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1 Introduction

The convex function and its generalization play an important role in optimization theory
and in other field of sciences. These functions have many integral inequalities (see [1, 10,
16]). The Hermite-Hadamard inequality [4, 5] for convex functions x : H — R on an

interval H of the real line is defined by

hy +hy 1 & x (h1) + x (h2)
(P57) = it | rde = KX, )

for all hy,hy € H with hy < hy. Several applications are found by using the Hermite—
Hadamard inequality (see [2, 3, 6, 12, 14]).

Fractional calculus [8] has played a key role in different scientific fields due to its long
term memory methods. In [15], Sarikaya et al. proved some Hermite—Hadamard type in-
tegral inequalities for fractional integrals and also gave some applications. In [10, 11, 13],
the authors have established several Hermite—Hadamard type inequalities for new frac-
tional conformable integral operators, Katugampola fractional integrals and 1 -Riemann—
Liouville fractional integrals, respectively.

Motivated by Liu et al. [9] and by [11, 13], we prove Hermite—Hadamard type inequali-
ties using 1 -Riemann-Liouville fractional integrals and Katugampola fractional integrals.
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2 Preliminaries
In this section, we give some definitions and relevant results essential for this research
article.

Definition 2.1 ([18]) Let x : H € R — R be a nonnegative function. Then x is called
tgs-convex, if it satisfies the following inequality:

x(rh + (1 =r)hy) < r(1=r)[x () + x(h2)], )
for all h1,hy € H and r € [0, 1].

Definition 2.2 ([8]) Let x € L[h;, h;]. The right-hand side and left-hand side Riemann-—
Liouville fractional integrals ]E‘H x and ];‘1‘2_ x of order o > 0 with /4, > ki > 0 are defined
by

1

¢
Tn+x (@) = @ J, g-0'x@®dt, g>m

and

o l o a-1
Jiy 2= 7 /g (t-@" ' x(Odt, g<hs,

respectively, where I"(-) is the Gamma function defined by I'(«) = fooo et dt.

Definition 2.3 ([7]) Let [k, h;] C R be a finite interval. Then, the left- and right-side
Katugampola fractional integrals of order (> 0) of x € X% (hy, hy) are defined by

l-a g
o p a-1 51
°r = G t’ t)dt
h1+X(g) F(Ol) i (g ) X( )
and
pl_a 2 a-1 1
pli'fz_X(g) = @) / (tp _gp) P~ x (¢) dt,

£

with /1; < g < hy and p > 0. Here X% (h1,h13) (c € R, 1 < p < 00) is the space of those complex
valued Lebesgue measurable functions x on [/, h1;] for which || x || x? < 00, where the norm
is defined by

b an\"?
||X||XP=</ Ith(t)Ip—> < 00,
¢ I t

for 1 <p < oo, c € R and, for the case p = oo,

Il llxeo = ess sup[°|x (2)|].

hy<t<hy

Here ess sup stands for essential supremum.
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Definition 2.4 ([8, 17]) Let (/11,h3) (=00 < h; < hy < 00) be a finite or infinite real interval
and y > 0. Let ¥ (x) be an increasing and positive monotone function on (%3, /1;] with con-
tinuous derivative on (%1, /4;). Then the left- and right-sided 1 -Riemann—Liouville frac-

tional integrals of a function x with respect to ¥ on [/, /1;] are defined by

g
I x(e) = (y) w’<z>(w<g>—w<z>)y*1x<z>dz,
hy
hz—X(g F(y)/ v'(z W(g) X(z )dz,
respectively.

Liu et al. [9] established Hermite—Hadamard type inequalities via 1 -Riemann-Liouville

fractional integrals for convex functions.

Lemma 2.1 ([9]) Let x : [h1,h3] — R be a differentiable mapping, for 0 < hy < hy, and
X € L1y, hy]. Let W (g) be an increasing and positive monotone function on (hy, hy], with
continuous derivative V' (g) on (hy,hy) and y € (0,1). Then the following equality for frac-
tional integral holds:

x(h) + x(hy)  T'(y+1) [
2 2y — )Y

+ T o) (U )]

e 0 W) (B 0)

¥l(h)

i L @ -h) - (v @) V@V @O de @)
2 1 ¥1(n)

Lemma 2.2 ([9]) Let x : [h1,h3] — R be a differentiable mapping, for 0 < h;y < hy, and

X € L1y, hy]. Let W (g) be an increasing and positive monotone function on (hy, hy], with

continuous derivative V'(g) on (hy,hy) and y € (0,1). Then the following equality for frac-

tional integral holds:

I'(y+1) )
DT o W 00) + T, (o )]

h1+h2
N\

¥ (y)
- fw k(X' o v) @V (@) dg

“L(h)

1 Yl(hp)
/ (V@ - m) —(h-v@) ] o V)@V @ds @

+ —_—
2(hy = h1)” Sy

L Yy <z <y (),
=L vty <2<y,
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3 Inequalities via Katugampola fractional integrals
In this section, we find a Hermite—Hadamard inequality for a fgs-convex function via
Katugampola fractional integrals.

Theorem 3.1 Let o >0 and p > 0. Let x : [h],h5] C R — R be a nonnegative function
with 0 < hy < hy and x € XE(h,hy). If x is also a tgs-convex function on [h},h5), then the
following inequalities hold.:

W)+ hb
2 - &
X(z )

aF( +1) N 3
e R )

~ pla+D)(@+2) ®)

Proof Let r € [0,1]. Consider x,y € [h1, 3], b1 > 0, defined by x” = r’hf + (1 - r°)H5, y° =
rPhy + (1 —rP)h;. Since x is a tgs-convex function on [k, 1], we have

(x”+y") x@®) + x (")
X < .
2 4

Then we have
Wy + PP P\ 1P PP v
4x — < x(r"H + (L=r")hy) + x (rPhy + (1= ") hy). ©®)

Multiplying both sides of (6) by #**~1, & > 0 and then integrating the resulting inequality
with respect to r over [0, 1], we obtain

g P 1
- (hl th) : / (I (1)) dr

1
+/ 1P x (r°hG + (L= rP)h) dr
0
h hg—g" a-1 , gpfl
[, Gizi) @

P2 (kP W\ ko~
+ X (k°)—— dk
[ Gemie) 00
_ P (@)
(hy = Hy)e

["Lix (15) + I, _x (h7)]- 7)

This establishes the first inequality. For the proof of the second inequality in (5), we first
observe that, for a fgs-convex function x, we have

x(r°h) + (1=r")hy) <r* (1 =) (x (h)) + x (H5))
and

x(r°hy + (1=r")Hy) <r* (1 =) (x (H)) + x (H5))-

Page 4 of 17
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By adding these inequalities, we get
XK+ (L= 1)) + X (W + (L= 120 <200 (L= ) (e () + 2 0)). ®)

Multiplying both sides of (8) by #**71, & > 0 and then integrating the resulting inequality
with respect to r over [0, 1], we obtain

ot—lF 1
) + Ty x D) 2 [ 01 ) 08) + £ 08)) . 9
2~ M1 0

Since

1
/ (rotp+p—l _ rap+2p—l) dt = 1 ,
0 pla+1)(a +2)

(9) becomes

@) 1y o 2(x () + x (1))
=iy e 08)+ Bx U0) = G w
Thus (7) and (10) give (5). (]

Remark3.1 (1) Byletting p — 1in (5) of Theorem 3.1 we get inequality 3.1 of Theorem 3.1
in [18].

(2) By letting p — 1and a = 1 in (5) of Theorem 3.1 we get inequality 2.2 of Theorem 2.1
in [18].

Theorem 3.2 Let o >0 and p > 0. Let x : [h],h5] C R — R be a differentiable and non-
negative mapping on (hy,hy) with 0 < hy < hy. If | x| is tgs-convex on [h},hb], then the
following inequality holds:

x(h))+ x(hy)  p*T(e+1), , "
: 2 2 - 2(],15 _hlf)a [”Ih1+x(h§) +° Ihz—x(hf)]

< )]+ )] )
~ (e +2)(a+3) ! 2

Proof From (7) one can have

P (@) )y o
=y [ 1 x (H3) +7 I, _x ()]
1 1
_ / L (I + (1= P dir + / Pl (P + (1= KD dir. (12)
0 0

By integrating by parts, we then get

x () + x(hy) p“’lf(a)[
ap (hy = h)=
o _1p 1
= M/O r”(‘”l)_l[x/(r'ohg +(L=r")H) = x'(r"hy + (1= r")H5)] dr. (13)

o

P x () + Iy, _x ()]
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By using the triangle inequality and the zgs-convexity of | x’|, we obtain

’ X))+ x ) _ 0" e oy g )]

ap (W -H))
hg_hf ! pla+l)-1| /(..p1,P 0\ 1,P (P 1,P 0\ 1,P
< > /0 r |X(r h2+(1—r)h1)—x(r h1+(l—r)h2)\dr
hg—hf ! (e+1)-1T 7 P P ’ P P
< T/ PP (rPhy + (1= r?)HY) + X/ (r°h) + (1= r°)h5) ] dr
0

P _pPy 1
28I [ oot (1) [ 0) + | 45)
0

C2(h5 = 1Y) /(W) + | ()]
- o pla +2)(o+3) (14)

Multiplying both sides of the above inequality by %*, we get the required inequality (11). O

Corollary 3.3 Counsider the similar assumptions of Theorem 3.2.
1.Ifp =1, then

(h)+x(h)  Tle+D) )
‘X 142rX 2 _2(h2a_+h1)a []h1+X(h2)+]h2X(h1)]‘

hy -

< m[‘xl(}ll)’ +|x/(h2)]]- (15)

2.Ifp=a=1, then

(h)+x() 1 (P o /
‘X Sl T /hl X(g)dg‘f%ﬂx(hﬂhlx(h2)|]' (16)

For more results we need the following lemma, also proved in [11].

Lemma 3.1 ([11]) Let o >0 and p > 0. Let x : [h],h5] C R, =[0,00) — R be a differen-
tiable mapping on (h,hb) with 0 < hy < hy. Then the following equality holds if the frac-
tional integrals exist:

X))+ x(hy)  p*T(@+1)
2 2y — )

(25 x () + £, x ()]
o _ppy pl
S AID U100 T 000+ (- i) )
0
Proof By using the similar arguments as in the proof of Lemma 2 in [15]. First consider

1
/ (L=r")r" X (rh] + (1= r*)Hb) dr
0

=) x(rPh] + (1= r0)h5) |!

p(hy = h5)

0

1
+ L/ (=) (71 + (1= 7)) dr
=15 Jo
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x(y) o« /hl(g”—hi’>°'_l, L.
plhy =hy) My —hy Jyy \Hy =y W=
__x(y)  pex) (&)
ps =)~ O —Hpye e

(18)

g=h

Similarly, we can show that

1
/ PPy (rP Y + (L= rP)hG) dr
0

x(H)  p* ' (e+1) o,
S oid =) gy (19)
g=n2

Thus from (18) and (19) we get (17). O

Theorem 3.4 Let o >0and p > 0. Let x : [h],h)] C R, — R be a differentiable and non-
negative mapping on (b}, hy) such that x' € Li[hy, hy] with 0 < hy < hy. If | x'|9 is tgs-convex
on [h], hb] for some fixed q > 1, then the following inequality holds:

p 3 o
’X(hl) . xls) _ Z(hf(f‘,:l)l) (P12 x () + I, (hf)]‘
_ (s —h) ( 2 >1—”q
- 2 a+1
1 1/q
x([ﬂ<z,a+z)+m][|xf(h§)|q+|X/(h§)|q]) . (20)

Proof Using Lemma 3.1 and the power mean inequality and the zgs-convexity of | x'|?, we
obtain

|I)( (Ol, 0 hl) h2)|

= ‘Lhﬁ — ) /1{(1 =) = (") VK (PR + (L= 1) HE) dr

p P 1-1/q
(h —h) (/‘ —r” r") ‘rpldr>

(/| L=r)" = () [ (i + (1 _rp)h§)|qdr>1/q

1-1/
57’)(’452‘”{% [ (=) (o} ar) '
0

([ 10y ey e o) e e

By using the change of variable ¢ = r”, we get
1
/ (1=r)" + ()"} dr
0
1 1
= / (L=r")"r ' dr+ / (r") r"t dr
0 0

Page 7 of 17
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2
S pla+1)

| (=Y 4 ()} (L )
:/01(1—r”)ar”_lrp(l—rp)dr+/:(r”)ar”_lrp(l—rp)dr

= 1,3(2,01 +2)+
0

(22)

ol +2)(a +3) (23)

Hence using (23) and (22) in (21) we get (20). |

Corollary 3.5 Consider the similar assumptions of Theorem 3.4.
1.Ifp =1, then

‘ x(h)+x(hy)  T(a+1)
2 20y — hy )

1-1/
- (hy—h1)( 2 1
- 2 a+1

X ([ﬁ(2,a +2)+

Ui o x (h2) +];‘52_x(h1)]‘

1 1/q
a0 o)) (1)

2. Ifp=a=1,then

’x(hl) + x(ha) 1 /h2

5 s x(g)dg‘

h1

_Un—hy) (2(|x’(h1)|" + |x/(h2)|q)>“‘{ (25)

- 2 3

Theorem 3.6 Leta >0and p >0. Let x : [h],hy] C R, — R be a differentiable and non-
negative mapping on (h'lo, hg) suchthat x' € Li[hy, ]l with 0 < hy < hy If | x| is tgs-convex
on [h], 1] for some fixed q > 1, then the following inequality holds:

X))+ x ()  p*T(a+1), ., o
’ . 2 = 2(],15 _ hll))a [plhﬁx(hg) +” Ihzx(hll))]‘

(h5 - HY) 1 , , l/q

Proof Using Lemma 3.1 and the power mean inequality and the fgs-convexity of | x'|, we
obtain

Hy /74 *Ta+1
I X( 1) ; X( 2) - g(hg (:x]::f)o? [pI}OthX(hg) +” IZ2—X(hf)]‘

1
[P [0y - () o e (- i)
0

1 1-1/
S p(hg—h‘f)< / o1 dr) !
2 0
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<M%—MK1Y”q
1%

1/q

([ e e ) )

Since by using the change of variable ¢ = r*, we get

/01{(1 )"+ (")} (L= 1P) dr
= /:(1 ) P (1= ) dr + /ol(rp)arp_lrp(l —r’)dr

1
= ;,3(2,01+2)+ —p(a+2)(a+3)'

Hence using (28) in (27) we get(26).

Corollary 3.7 Counsider the similar assumptions of Theorem 3.6. If p = 1, then

() +x(h)  Tla+) )
‘X 1 ;X 2) z(hzotjhl)a []h1+x(h2) +]h2_X(h1)]‘

_ (=)
- 2

1/q
)][yx/<h1>|q+yx/<h2>m) .

(lPee2 s

Y +h
2

Theorem 3.8 Let x1, x2 be real valued, symmetric about

convex functions on [y, hy], where p > 0. Then, for all hy, hy >0 and a > 0, we have

P Py G () xa2(h5)) _ 20+ )M, H5) + N, 15)]
(h5 — hy)> - I'(a+5)

and

h) + h) +
8
X1< 5 >X2< ) >

P Iy () xa(hy)  2a(a + 1)[M(KY, HE) + N(H., HE)]
S TR T@+5)

’

Page 9 of 17

(27)

(28)

(29)

, nonnegative and tgs-

(30)

(31)

where M(h}, h5) = x1() x2(h1) + x1(h2) x2(ha) and N (Y, h5) = x1(h) x2(h2) + x1(h2) x2(h1).

Proof Since y; and x, are tgs-convex functions on [/, /], we can have
x1(r°hy + (L=r?)hy) < r*(1=r") (xa (HY) + x1(H5))
and

Ko (r ]+ (L= )H5) <7 (1=1°) (o () + x2 (H5)),
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From the above, we obtain

x1(r°hy + (L=r")h) x2 (r 5 + (1= r°)H5)

< (1=r)"(xa (1) + 1 () (xa () + 2 (5))- (32)

Multiplying both sides of (32) by , & >0 and then integrating the resulting inequality

with respect to r over [0, 1], we obtam

F(a)/ X1 rPhP ( _rp)hg)XZ(”ph/f+(l—rp)hg)dr

< (a () + xa(m5)) O (h)) + xa(h3) [+ (1= ) dr. (33)
I'(a)
By the change of variable ¢ = r*, we get
1
20 (1 _ o) gy 222+
/0 P (1-r") dr T@is) (34)

Also by letting x” = r°h{ + (1 — r°)h}, we obtain

F(a)/ V(PP H + (1= 1)) xo (FP 1Y + (1= rP) 5 dr
ML G i) xa(5))
) (Hy —h7)* ' (35)

Hence from (33)—(35), we get (30).
Again using the tgs-convexity of x; and x, on [A], 4], we find

hy + h H) +H
Xl( ) )Xz( ) )

Phe + (L=rP)hE P + (1=K’
§X1<r 1+(2 r)2+r 2+(2 ’")1)

X rPhY + (1—rP)hy s rPHy + (1 —rP)hy
g 2 2

< =[x (r"n] + (L=r")h) + xa(r°h + (1= r°)H))]

4>|~

X i[)@(r”h‘f +(L=rPYH5) + xa(r"hs + (1 - 1r°)HY)]

= gl (k] + (L= V) oI + (1)
+x1(rHy + (1= ") 1Y) x2(rP S + (1= r°) Y
+x1(r’hy + (1= r?)h5) xo(rP s + (1 = 1)}

+x1(r'Hy + (1= r")h)) xa (r°hf + (1 - rp)hg)]. (36)
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Multiplying both sides of (36) by %, a > 0 and then integrating the resulting inequality

with respect to r over [0, 1], we obtain

1 hy + hy +H
X1 X2
ol (a+1) 2 2

1
16;(01) [/ r (P hY + (1= 12)h5) xo (P + (1= 1) iy dr
0

=

1
+/ P (P hy + (1= 1) 1Y) xo (Pl + (1= r°) 1y dr
0

1
+/ P (rPhy + (1= 1°)h) xo(rP Wy + (1= 1°)hf dr
0

1
+/ rP U (s + (L= 1)) xa (rP Y + (1= 7)) dr].
0

That is,

hy +hh hy +hh
sh( . )x( . )
IlNa+1
< PP D e b () 00 (8) + 10 () o ()]
2(hh — hY)*

+ Iy () xe () + xa () xa (3) |

After some calculations we get the required inequality (31). O

Remark 3.2 1. By letting p = 1 in Theorem 3.8 the inequalities (30) and (31) give the in-
equalities (3.11) and (3.12), respectively, in Theorem 3.2 of [18].

2. By letting p = o = 1 in Theorem 3.8 the inequality (30) becomes the inequality in
Theorem (2.2) of [18].

4 Inequalities via ¥ -Riemann-Liouville fractional integrals
First we establish the Hermite—Hadamard inequality via 1 -Riemann—Liouville fractional

integrals.

Theorem 4.1 Let x : [h1,h] — R be a positive function, for 0 < hy < hy, and x €
Ly[hy, hy]. Let W (z) be an increasing and positive monotone function on (hy, hy], with con-
tinuous derivative ¥'(z) on (h1,hy). Let x be a tgs-convex function, then the following in-

equalities for a fractional integral hold:

e
ry+1) .
< o [ o 0) + T o) )]

- v bx () + x (h)]
(y+D(y+2)

(37)
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Proof Since x is tgs-convex, we have

utvy _ x@+xw)
X( 2)— 2

Letu=rhy + (1 —r)hy and v =rhy + (1 — r)hy, we get
4y (#) < X(rh1 +(1- r)hz) + X(rhz +(1 - r)hl). (38)

Multiplying by 7! on both sides of inequality (38) and then integrating with respect to r
over [0,1] imply

4 hl + h2 1 1 1 -1
S\ —— < / "y (rhy + (1= r)hy) dr + / " (rhy + 1 =r)hy)dr.  (39)
Y 0 0

Now consider

M[I 5 (W T ) + I, (o v) (¥ ()]
2(hy = hy)Y

__Pesn e B
_2(h2—h1)1/1*(y)|:/1;_1(h1) V@ -9 @) (xov)g)dg

v 1n) o1
[ e -m) e vied]

Y1)

[ (@Y v
5[[ ( hy — ) (w(g)hZ_
) (@) — by \T ™ 1#(g

/1(h1) ( hy —hy ) (w(g)) hy g]
1 1

|:/ ryfl)((fh1+(1—r)h2)dr+/ rVIX(’"h2+(1_r)h1)dri|
0 0

22x<h1;h2>, (40)

by using (39). Thus first inequality of (37) is proved.

+

N =

For the next inequality we consider

x (i + (L=1)hy) < r(1=7r)[x(m) + x(h2)]

and

x(rha+ (L=r)) < r(1=7r)[x () + x (m)].

We add

X(rhy + (U= 1)hy) + x (rhy + (1= r)y) < 2r(1=1)[x () + x (h2)]- (41)

Page 12 0f 17
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Multiplying by 7! on both sides of inequality (41) and then integrating with respect to r
over [0, 1] imply

1

1
f Uy (rhy + (1= r)hy) dr + / U (rhy + (1= 1)) dr
0

0
- 2[x (h1) + x (ha)]
(y+Dy+2)

That is,

DD [ G 09) + T 1907
T (r+Dy+2)

Hence the proof is completed. O

Remark 4.1 (1) By letting ¥ (g) = g in (37) of Theorem 4.1 we get inequality 3.1 of Theo-
rem 3.1 in [18].

(2) By letting ¥/(g) =g and y = 1 in (37) of Theorem 4.1 we get inequality 2.2 of Theo-
rem 2.1 in [18].

For the next two results we use Lemma 2.1 and Lemma 2.2, respectively.

Theorem 4.2 Let x : [h1,h2] — R be a nonnegative differentiable mapping, for 0 < h; <
hy. Let Y (g) be an increasing and positive monotone function on (hy, hy], with continuous
derivative '(g) on (h1,hy) and y € (0,1). If | x'|1 is tgs-convex and q > 1, then the following
inequality for fractional integral holds:

‘X(h1)+X(h2) I'(y +1) [z

2 2y — hy)” Ny (K 0 W) (7 (o)

+ I (o w>(1/r1(h1>)]’

= [ 2 (o L)]‘T (2t |X(h2)|q)>‘1’. W)
2 y+1 2v (y +2)(y +3)
Proof First note that, for every g € (v 1(h1), ¥ (hy)), we have hy < y(g) < hy. Let r =

hiz ‘//h(g , then we have ¥(g) = rhi; + (1 — r)hy. Applying Lemma 2.1 and the tgs-convexity

of | x’|, we obtain

‘X(h1)+X(h2) I'(y +1) [z

2 2hy — y)? Ny 0 V(¥ ()

+ I (o m(w-%»]’

1 () y y
Sm/ (V@ -m)" - (h-v@)"||(x o¥)@)]|dv(g)

V= L(h1)
-
T2

1
/ |(1 —r) —rV||X/(rh1 +(1 —r)h2)|dr
0
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h2 - hl ! y y / /
= (X =7)” =7 |r(L=1)[|x'(h2) + 1 (h2)|] dr
0
h2 - hl ! y y / /
== [(A=7)" + 7 ]r@ =[] (h) + X ()| ] dr
0

hy —h
= m[whz) + 1% ()|]- (43)

Since

2

1
/0‘ [(1_7,))/ +ry]r(1—r)dr= m,

we get the required inequality (42) for g = 1.
Now consider the case when g > 1. Again using Lemma 2.1, the power mean inequality

and the s-convexity of | x'|? on [a;,a,], we get

() +x(ha) Ty +1) )
‘X 1 ;X 2 _2(hzy—+h1)V (20 0 ) (07 02)

+ I (o w)(wl(hn)]‘

1

v )
= m/w (V@) )" = (h-v@)"||(x' e ¥)@)|dv ()

“Ln)

hz_hl ! y Y /
=T/0 |(1—r) —r HX (rh1+(1—r)h2)’dr

hy =t ([ g
-2 1(/ y(l_r)y—ry|dr)
2 0

1 i
X (/ |(1 —r)Y —rV||X'(rh1 +(1 —r)h2)|qdr>
0

hy—hy [ [ &3
-2 1(/ |(1—r)V—rV|dr>
2 0
1

1 q
X (/ [(1 -’ + ry]r(l - r)[|X/(h2)|q + X/(hz)lq] dr)
0

el 2 (1_2%)]21(2(|x’(h1)|"+Ix(hz)lq))é‘ )

2 |y+1 (y +2)(y +3)

We have

1

1 1/2
/0|(1—r)y—r”|dr:/(; [(l—r)y—ry]d;w/1 [ry—(l—r)”]dr

/2
2 1
= 1-—).
y+1 2v

This completes the proof. d

Corollary 4.3 Under the similar conditions of Theorem 4.2.
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1. If Y (g) = g, then we get

h h) T
‘x( ) . x(ha) z(hiyfhgy Uiy x o) +122x(h1>]‘

q-1
q

Shz—hl[ 2 (l_i)}(2(|x/(h1)|”’+Ix(hz)lq));' us)
2 y+1 2v (y +2)(y +3)

2.If Yy (g) =g and y =1, then we get

’X(hl) + x(hy) 2 &

2 (hy—hy) n x(g)dg’

j M[E]q;—l(u/(mnu|x(h2>|q>% (46)

-2 2 3

Theorem 4.4 Let x : [h1,h] — R be a nonnegative differentiable mapping, for 0 < h; <
hy. Let Y (g) be an increasing and positive monotone function on (hy, hy], with continuous
derivative '(g) on (hy1, hy) and y € (0,1). If | x| is tgs-convex, then the following inequality
for fractional integral holds:

r . .
|ﬁ[%i’{wu oY ) + T, (X o) (p )]

h1+h2
X 2

< x(hy) = x () hy— Iy
< +
2 (y +2)(y +3)

(Ix' )] + [x (h)]). (47)

Proof From Lemma 2.2 and the fgs-convexity of | x'|, we have

Ciy+1) . .
‘ﬁ[%"/{(hl)+(x o)V )+ T (o) (¥ ()]

_ h1+h2
"\

vl (hy)
_ ‘ /w K(x o ¥) @)V (¢) de

“L(n1)

1 Y1) , o /
’ 2(hy — h1)” /1;1(;, ) (V@ -m)" - (- v @) [(x o v)(@)¥ (g)dg’

=<

vl (hy)
/ K(x' o w)@wcg)dg‘
Y1(hy)

+

1 v 1n) , o /
S o, (@1 = (= v@) (¢ o V)@ @1

“L(n)

= Sl +Sz, (48)

where

’

v L(h)
Syim ' /w k(x' o ¥) @V (@) dg

“L(h)
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“L(hy)
Spim '; / @ - m) - (- v @) (¢ 0 W)@V @) del:
2(hy — )" Jy-1my)

and k is defined as in Lemma 2.2. Note that

S, = x () ; X(h1)’ (49)

and from Theorem 4.2 for the case g = 1, we have

hy —hy

1= e s ()] + [ ). 0

Hence by using (49) and (50) in (48), we get (47). O

Corollary 4.5 Assume the similar conditions of Theorem 4.4.
1. If ¥ (g) = g, then we get

I'(y+1) .
S Dt ] - (22|
X(h2) - X(l’ll) h2 _ hl /
< 7 oo ey ] x ). o)

2.If Yy (g) =gand y =1, then we get

2 ha h1+h2
‘(hz—hl)/hl X(g)dg_x< 2 )‘

< x () ; x () + hy

-h
- S (/)| + | x ()] (52)

5 Conclusion

In this paper, we proved in Theorem 3.1 the Hermite—Hadamard inequality for #gs-convex
functions via Katugampola fractional integrals. From Theorems 3.2—3.6, we established a
Hermite—Hadamard type inequality for zgs-convex functions via Katugampola fractional
integrals. From Corollaries 3.3 and 3.5 we obtained a new Hermite—Hadamard type in-
equality for £gs-convex functions via Riemann—-Liouville fractional and classical integrals.
Also from Corollary 3.7 we obtained a new Hermite—Hadamard type inequality for £gs-
convex functions via Riemann-Liouville fractional integrals.

On the other hand, from Theorem 4.1 we obtained the Hermite—Hadamard inequality
for tgs-convex functions via ¥ -Riemann-Liouville fractional integrals. From Theorems
4.2 and 4.4, we established a Hermite—Hadamard type inequality for #gs-convex functions
via ¥-Riemann-Liouville fractional integrals. From Corollaries 4.3 and 4.5 we obtained a
new Hermite—Hadamard type inequality for zgs-convex functions via Riemann—Liouville

fractional and classical integrals.
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