1)〈k3〉 U2
n + o(U3

n)

⎞

⎟
⎟
⎟
⎟
⎠

. (2.4)

As a result, from (2.3) and (2.4), system (2.1) reduced on the center manifold reads as
follows:

dUn(t)
dt

=
〈k2〉
〈k〉 Unλ̄ – (ω + δ)

(
β

〈k〉 +
〈k3〉
〈k2〉

)

U2
n + o

(
U3

n
)
� G(Un, λ̄). (2.5)

Since G(0, 0) = 0, GUn (0, 0) = 0, Gλ̄(0, 0) = 0, and G2
Un ,λ̄ – GUn ,Un Gλ̄,λ̄ = 〈k2〉2

〈k〉2 �= 0. Thus the
proof is completed. �

Remark 2.1 We also can determine the direction of the bifurcation in Theorem 1 as fol-
lows. For system (2.1), the endemic equilibrium should satisfy the following equation:

1
〈k〉

n∑

h=1

λh2p(h)
δ+ω

1–βΘ
+ λhΘ

= 1. (2.6)

Since R0 = λ〈k2〉
(δ+ω)〈k〉 , we multiply the denominator and numerator of (2.6) by 〈k2〉

(δ+ω)〈k〉 . Then
we can obtain the following equality:

1
〈k〉

n∑

h=1

R0h2p(h)
〈k2〉

〈k〉(1–βΘ) + R0hΘ
= 1. (2.7)

Consequently, according to (2.7), the derivative of Θ with respect to R0 at the critical
value (R0,Θ) = (1, 0) is ∂Θ

∂R0
|(R0,Θ)=(1,0) = 〈k2〉2

δ〈k2〉2+〈k〉2〈k3〉 > 0. So the endemic equilibrium curve
bifurcates forward. In other words, system (2.1) exhibits forward bifurcation at R0 = 1.

Remark 2.2 In system (2.5), let λ̄ = 0, we have

dUn(t)
dt

= –(ω + δ)
(

β

〈k〉 +
〈k3〉
〈k2〉

)

U2
n + o

(
U3

n
)
. (2.8)

So E0 is stable when R0 = 1.
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Remark 2.3 For the epidemic model on networks, most existing literature works only in-
vestigate the two cases, i.e., R0 > 1 and R0 < 1. In Theorem 2.1, Remark 2.1, and Remark 2.2,
we pay attention to the critical case R0 = 1 and present the strict theoretical proof for the
existence of the transcritical bifurcation. Thus, the above results improve and supplement
the corresponding results in [7] and [29, 30].

3 The optimal control analysis
As we know, in reality, when there exists a disease spreading in a crowd and the number
of infections is increasing, people will decrease the contact with others consciously. As a
result, the above conscious behavior can naturally reduce the number of the infected. On
the contrary, when the number of the infected is going down, people interact with others
more closely. In other words, people’s self-awareness has a direct effect on the spread of a
disease. So analyzing the fear factor or the feedback mechanism coefficient is very inter-
esting and indispensable. In this section, we pay attention to discussing the optimal fear
factor or the optimal feedback mechanism coefficient. According to the optimal param-
eter, the media can report the disease’s severity suitably, which not only reduces contact
with other people but also avoids the panic in public.

In this section, we use the optimal control theory in [31] to analyze the optimal fear fac-
tor strategy. One of our goals is to reduce the number of the infected as much as possible.
The other goal is that the fear factor is as low as possible. In detail, we discuss the optimal
control problem to minimize the objective functional

J
(
u(·)) =

∫ T

0

n∑

k=1

[

Ik(t) +
1
2

c2
ku2

k(t)
]

dt (3.1)

subject to

⎧
⎨

⎩

dSk (t)
dt = δ – δSk(t) – λk(1 – uk(t)Θ(t))Sk(t)Θ(t) + ωIk(t),

dIk (t)
dt = λk(1 – uk(t)Θ(t))Sk(t)Θ(t) – (ω + δ)Ik(t), k = 1, 2, . . . , n.

(3.2)

Here, ck , k = 1, 2, . . . , n, are positive weight constants to keep a balance between the size
of Ik(t) and the fear factor uk(t). Different from the constant coefficient β in (1.1), the
fear factor uk(t) in (3.2) is time-dependent since we think that the individual has different
perception of disease as time goes on. Since the fear factor or the feedback mechanism
coefficient uk(t) is related to the media’s propaganda for disease, it is natural to have a
restriction on the control variable such that 0 ≤ uk(t) ≤ 1. In other words, for the opti-
mal control problem (3.1)–(3.2), the admissible control set is Uad = {uk(·) ∈ L2[0, T], 0 ≤
uk(t) ≤ 1, t ∈ [0, T]}. Here we have to point out that the reasons why we choose the ob-
jective function J as (3.1) are as follows. On the one hand, both the government and the
public wish that the people’s fear factor coefficient is as low as possible when the epidemic
outbreaks. On the other hand, we also expect that the number of infected is as small as
possible until the disease completely disappears. Firstly, we present the existence of the
optimal control strategy as follows.

Theorem 3.1 There exists an optimal control u∗(t) such that J(u∗(·)) = minu∈Un
ad

J(u(t))
subject to the performance index (3.1) and the controlled system (3.2).
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Proof We can prove that the following conditions are satisfied:
(i) System (3.2) is solvable for any control variable u ∈ Un

ad . In fact, the right-hand side
of the state system is continuously differentiable and the claim follows from the
continuation theorem for differential equations [32].

(ii) Un
ad is convex. In fact, let u = (u1(·), u1(·), . . . , un(·)) ∈ Un

ad ,
ū = (ū1(·), ū1(·), . . . , ūn(·)) ∈ Un

ad , and 0 ≤ p ≤ 1. We can have
0 ≤ (1 – p)ui(t) + pūi(t) ≤ 1 since 0 ≤ ui(t), ūi(t) ≤ 1 (i = 1, 2, . . . , n). As a result,
(1 – p)u + pū ∈ Un

ad . The above gives that Un
ad is convex.

(iii) Un
ad is closed. In fact, let u = (u1(·), u1(·), . . . , un(·)) be a limit point of Un

ad . And let
u(m) = (u(m)

1 (·), u(m)
1 (·), . . . , u(m)

n (·)) ∈ Un
ad , m = 1, 2, . . . , be a sequence of points in Un

ad
such that ‖u(m)

i (·) – ui(·)‖ = [
∫ T

0 |u(m)
i (t) – ui(t)|2] 1

2 ≤ 1
m . Due to the completeness of

L2[0, T]n, we have u(·) = limm→∞ u(m)(·) ∈ L2[0, T]n. Also,
0 ≤ ui(t) = limm→∞ u(m)

i (t) ≤ 1 (i = 1, 2, . . . , n). This leads to the closeness of Un
ad .

(iv) The right-hand side of the state system is bounded by a linear function in the state
variable. In fact, let f1(S, I) = δ – δSk(t) – λk(1 – uk(t)Θ(t))Sk(t)Θ(t) + ωIk(t) and
f2(S, I) = λk(1 – uk(t)Θ(t))Sk(t)Θ(t) – (ω + δ)Ik(t). We have

δ – (δ + nλ)Sk(t) + ωIk(t) ≤ f1(S, I) ≤ δ – δSk(t) + ωIk(t)

and

–(δ + nλ)Ik(t) ≤ f2(S, I) ≤ λnSk(t) – (δ + nλ)Ik(t).

(v) The Lagrangian L(I, u) =
∑n

k=1 Ik(t) + ck
2 u2

k(t) is convex on Un
ad . In fact, let

u1, u2 ∈ Un
ad and 0 ≤ θ ≤ 1, we have

L
(
I, (1 – θ )u1 + θu2

)

=
n∑

k=1

[

Ik(t) +
ck

2
(
(1 – θ )u1(t) + θu2(t)

)2
]

≤ (1 – θ )
n∑

k=1

[

Ik(t) +
ck

2
u2

1k(t)
)

+ θ

n∑

k=1

[

Ik(t) +
ck

2
u2

2k(t)
)

= (1 – θ )L(I, u1) + θL(I, u2).

(vi) There exist constants ρ > 1, c1 > 0, c2 such that L ≥ c1‖u‖ρ + c2. In fact, the
Lagrangian L satisfies L ≥ 1

2 min1≤k≤n c2
k‖u‖2.

By utilizing the corresponding results in [31, 33, 34], the above completes the existence
of an optimal control. �

Remark 3.1 The uniqueness of the optimal control can be obtained by similar analysis in
Fister et al. [35].

Secondly, we investigate the optimal solution by the Pontryagin minimum principle [31].
Define the Hamiltonian H as

H = L +
n∑

k=1

[

λ1k(t)
dSk(t)

dt
+ λ2k(t)

dIk(t)
dt

]

. (3.3)
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Here, λ1k and λ2k are the adjoint variables to be determined later. Then, applying the nec-
essary conditions to the Hamiltonian H , we can obtain the main result as follows.

Theorem 3.2 Let S∗
k (t) and I∗

k (t) be optimal state solutions with associated optimal control
variable u∗

k(t) for the optimal control problem (3.1) and (3.2). Then, the adjoint variables
λ1k(t) and λ2k(t) satisfy

dλ1k

dt
=
(
δ + λk

(
1 – u∗

k(t)Θ(t)
)
Θ(t)

)
λ1k(t) – λk

(
1 – u∗

k(t)Θ(t)
)
Θ(t)λ2k(t),

dλ2k

dt
= –1 – ωλ1k(t) + (ω + δ)λ2k(t)

–
λkp(k)

〈k〉
n∑

i=1

(
λ1i(t) – λ2i(t)

)
i
(
1 – 2u∗

i (t)Θ(t)
)
S∗

i (t), k = 1, 2, . . . , n.

(3.4)

The transversality conditions are

λ1k(T) = λ2k(T) = 0. (3.5)

Furthermore, the optimal control is given by

u∗
k(t) = min

{

max

(

0,
λkS∗

k (t)Θ2(t)
ck

(
λ2k(t) – λ1k(t)

)
)

, 1
}

. (3.6)

Proof We will deduce the adjoint equations and the transversality conditions by use of the
necessary condition for the optimal control problems which can be found in [31]. Setting
Sk(t) = S∗

k (t), Ik(t) = I∗
k (t) and differentiating Hamiltonian (3.3) with respect to Sk and Ik ,

we can obtain

dλ1k

dt
= –

∂H
∂Sk

∣
∣
∣
∣
(Sk (t),Ik (t),uk (t)=(S∗

k (t),I∗k (t),u∗
k (t))

,

dλ2k

dt
= –

∂H
∂Ik

∣
∣
∣
∣
(Sk (t),Ik (t),uk (t)=(S∗

k (t),I∗k (t),u∗
k (t))

.

Through direct calculation, it is easy to obtain Eqs. (3.4). Also, by the optimal condition,
we have

∂H
∂uk

= cku∗
k(t) + λkS∗

k (t)Θ2(t)λ1k(t) – λkS∗
k (t)Θ2(t)λ2k(t) = 0.

It follows that u∗
k(t) = λkS∗

k (t)Θ2(t)
ck

(λ2k(t) – λ1k(t)). Using the property of the control space,
we obtain the following restriction condition:

u∗
k =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if λkS∗
k (t)Θ2(t)

ck
(λ2k(t) – λ1k(t)) ≤ 0,

λkS∗
k (t)

ck
(λ2k(t) – λ1k(t))Θ2(t), if 0 < λkS∗

k (t)Θ2(t)
ck

(λ2k(t) – λ1k(t)) < 1,

1, if λkS∗
k (t)Θ2(t)

ck
(λ2k(t) – λ1k(t)) ≥ 1.

So we have (3.6), which is the optimal control u∗
k(t) in compact notation. Thus we complete

the proof. �
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Lastly, we can obtain the optimality system as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS∗
k (t)
dt = –λk(1 – min{max(0, λkS∗

k (t)Θ2(t)
ck

(λ2k(t) – λ1k(t))), 1}Θ(t))

· S∗
k (t)Θ(t) + ωI∗

k (t) + δ – δS∗
k (t),

dI∗k (t)
dt = λk(1 – min{max(0, λkS∗

k (t)Θ2(t)
ck

(λ2k(t) – λ1k(t))), 1}Θ (t))

· S∗
k (t)Θ(t) – (ω + δ)I∗

k (t),
dλ1k

dt = δλ1k(t) + (1 – min{max(0, λkS∗
k (t)Θ2(t)

ck
(λ2k(t) – λ1k(t))), 1}Θ(t))

· λkΘ(t)(λ1k(t) – λ2k(t)),
dλ2k

dt = –1 – ωλ1k(t) + (ω + δ)λ2k(t) – λkp(k)
〈k〉

∑n
i=1(λ1i(t) – λ2i(t))i

· (1 – 2 min{max(0, λiS∗
i (t)

ci
(λ2i(t) – λ1i(t))Θ2(t)), 1}Θ(t))S∗

i (t).

(3.7)

4 Numerical simulations
In this section, we present numerical simulation. Here all the parameter values are chosen
hypothetically due to the unavailability of real world data. Let δ = 0.1, ω = 0.1 and ck = 0.5,
k = 1, . . . , 500. Here the network size n is 500 and the heterogeneous structure is character-
ized by a BA network and a WS small-world network, respectively. The above BA network
is produced as follows. Four initial nodes are fully connected and then a new node with
three new edges at each time step is added. The WS small-world network is generated with
probability 0.1 for rewiring links. Here, each node is symmetrically connected with its six
nearest neighbors in its initial nearest neighbor network. For the BA network, in cases
(a), (b), and (c) of Fig. 1, we plot the trajectories of the number of the average infected
I =

∑n
k=1 p(k)Ik(t) when R0 < 1, R0 = 1, and R0 > 1, respectively. For the WS small-world

network, the corresponding simulation is presented in Fig. 2. In Figs. 3–6, let λ = 0.2, we
shall achieve sub-figures (a) and (b) on the BA network and the WS small-world network,
respectively.

In order to show the effectiveness of the proposed optimal control strategy, we make
a comparison between several constant controls and optimal control. For example, from
Fig. 3, one can see that the optimal control can make the average number of the infected
relatively small compared to other five constant control strategies. In Fig. 4, we draw the
dynamical curve of the optimal control variables u∗

k(t) for different degree k. One can
notice that u∗

k(t) converges to zero, which coincides with (3.5). Comparing (a) and (b), we
find that in the early stage of epidemic outbreak the control strength on the BA network
should be larger than that on the WS small-world network. As time goes on, the control

Figure 1 The average infected densities I =
∑n

k=1 p(k)Ik(t) with respect to (a) R0 < 1, (b) R0 = 1, and (c) R0 > 1
on the BA network
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Figure 2 The average infected densities I =
∑n

k=1 p(k)Ik(t) with respect to (a) R0 < 1, (b) R0 = 1, and (c) R0 > 1
on the WS small-world network

Figure 3 The average infected densities I =
∑n

k=1 p(k)Ik(t) with respect to five kinds of constant control
uk(t) = u and the optimal control u∗

k (t)

Figure 4 The dynamical process of the optimal control variables u∗
k (t), k = 1, 2, . . . ,n

strength on the BA network is lower than that on the WS small-world network. The reason
may be that people contact with others closely in the BA network. So it is important to
control the epidemic as soon as possible, which results in great control strength in the
early stage of epidemic outbreak. Once the epidemic is under control in the BA network, a
small amount of control strength is consequently needed since the nodes with large degree
occupy a small fraction of the network size. Moreover, from Fig. 5, one can find that the
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Figure 5 The values of the performance index J when uk(t) = 0, 0.2, 0.4, 0.6, 0.8 and optimal control u∗
k (t)

Figure 6 The average control strength ūk , k = 1, 2, . . . ,n

optimal control strategy indeed makes the objective function J achieve the minimal value,
which is consistent with the theoretical results.

Lastly, we explore the average optimal control strength ūk =
∫ T

0 u∗
k(t) dt in Fig. 6. One

can find that on the BA network, those nodes with small degree should be strengthened
in order to control the epidemic and achieve the minimum performance index. Maybe
it is because those nodes with small degree often do not have a clear understanding for
the severity of the disease. So the public or the media should advise them to decrease
the communication with others. However, on the WS small-world network, there is little
difference in the average control strength for the nodes with different degree. Maybe it is
because the degree of most of the nodes is equal to 6, i.e., the topological structure of the
WS network is relatively homogenous. So most of the nodes should be strengthened. The
main results in this paper are a good extension and supplement to those in [7, 29], and
[30]. All the above simulation analysis may provide the public some guidance when the
whole society faces up to infectious diseases.

5 Conclusion
In this paper, we have discussed an SIS epidemic model with feedback mechanism on
heterogeneous networks. The feedback mechanism is incorporated in two manners, i.e.,
constant control and time-varying control. Firstly, for the constant feedback mechanism,
the existence of the transcritical bifurcation when R0 = 1 is strictly proved in Theorem 2.1.
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And we have shown that the direction of bifurcation is forward. Secondly, in order to fur-
ther analyze the influence of the feedback mechanism on the epidemic spreading, for the
time-varying control, we have proposed the optimal control problem which minimizes
the number of the infected and the cost associated with the feedback mechanism. In The-
orem 3.1 and Theorem 3.2, we have obtained the existence and uniqueness of the optimal
control strategy.

Finally, we have performed the numerical simulation to illustrate our theoretical results.
Especially, a comparison between optimal control and other constant controls is presented
in Figs. 3–5. It is easy to see that the optimal control is much more effective for reducing
the number of infected individuals and minimizing the performance index. Furthermore,
Fig. 6 reveals that the optimal control strategy is closely related to the topology of the
network. In detail, those individuals with small degree should be strengthened on the BA
network and the control strength is more balanced for the nodes with different degree
on the WS network. All the results in this paper are a good extension and supplement to
those in [7, 29], and [30]. The above analysis will have certain guidance when analyzing
and controlling the disease spread.
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