
Saengthong et al. Advances in Difference Equations        (2019) 2019:525 
https://doi.org/10.1186/s13662-019-2459-8

R E S E A R C H Open Access

Existence and uniqueness of solutions
for system of Hilfer–Hadamard sequential
fractional differential equations with two
point boundary conditions
Warissara Saengthong1, Ekkarath Thailert1,2* and Sotiris K. Ntouyas3,4

*Correspondence:
ekkaratht@nu.ac.th
1Department of Mathematics,
Faculty of Science, Naresuan
University, Phitsanulok, Thailand
2Research Center for Academic
Excellence in Mathematics,
Naresuan University, Phitsanulok,
Thailand
Full list of author information is
available at the end of the article

Abstract
In this paper, we study existence and uniqueness of solutions for a system of
Hilfer–Hadamard sequential fractional differential equations via standard fixed point
theorems. The existence is proved by using the Leray–Schauder alternative, while the
existence and uniqueness by the Banach contraction mapping principle. Illustrative
examples are also discussed.
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1 Introduction
Fractional differential equations have been applied in many fields such as physics, chem-
istry, biology, engineering, and so on. Fractional differential equations have several kinds
of fractional derivatives, such as Riemann–Liouville fractional derivative, Caputo frac-
tional derivative, Grunwald–Letnikov fractional derivative, Hadamard fractional deriva-
tive, etc. The reader interested in the subject of fractional calculus is referred to the books
by Kilbas et al. [1], Podlubny [2], Samko et al. [3], Miller and Ross [4], and Diethelm [5].
A generalization of derivatives of both Riemann–Liouville and Caputo was given by Hilfer
in [6] when he studied fractional time evolution in physical phenomena. He named it gen-
eralized fractional derivative of order α ∈ (0, 1) and type β ∈ [0, 1] which can be reduced to
the Riemann–Liouville and Caputo fractional derivatives when β = 0 and β = 1, respec-
tively. Many authors call it the Hilfer fractional derivative. Such derivative interpolates
between the Riemann–Liouville and Caputo derivatives. For other current definitions of
fractional derivatives, see [7–11].

Fractional-order boundary value problems have been extensively studied by many re-
searchers. In particular, coupled systems of fractional-order differential equations have
attracted special attention in view of their occurrence in the mathematical modeling of
physical phenomena like chaos synchronization [12], anomalous diffusion [13], ecological
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effects [14], disease models [15], etc. Additionally, fixed point theory can be used to de-
velop the existence theory for the coupled systems of fractional differential equations. For
some recent theoretical results on coupled systems of fractional-order differential equa-
tions, for example, see [16–30].

Alsaedi et al. [23] studied the existence of solutions for a Riemann–Liouville coupled
system of nonlinear fractional integro-differential equations given by

⎧
⎨

⎩

Dαu(t) = f (t, u(t), v(t), (φ1u)(t), (ψ1v)(t)), t ∈ [0, T],

Dβv(t) = g(t, u(t), v(t), (φ2u)(t), (ψ2v)(t)), 1 < α,β ≤ 2,

subject to the coupled Riemann–Liouville integro-differential boundary conditions

⎧
⎨

⎩

Dα–2u(0+) = 0, Dα–1u(0+) = νIα–1v(η), 0 < η < T ,

Dβ–2v(0+) = 0, Dβ–1v(0+) = μIβ–1u(σ ), 0 < σ < T ,

where D(·), I(·) denote the Riemann–Liouville derivatives and integral of fractional order
(·), respectively, f , g : [0, T] × R

4 → R are given continuous functions, ν , μ are real con-
stants, and

(φ1u)(t) =
∫ t

0
γ1(t, s)u(s) ds, (φ2u)(t) =

∫ t

0
γ2(t, s)u(s) ds,

(ψ1v)(t) =
∫ t

0
δ1(t, s)v(s) ds, (ψ2v)(t) =

∫ t

0
δ2(t, s)v(s) ds,

with γi and δi (i = 1, 2) are continuous functions on [0, T] × [0, T].
Alsulami et al. [24] studied a new system of coupled Caputo type fractional differential

equations

⎧
⎨

⎩

cDαu(t) = f (t, u(t), v(t)), t ∈ [0, T], 1 < α ≤ 2,
cDβv(t) = g(t, u(t), v(t)), t ∈ [0, T], 1 < β ≤ 2,

subject to the following non-separated coupled boundary conditions:

⎧
⎨

⎩

u(0) = λ1v(T), u′(0) = λ2v′(T),

v(0) = μ1u(T), v′(0) = μ2u′(T),

where cDα , cDβ denote the Caputo fractional derivatives of order α and β , respectively,
f , g : [0, T] × R × R → R are appropriately chosen functions and λi, μi, i = 1, 2, are real
constants with λiμi �= 1, i = 1, 2.

Ahmad et al. [25] studied the existence and uniqueness of solutions for the following
boundary value problem of nonlinear Caputo sequential fractional differential equations:

⎧
⎨

⎩

(cDα + k1
cDα–1)u(t) = f (t, u(t), v(t)), 1 < α ≤ 2, t ∈ (0, T),

(cDβ + k2
cDβ–1)v(t) = g(t, u(t), v(t)), 1 < β ≤ 2, t ∈ (0, T),
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supplemented with coupled boundary conditions

⎧
⎨

⎩

u(0) = a1v(T), u′(0) = a2v′(T),

v(0) = b1u(T), v′(0) = b2u′(T),

where cDα , cDβ denote the Caputo fractional derivatives of order α and β , respectively,
k1, k2 ∈R+, T > 0, f , g : [0, T] ×R×R →R are given continuous functions, and a1, a2, b1,
and b2 are real constants with a1b1 �= 1 and a2b2e–(k1T+k2T) �= 1.

Aljoudi et al. [29] studied a coupled system of Hadamard type sequential fractional dif-
ferential equations with coupled strip conditions given by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(Dq + kDq–1)u(t) = f (t, u(t), v(t), Dαv(t)), k > 0, 1 < q ≤ 2, 0 < α < 1,

(Dp + kDp–1)v(t) = g(t, u(t), v(t), Dδu(t)), 1 < p ≤ 2, 0 < δ < 1,

u(1) = 0, u(e) = Iγ v(η) = 1
Γ (γ )

∫ η

1 (log η

s )γ –1 v(s)
s ds, γ > 0, 1 < η < e,

v(1) = 0, v(e) = Iβv(ζ ) = 1
Γ (β)

∫ ζ

1 (log ζ

s )β–1 u(s)
s ds, β > 0, 1 < ζ < e,

where D(·) and I(·) denote the Hadamard fractional derivative and the Hadamard fractional
integral, respectively, and f , g : [1, e] ×R

3 →R are given continuous functions.
Motivated by the research going on in this direction, in this paper, we study existence

and uniqueness of solutions for a new class of systems of Hilfer–Hadamard sequential
fractional differential equations

⎧
⎨

⎩

(HDα1,β1
1+ + k1HDα1–1,β1

1+ )u(t) = f (t, u(t), v(t)), 1 < α1 ≤ 2, t ∈ [1, e],

(HDα2,β2
1+ + k2HDα2–1,β2

1+ )v(t) = g(t, u(t), v(t)), 1 < α2 ≤ 2, t ∈ [1, e],
(1)

with two-point boundary conditions

⎧
⎨

⎩

u(1) = 0, u(e) = A1,

v(1) = 0, v(e) = A2,
(2)

where HDαi ,βi is the Hilfer–Hadamard fractional derivative of order αi ∈ (1, 2] and type
βi ∈ [0, 1] for i ∈ {1, 2}, k1, k2, A1, A2 ∈R+ and f , g : [1, e]×R×R →R are given continuous
functions.

To the best of our knowledge, this is the first paper dealing with a system containing
Hilfer–Hadamard fractional derivative of order αi ∈ (1, 2], i = 1, 2. For some recent results
on coupled systems of Hilfer–Hadamard fractional derivatives of order αi ∈ (0, 1], i = 1, 2,
we refer to [31, 32], and the references cited therein.

The paper is organized as follows. In Sect. 2, we present some preliminary concepts of
fractional calculus. Section 3 contains the main results. The first result, Theorem 3.2, is
proved by using the Leray–Schauder alternative and the second result of existence and
uniqueness, Theorem 3.3, by the Banach contraction mapping principle. Finally, Sect. 4
provides some examples for the illustration of the main results. We emphasize that our
results are new and contribute significantly to the topic addressed in this paper.
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2 Preliminaries
In this section, some basic definitions, lemmas, and theorems are mentioned.

Definition 2.1 (Hadamard fractional integral [1]) The Hadamard fractional integral of
order α ∈R++ for a function f : [a,∞) →R is defined as follows:

HIα
a+ f (t) =

1
Γ (α)

∫ t

a

(

log
t
τ

)α–1 f (τ )
τ

dτ (t > a) (3)

provided the integral exists, where log(·) = loge(·).

Definition 2.2 (Hadamard fractional derivative [1]) The Hadamard fractional derivative
of order α > 0, applied to the function f : [a,∞) →R, is defined as follows:

HDα
a+ f (t) = δn(

HIn–α
a+ f (t)

)
, n – 1 < α < n, n = [α] + 1, (4)

where δn = (t d
dt )n and [α] denotes the integer part of the real number α.

Definition 2.3 (Hilfer–Hadamard fractional derivative [6, 33]) Let 0 < α < 1 and 0 ≤
β ≤ 1, f ∈ L1(a, b). The Hilfer–Hadamard fractional derivative of order α and type β of
f is defined as follows:

(
HDα,β

a+ f
)
(t) =

(
HIβ(1–α)

a+ δHI(1–α)(1–β)
a+ f

)
(t)

=
(

HIβ(1–α)
a+ δHI1–γ

a+ f
)
(t); γ = α + β – αβ

=
(

HIβ(1–α)
a+ HDγ

a+ f
)
(t),

where HI(·)
a+ and HD(·)

a+ are the Hadamard fractional integral and derivative defined by (3)
and (4), respectively.

The Hilfer–Hadamard fractional derivative may be viewed as interpolating the Hada-
mard fractional derivative. Indeed, for β = 0, this derivative reduces to the Hadamard
fractional derivative.

Definition 2.4 (Hilfer–Hadamard fractional derivative [34]) Let n – 1 < α < n and 0 ≤
β ≤ 1, f ∈ L1(a, b). The Hilfer–Hadamard fractional derivative of order α and type β of f
is defined as follows:

(
HDα,β

a+ f
)
(t) =

(
HIβ(n–α)

a+ δn
HI(n–α)(1–β)

a+ f
)
(t)

=
(

HIβ(n–α)
a+ δn

HIn–γ

a+ f
)
(t); γ = α + nβ – αβ

=
(

HIβ(n–α)
a+ HDγ

a+ f
)
(t),

where HI(·)
a+ and HD(·)

a+ are the Hadamard fractional integral and derivative defined by (3)
and (4), respectively.

We recommend some lemmas and theorems of the Hadamard fractional integral and
derivative by Kilbas et al. [1].
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Theorem 2.5 ([1, 35]) Let α > 0, n = [α] + 1, and 0 < a < b < ∞. If f ∈ L1(a, b) and
(HIn–α

a+ f )(t) ∈ ACn
δ [a, b], then

(
HIα

a+H Dα
a+f

)
(t) = f (t) –

n–1∑

j=0

(δ(n–j–1)(HIn–α
a+ f ))(a)

Γ (α – j)

(

log
t
a

)α–j–1

,

where f (t) ∈ ACn
δ = {f : [a, b] →R : δ(n–1)f (t) ∈ AC[a, b], δ = t d

dt }.

Theorem 2.6 ([33]) Let α > 0, 0 ≤ β ≤ 1, γ = α + nβ – αβ , n – 1 < γ ≤ n, n = [α] + 1, and
0 < a < b < ∞. If f ∈ L1(a, b) and (HIn–γ

a+ f )(t) ∈ ACn
δ [a, b], then

HIα
a+

(
H Dα,β

a+ f
)
(t) = HIγ

a+
(

H Dγ
a+f

)
(t) = f (t) –

n–1∑

j=0

(δ(n–j–1)(HIn–γ
a+ f ))(a)

Γ (γ – j)

(

log
t
a

)γ –j–1

.

From this theorem, we notice that if β = 0 the formulae reduce to the formulae in The-
orem 2.5.

We will use the following well-known fixed point theorems on Banach space for proving
the existence and uniqueness of Hilfer–Hadamard fractional differential systems.

Theorem 2.7 (Leray–Schauder alternative [36]) Let T : E → E be a completely continuous
operator (i.e., a continuous map T restricted to any bounded set in E is compact). Let ε(T) =
{x ∈ E : x = λT(x), 0 ≤ λ ≤ 1}. Then either the set ε(T) is unbounded or T has at least one
fixed point.

Theorem 2.8 (Banach fixed point theorem [37]) Let X be a Banach space, D ⊂ X be closed,
and F : D → D be a strict contraction, i.e., ‖Fx – Fy‖ ≤ k‖x – y‖ for some k ∈ (0, 1) and all
x, y ∈ D. Then F has a fixed point in D.

3 Existence and uniqueness results
In this section, we prove existence and uniqueness of solutions for a system of Hilfer–
Hadamard sequential fractional differential equations with boundary conditions (1)
and (2). The following lemma concerns a linear variant of system (1) and (2).

Lemma 3.1 Let h1, h2 ∈ C([1, e],R). Then u, v ∈ C([1, e],R) are solutions of the system of
fractional differential equations

⎧
⎨

⎩

(HDα1,β1
1+ + k1HDα1–1,β1

1+ )u(t) = h1(t), 1 < α1 ≤ 2, t ∈ [1, e],

(HDα2,β2
1+ + k2HDα2–1,β2

1+ )v(t) = h2(t), 1 < α2 ≤ 2, t ∈ [1, e],
(5)

supplemented with the boundary conditions (2) if and only if

u(t) = A1(log t)γ1–1 + k1

[

(log t)γ1–1
∫ e

1

u(s)
s

ds –
∫ t

1

u(s)
s

ds
]

+
1

Γ (α1)

[∫ t

1

(

log
t
s

)α1–1 h1(s)
s

ds – (log t)γ1–1
∫ e

1

(

log
e
s

)α1–1 h1(s)
s

ds
]

(6)
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and

v(t) = A2(log t)γ2–1 + k2

[

(log t)γ2–1
∫ e

1

v(s)
s

ds –
∫ t

1

v(s)
s

ds
]

+
1

Γ (α2)

[∫ t

1

(

log
t
s

)α2–1 h2(s)
s

ds – (log t)γ2–1
∫ e

1

(

log
e
s

)α2–1 h2(s)
s

ds
]

. (7)

Proof From the first equation of (5), we have

HDα1,β1
1+ u(t) + k1HDα1–1,β1

1+ u(t) = h1(t). (8)

Taking the Hadamard fractional integral of order α1 to both sides of (8), we get

HIα1
1+ HDα1,β1

1+ u(t) + k1HIα1
1+ HDα1–1,β1

1+ u(t) = HIα1
1+ h1(t).

By Theorem 2.6, one has

u(t) –
δ(HI2–γ1

1+ u)(1)
Γ (γ1)

(log t)γ1–1 –
(HI2–γ1

1+ u)(1)
Γ (γ1 – 1)

(log t)γ1–2 + k1HIα1
1+ HDα1–1,β1

1+ u(t)

= H Iα1
1+ h1(t). (9)

From equation (9), by Definition 2.4, we get

u(t) –
δ(HI2–γ1

1+ u)(1)
Γ (γ1)

(log t)γ1–1 –
(HI2–γ1

1+ u)(1)
Γ (γ1 – 1)

(log t)γ1–2 + k1HI1+ u(t) = HIα1
1+ h1(t). (10)

Equation (10) can be written as follows:

u(t) = c0(log t)γ1–1 + c1(log t)γ1–2

– k1

∫ t

1

u(s)
s

ds +
1

Γ (α1)

∫ t

1

(

log
t
s

)α1–1 h1(s)
s

ds. (11)

In a similar way, one can obtain

v(t) = d0(log t)γ2–1 + d1(log t)γ2–2

– k2

∫ t

1

v(s)
s

ds +
1

Γ (α2)

∫ t

1

(

log
t
s

)α2–1 h2(s)
s

ds, (12)

where c0, c1, d0, and d1 are arbitrary constants. Now, boundary conditions (2) together
with (11), (12) yield

u(1) = c0(log 1)γ1–1 +
c1

(log t)2–γ1

– k1

∫ 1

1

u(s)
s

ds +
1

Γ (α1)

∫ 1

1

(

log
1
s

)α1–1 h1(s)
s

ds

= 0, (13)
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v(1) = d0(log 1)γ2–1 +
d1

(log t)2–γ2

– k2

∫ 1

1

v(s)
s

ds +
1

Γ (α2)

∫ 1

1

(

log
1
s

)α2–1 h2(s)
s

ds

= 0,

from which we have c1 = 0 and d1 = 0. Equations (13) can be written as

u(t) = c0(log t)γ1–1 – k1

∫ t

1

u(s)
s

ds +
1

Γ (α1)

∫ t

1

(

log
t
s

)α1–1 h1(s)
s

ds (14)

and

v(t) = d0(log t)γ2–1 – k2

∫ t

1

v(s)
s

ds +
1

Γ (α2)

∫ t

1

(

log
t
s

)α2–1 h2(s)
s

ds. (15)

Next, boundary conditions (2) together with (14), (15) yield

u(e) = c0(log e)γ1–1 – k1

∫ e

1

u(s)
s

ds +
1

Γ (α1)

∫ e

1

(

log
e
s

)α1–1 h1(s)
s

ds = A1,

v(e) = d0(log e)γ2–1 – k2

∫ e

1

v(s)
s

ds +
1

Γ (α2)

∫ e

1

(

log
e
s

)α2–1 h2(s)
s

ds = A2,

from which we have

c0 = A1 + k1

∫ e

1

u(s)
s

ds –
1

Γ (α1)

∫ e

1

(

log
e
s

)α1–1 h1(s)
s

ds,

d0 = A2 + k2

∫ e

1

v(s)
s

ds –
1

Γ (α2)

∫ e

1

(

log
e
s

)α2–1 h2(s)
s

ds.

Substituting the values of c0, c1, d0, and d1 in (11) and (12), we get integral equations (6)
and (7). The converse follows by direct computation. This completes the proof. �

Let us introduce the Banach space X = C([1, e]) endowed with the norm defined by
‖u‖ := maxt∈[1,e]|u(t)|. Thus, the product space X × X equipped with the norm ‖(u, v)‖ =
‖u‖ + ‖v‖ is a Banach space. In view of Lemma 3.1, we define an operator T : X × X →
X × X by

T (u, v)(t) =
(
T1(u, v)(t),T2(u, v)(t)

)
, (16)

where

T1(u, v)(t) = A1(log t)γ1–1 + k1

[

(log t)γ1–1
∫ e

1

u(s)
s

ds –
∫ t

1

u(s)
s

ds
]

+
1

Γ (α1)

[∫ t

1

(

log
t
s

)α1–1 f (s, u(s), v(s))
s

ds

– (log t)γ1–1
∫ e

1

(

log
e
s

)α1–1 f (s, u(s), v(s))
s

ds
]

(17)
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and

T2(u, v)(t) = A2(log t)γ2–1 + k2

[

(log t)γ2–1
∫ e

1

v(s)
s

ds –
∫ t

1

v(s)
s

ds
]

+
1

Γ (α2)

[∫ t

1

(

log
t
s

)α2–1 g(s, u(s), v(s))
s

ds

– (log t)γ2–1
∫ e

1

(

log
e
s

)α2–1 g(s, u(s), v(s))
s

ds
]

. (18)

We need the following hypotheses in the sequel:
(H1) Assume that there exist real constants mi, ni ≥ 0 (i = 1, 2) and m0 > 0, n0 > 0 such

that, for all t ∈ [1, e], xi ∈ R, i = 1, 2,

∣
∣f (t, x1, x2)

∣
∣ ≤ m0 + m1|x1| + m2|x2|,

∣
∣g(t, x1, x2)

∣
∣ ≤ n0 + n1|x1| + n2|x2|.

(H2) There exist positive constants L, L̄, such that, for all t ∈ [1, e], ui, vi ∈R, i = 1, 2,

∣
∣f (t, u1, u2) – f (t, v1, v2)

∣
∣ ≤ L

(|u1 – v1| + |u2 – v2|
)
,

∣
∣g(t, u1, u2) – g(t, v1, v2)

∣
∣ ≤ L̄

(|u1 – v1| + |u2 – v2|
)
.

3.1 Existence result via Leray–Schauder alternative
In the first theorem, we prove an existence result based on the Leray–Schauder alternative.

Theorem 3.2 Assume that (H1) holds. In addition it is assumed that max{Q1, Q2} < 1,
where

Q1 := 2
(

k1 +
m1

Γ (α1 + 1)
+

n1

Γ (α2 + 1)

)

, Q2 := 2
(

k2 +
m2

Γ (α1 + 1)
+

n2

Γ (α2 + 1)

)

.

Then system (1)–(2) has at least one solution on [1, e].

Proof We will use the Leray–Schauder alternative to prove that T , defined by (16), has a
fixed point. We divide the proof into two steps.

Step I: We show that the operator T : X × X → X × X, defined by (16), is completely
continuous.

First we show that T is continuous. Let {(un, vn)} be a sequence such that (un, vn) → (u, v)
in X × X. Then, for each t ∈ [1, e], we have

∣
∣T1(un, vn)(t) – T1(u, v)(t)

∣
∣

≤ k1

[
∣
∣(log t)γ1–1∣∣

∣
∣
∣
∣

∫ e

1

(un(s) – u(s))
s

ds
∣
∣
∣
∣ +

∣
∣
∣
∣

∫ t

1

(un(s) – u(s))
s

ds
∣
∣
∣
∣

]

+
1

Γ (α1)

[∣
∣
∣
∣

∫ t

1

(

log
t
s

)α1–1 (f (s, un(s), vn(s)) – f (s, u(s), v(s)))
s

ds
∣
∣
∣
∣

+
∣
∣(log t)γ1–1∣∣

∣
∣
∣
∣

∫ e

1

(

log
e
s

)α1–1 (f (s, un(s), vn(s)) – f (s, u(s), v(s)))
s

ds
∣
∣
∣
∣

]
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≤ k1

[∫ e

1

|un(s) – u(s)|
s

ds +
∫ t

1

|un(s) – u(s)|
s

ds
]

+
1

Γ (α1)

[∫ t

1

(

log
t
s

)α1–1 |f (s, un(s), vn(s)) – f (s, u(s), v(s))|
s

ds

+
∫ e

1

(

log
e
s

)α1–1 |f (s, un(s), vn(s)) – f (s, u(s), v(s))|
s

ds
]

.

Since f is continuous, we get

∣
∣f

(
s, un(s), vn(s)

)
– f

(
s, u(s), v(s)

)∣
∣ → 0 as (un, vn) → (u, v).

Then

∥
∥T1(un, vn) – T1(u, v)

∥
∥ → 0 as (un, vn) → (u, v). (19)

In the same way, we obtain

∥
∥T2(un, vn) – T2(u, v)

∥
∥ → 0 as (un, vn) → (u, v). (20)

It follows from (19) and (20) that ‖T (un, vn) – T (u, v)‖ → 0 as (un, vn) → (u, v). Hence T
is continuous.

Now we show that T is compact. Let Ω ⊂ X × X be bounded. Then there exist positive
constants L1 and L2 such that |f (t, u(t), v(t))| ≤ L1, |g(t, u(t), v(t))| ≤ L2, ∀(u, v) ∈ Ω . Let
(u, v) ∈ Ω . Then there exists M such that ‖(u, v)‖ = ‖u‖ + ‖v‖ ≤ M, ∀(u, v) ∈ Ω . We have

∣
∣T1(u, v)(t)

∣
∣

≤ A1 + k1

[∫ e

1

|u(s)|
s

ds +
∫ t

1

|u(s)|
s

ds
]

+
1

Γ (α1)

[∫ t

1

(

log
t
s

)α1–1 |f (s, u(s), v(s))|
s

ds +
∫ e

1

(

log
e
s

)α1–1 |f (s, u(s), v(s))|
s

ds
]

≤ A1 + k1

[∫ e

1

maxs∈[1,e] |u(s)|
s

ds +
∫ t

1

maxs∈[1,e] |u(s)|
s

ds
]

+
L1

Γ (α1)

[∫ t

1

(

log
t
s

)α1–1 ds
s

+
∫ e

1

(

log
e
s

)α1–1 ds
s

]

≤ A1 + k1‖u‖[1 + (log e)
]

+
L1

Γ (α1 + 1)
[
(log e)α1 + 1

]
,

which, on taking the norm for t ∈ [1, e], yields

∥
∥T1(un, vn)

∥
∥ ≤ A1 + 2

[

k1‖u‖ +
L1

Γ (α1 + 1)

]

.

In the same way, we obtain

∥
∥T2(un, vn)

∥
∥ ≤ A2 + 2

[

k2‖v‖ +
L2

Γ (α2 + 1)

]

.
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It follows that

∥
∥T (u, v)

∥
∥ ≤ A1 + A2 + 2

[

k1‖u‖ + k2‖v‖ +
L1

Γ (α1 + 1)
+

L2

Γ (α2 + 1)

]

≤ A1 + A2 + 2
[

M(k1 + k2) +
L1

Γ (α1 + 1)
+

L2

Γ (α2 + 1)

]

.

This mean that there is P = A1 + A2 + 2[M(k1 + k2) + L1
Γ (α1+1) + L2

Γ (α2+1) ] such that
‖T (u, v)‖ ≤ P. Hence T is uniformly bounded.

Finally we show that T is equicontinuous. Let t, t0 ∈ [1, e] with t0 < t. Then we have

∣
∣T1(u, v)(t) – T1(u, v)(t0)

∣
∣

≤ A1
[
(log t)γ1–1 – (log t0)γ1–1]

+ k1

[
(
(log t)γ1–1 – (log t0)γ1–1)

∫ e

1

|u(s)|
s

ds +
∫ t

t0

|u(s)|
s

ds
]

+
1

Γ (α1)

[∫ t0

1

((

log
t
s

)α1–1

–
(

log
t0

s

)α1–1) |f (s, u(s), v(s))|
s

ds

+
∫ t

t0

(

log
t
s

)α1–1 |f (s, u(s), v(s))|
s

ds

+
(
(log t)γ1–1 – (log t0)γ1–1)

∫ e

1

(

log
e
s

)α1–1 |f (s, u(s), v(s))|
s

ds
]

≤ A1
[
(log t)γ1–1 – (log t0)γ1–1]

+ k1
[‖u‖((log t)γ1–1 – (log t0)γ1–1) + ‖u‖(log t – log t0)

]

+
L1

Γ (α1)

[∫ t0

1

(

log
t
s

)α1–1 ds
s

–
∫ t0

1

(

log
t0

s

)α1–1 ds
s

+
∫ t

t0

(

log
t
s

)α1–1 ds
s

+
(
(log t)γ1–1 – (log t0)γ1–1)

∫ e

1

(

log
e
s

)α1–1 ds
s

]

≤ A1
[
(log t)γ1–1 – (log t0)γ1–1]

+ k1M
[(

(log t)γ1–1 – (log t0)γ1–1) + (log t – log t0)
]

+
L1

Γ (α1 + 1)
[(

(log t)γ1–1 – (log t0)γ1–1) +
(
(log t)α1 – (log t0)α1

)]
(21)

and

∣
∣T2(u, v)(t) – T2(u, v)(t0)

∣
∣

≤ A2
[
(log t)γ2–1 – (log t0)γ2–1]

+ k2

[
(
(log t)γ2–1 – (log t0)γ2–1)

∫ e

1

|v(s)|
s

ds +
∫ t

t0

|v(s)|
s

ds
]

+
1

Γ (α2)

[∫ t0

1

((

log
t
s

)α2–1

–
(

log
t0

s

)α2–1) |g(s, u(s), v(s))|
s

ds

+
∫ t

t0

(

log
t
s

)α2–1 |g(s, u(s), v(s))|
s

ds
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+
(
(log t)γ2–1 – (log t0)γ2–1)

∫ e

1

(

log
e
s

)α2–1 |g(s, u(s), v(s))|
s

ds
]

≤ A2
[
(log t)γ2–1 – (log t0)γ2–1]

+ k2
[‖v‖((log t)γ2–1 – (log t0)γ2–1) + ‖v‖(log t – log t0)

]

+
L2

Γ (α2)

[∫ t0

1

(

log
t
s

)α2–1 ds
s

–
∫ t0

1

(

log
t0

s

)α2–1 ds
s

+
∫ t

t0

(

log
t
s

)α2–1 ds
s

+
(
(log t)γ2–1 – (log t0)γ2–1)

∫ e

1

(

log
e
s

)α2–1 ds
s

]

≤ A2
[
(log t)γ2–1 – (log t0)γ2–1]

+ k2M
[(

(log t)γ2–1 – (log t0)γ2–1) + (log t – log t0)
]

+
L2

Γ (α2 + 1)
[(

(log t)γ2–1 – (log t0)γ2–1) +
(
(log t)α2 – (log t0)α2

)]
. (22)

Take t → t0, from (21) and (22), we have

∣
∣T1(u, v)(t) – T1(u, v)(t0)

∣
∣ → 0 and

∣
∣T2(u, v)(t) – T2(u, v)(t0)

∣
∣ → 0 as t → t0.

Hence T is equicontinuous. By Arzelá–Ascoli theorem, we get that T (Ω) is compact, that
is, T is compact on Ω . Therefore T is completely continuous.

Step II: We show that the set ε = {(u, v) ∈ X ×X | (u, v) = λT (u, v), 0 ≤ λ ≤ 1} is bounded.
Let (u, v) ∈ ε, then (u, v) = λT (u, v). For any t ∈ [1, e], we have u(t) = λT1(u, v)(t), v(t) =

λT2(u, v)(t). Then, in view of assumption (H1), we obtain

∣
∣u(t)

∣
∣ ≤ ∣

∣T1(u, v)(t)
∣
∣

≤ A1 + k1

[∫ e

1

|u(s)|
s

ds +
∫ t

1

|u(s)|
s

ds
]

+
1

Γ (α1)

[∫ t

1

(

log
t
s

)α1–1 |f (s, u(s), v(s))|
s

ds

+
∫ e

1

(

log
e
s

)α1–1 |f (s, u(s), v(s))|
s

ds
]

≤ A1 + k1

[

‖u‖
∫ e

1

ds
s

+ ‖u‖
∫ t

1

ds
s

]

+
(m0 + m1‖u‖ + m2‖v‖)

Γ (α1)

[∫ t

1

(

log
t
s

)α1–1 ds
s

+
∫ e

1

(

log
e
s

)α1–1 ds
s

]

≤ A1 + k1‖u‖[1 + (log e)
]

+
(m0 + m1‖u‖ + m2‖v‖)

Γ (α1 + 1)
[
(log e)α1 + 1

]
,

which, on taking maximum for t ∈ [1, e], yields

‖u‖ ≤ A1 + 2k1‖u‖ + 2
(

m0 + m1‖u‖ + m2‖v‖
Γ (α1 + 1)

)

. (23)



Saengthong et al. Advances in Difference Equations        (2019) 2019:525 Page 12 of 16

In a similar manner, one can obtain

‖v‖ ≤ A2 + 2k2‖v‖ + 2
(

n0 + n1‖u‖ + n2‖v‖
Γ (α2 + 1)

)

. (24)

From (23) and (24), we have

∥
∥(u, v)

∥
∥ = ‖u‖ + ‖v‖

≤ A1 + A2 +
2m0

Γ (α1 + 1)
+

2n0

Γ (α2 + 1)

+ 2
(

k1 +
m1

Γ (α1 + 1)
+

n1

Γ (α2 + 1)

)

‖u‖

+ 2
(

k2 +
m2

Γ (α1 + 1)
+

n2

Γ (α2 + 1)

)

‖v‖

≤ A1 + A2 +
2m0

Γ (α1 + 1)
+

2n0

Γ (α2 + 1)
+ max{Q1, Q2}

∥
∥(u, v)

∥
∥,

and consequently,

∥
∥(u, v)

∥
∥ ≤ A1 + A2 + 2m0

Γ (α1+1) + 2n0
Γ (α2+1)

1 – max{Q1, Q2} .

Therefore the set ε is bounded. By Theorem 2.7, we get that the operator T has at least
one fixed point. Therefore, problem (1)–(2) has at least one solution on [1, e]. �

3.2 Existence and uniqueness result via the Banach fixed point theorem
Next, we prove an existence and uniqueness result based on the Banach contraction map-
ping principle.

Theorem 3.3 Assume that (H2) holds. Then system (1)–(2) has a unique solution on [1, e]
provided that

μ := 2
(

k1 + k2 +
L

Γ (α1 + 1)
+

L̄
Γ (α2 + 1)

)

< 1. (25)

Proof We will use the Banach fixed point theorem to prove that T , defined by (16), has a
unique fixed point. Fixing N1 = maxt∈[1,e] |f (t, 0, 0)| < ∞, N2 = maxt∈[1,e] |g(t, 0, 0)| < ∞ and
using assumption (H2), we obtain

∣
∣f

(
t, u(t), v(t)

)∣
∣ =

∣
∣f

(
t, u(t), v(t)

)
– f (t, 0, 0) + f (t, 0, 0)

∣
∣ ≤ L

(‖u‖ + ‖v‖) + N1,
∣
∣g

(
t, u(t), v(t)

)∣
∣ =

∣
∣g

(
t, u(t), v(t)

)
– g(t, 0, 0) + g(t, 0, 0)

∣
∣ ≤ L̄

(‖u‖ + ‖v‖) + N2.
(26)

We choose

r ≥ A1 + A2 + 2( N1
Γ (α1+1) + N2

Γ (α2+1) )

1 – 2(k1 + k2 + L
Γ (α1+1) + L̄

Γ (α2+1) )
.

We divide the proof into two steps.
Step I : First we show that T (Br) ⊂ Br , where Br = {(u, v) ∈ X × X : ‖(u, v)‖ ≤ r}.
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Let (u, v) ∈ Br . Then, using (26), we obtain

∣
∣T1(u, v)(t)

∣
∣ ≤ A1 + k1

[∫ e

1

|u(s)|
s

ds +
∫ t

1

|u(s)|
s

ds
]

+
1

Γ (α1)

[∫ t

1

(

log
t
s

)α1–1 |f (s, u(s), v(s))|
s

ds

+
∫ e

1

(

log
e
s

)α1–1 |f (s, u(s), v(s))|
s

ds
]

≤ A1 + k1

[∫ e

1

maxs∈[1,e] |u(s)|
s

ds +
∫ t

1

maxs∈[1,e] |u(s)|
s

ds
]

+
L(‖u‖ + ‖v‖) + N1

Γ (α1)

[∫ t

1

(

log
t
s

)α1–1 ds
s

+
∫ e

1

(

log
e
s

)α1–1 ds
s

]

≤ A1 + 2k1r +
2

Γ (α1 + 1)
(Lr + N1),

which, on taking the norm for t ∈ [1, e], yields

∥
∥T1(u, v)

∥
∥ ≤ A1 + 2k1r +

2
Γ (α1 + 1)

(Lr + N1).

In the same way, one has

∥
∥T2(u, v)

∥
∥ ≤ A2 + 2k2r +

2
Γ (α2 + 1)

(L̄r + N2).

Then we have

∥
∥T (u, v)

∥
∥ ≤ A1 + A2 + 2(k1 + k2)r

+ 2
(

L
Γ (α1 + 1)

+
L̄

Γ (α2 + 1)

)

r + 2
(

N1

Γ (α1 + 1)
+

N2

Γ (α2 + 1)

)

≤ r.

Thus ‖T (u, v)‖ ≤ r, that is, T (u, v) ∈ Br . Hence T (Br) ⊂ Br .
Step II : We show that the operator T is a contraction.
Let (u2, v2), (u1, v1) ∈ X × X. Then, for any t ∈ [1, e], we have

∣
∣T1(u2, v2)(t) – T1(u1, v1)(t)

∣
∣

≤ k1

[∫ e

1

|u2(s) – u1(s)|
s

ds +
∫ t

1

|u2(s) – u1(s)|
s

ds
]

+
1

Γ (α1)

[∫ t

1

(

log
t
s

)α1–1 |f (s, u2(s), v2(s)) – f (s, u1(s), v1(s))|
s

ds

+
∫ e

1

(

log
e
s

)α1–1 |f (s, u2(s), v2(s)) – f (s, u1(s), v1(s))|
s

ds
]

≤ 2k1‖u2 – u1‖ +
2L

Γ (α1 + 1)
(‖u2 – u1‖ + ‖v2 – v1‖

)

≤ 2k1
(‖u2 – u1‖ + ‖v2 – v1‖

)
+

2L
Γ (α1 + 1)

(‖u2 – u1‖ + ‖v2 – v1‖
)
,
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which, on taking the norm for t ∈ [1, e], yields

∥
∥T1(u2, v2) – T1(u1, v1)

∥
∥ ≤

(

2k1 +
2L

Γ (α1 + 1)

)
(‖u2 – u1‖ + ‖v2 – v1‖

)
. (27)

Similarly,

∥
∥T2(u2, v2) – T2(u1, v1)

∥
∥ ≤

(

2k2 +
2L̄

Γ (α1 + 1)

)
(‖u2 – u1‖ + ‖v2 – v1‖

)
. (28)

It follows from (27) and (28) that ‖T (u2, v2) –T (u1, v1)‖ ≤ μ(‖u2 – u1‖ + ‖v2 – v1‖), which,
in view of (25), shows that the operator T is a contraction. From Steps I and II, by Theo-
rem 2.8, we get that the operator T has a unique fixed point. Therefore system (1)–(2) has
a unique solution on [1, e]. �

4 Examples
In this section, we give two examples to illustrate our main results.

Example 4.1 Consider the following system:

⎧
⎪⎪⎨

⎪⎪⎩

(HD 3
2 , 1

2 + 1
6 HD 1

2 , 1
2 )u(t) = |u(t)|

(t+3)4(1+|u(t)|) + |v(t)|
90(1+|v(t)|) + 1

16 , t ∈ [1, e],

(HD 3
2 , 1

2 + 1
8 HD 1

2 , 1
2 )v(t) = sin(πu(t))

80π
+ 1

15
√

t+8 + |v(t)|
100(1+|v(t)|) , t ∈ [1, e],

u(1) = 0, u(e) = 1
2 , v(1) = 0, v(e) = 1

4 .

(29)

Here α1 = 3
2 , α2 = 3

2 , β1 = 1
2 , β2 = 1

2 , A1 = 1
2 , A2 = 1

4 , k1 = 1
6 , k2 = 1

8 .
We see that (H1) holds, because

∣
∣f (t, u, v)

∣
∣ ≤ 1

16
+

1
256

|u| +
1

90
|v| and

∣
∣g(t, u, v)

∣
∣ ≤ 1

45
+

1
80

|u| +
1

100
|v|,

with

m0 =
1

16
, m1 =

1
256

, m2 =
1

90
, n0 =

1
45

, n1 =
1

80
, n2 =

1
100

.

In addition, Q1 ≈ 0.3580 < 1, Q2 ≈ 0.2818 < 1, and max{Q1, Q2} ≈ 0.6420. Thus, the hy-
potheses of Theorem 3.2 are satisfied. Therefore, by Theorem 3.2, system (29) has at least
one solution on [1, e].

Example 4.2 Consider the following Hilfer–Hadamard system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(HD 5
4 , 1

2 + 1
7 HD 1

4 , 1
2 )u(t) = (1 + log t)( |u(t)|

100+|u(t)| ) + |v(t)|
(8+t)3(1+|v(t)|) + 1√

t+15
, t ∈ [1, e],

(HD 3
2 , 1

2 + 1
9 HD 1

2 , 1
2 )v(t) = sin(u(t))

(7+t)3 + 7
49+t2 + |v(t)|√

99+t2(4+|v(t)|) , t ∈ [1, e],

u(1) = 0, u(e) = 1
3 , v(1) = 0, v(e) = 1

5 .

(30)

Here α1 = 5
4 , α2 = 3

2 , β1 = 1
2 , β2 = 1

2 , A1 = 1
3 , A2 = 1

5 , k1 = 1
7 , k2 = 1

9 .
Note that (H2) holds, because

∣
∣f (t, u1, u2) – f (t, v1, v2)

∣
∣ ≤ 1

50
(|u1 – v1| + |u2 – v2|

)
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and

∣
∣g(t, u1, u2) – g(t, v1, v2)

∣
∣ ≤ 1

40
(|u1 – v1| + |u2 – v2|

)
,

with L = 1
50 , L̄ = 1

40 . In addition,

μ := 2
(

k1 + k2 +
L

Γ (α1 + 1)
+

L̄
Γ (α2 + 1)

)

≈ 0.580854 < 1.

Thus, all the conditions of Theorem 3.3 are satisfied. Therefore, by Theorem 3.3, system
(30) has a unique solution on [1, e].

5 Conclusion
In this paper, we studied existence and uniqueness of solutions for a system of Hilfer–
Hadamard sequential fractional differential equations with two-point boundary condi-
tions. The existence result is proved by using the Leray–Schauder alternative while the
Banach contraction mapping principle is used to obtain the existence and uniqueness re-
sult. Examples illustrating the obtained results are also presented. Our results on a system
of Hilfer–Hadamard fractional derivatives are new in the given configuration. We empha-
size that we used Hilfer-Hadamard derivative of order 1 < αi ≤ 2, i = 1, 2. In the context
of sequential fractional differential equations with two-point boundary conditions, the
present paper significantly contributes to the existing literature on the topic. The prob-
lems studied in this paper can be extended to cover other kinds of boundary conditions.
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