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Abstract
This paper is concerned with the convergence of solutions for a class of functional
integro-differential equations with nonlinear boundary conditions. New comparison
principles are obtained. By using the comparison principles and quasilinearization
method, we present two monotone iterative sequences uniformly and monotonically
converging to the unique solution with rate of order 2. Meanwhile, an example is
given to demonstrate applications of the result reported.
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1 Introduction
Integro-differential equations are widely used in many fields such as control theory, biol-
ogy, and mechanics, and the qualitative theory of integro-differential equations creates an
important branch of nonlinear analysis; see, for instance, the monographs [2, 6, 7] and the
papers [5, 10–12, 16, 24, 26, 31, 33, 34]. For the results of existence of solutions and ex-
istence of extremal solutions for such equations under different boundary conditions, we
refer the reader to the monographs by Guo et al. [13] and Lakshmikantham and Rama Mo-
hana Rao [23], the related literature for integro-differential equations [1, 4, 8, 15, 27, 30],
and for functional integro-differential equations [3, 14, 17, 20, 21, 28, 35, 36], and the ref-
erences cited therein.

Recently, various classes of differential/difference equations with nonlinear boundary
conditions have attracted extensive attention of researchers. For instance, Franco et al.
[9] discussed the existence conditions of solutions for first-order differential equations
with nonlinear boundary conditions; Jankowski [19] obtained the existence conditions
of first-order advanced differential equations with nonlinear boundary conditions; Mah-
davi [29] investigated the nonlinear boundary value problems involving abstract Volterra
operators; Wang et al. [36] presented the existence conditions of extreme solutions for
first-order functional difference equations with nonlinear boundary conditions; Wang et
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al. [37] proved uniform convergence approximate solutions for second-order functional
differential equations with periodic boundary conditions; Wang [38] and Wang and Tian
[39] established the existence conditions of extreme solutions for causal differential equa-
tions and impulsive differential equations with causal operators, respectively. However,
we noticed that the previous studies mostly focused on the existence of solutions and ex-
tremal solutions as well as the uniform convergence approximate solutions via the method
of upper and lower solutions coupled with the monotone iterative technique; see [22, 31].
There are few results of rapid convergence for integro-differential equations with non-
linear boundary conditions. From the perspective of application, the convergence rate of
the solution is both important and meaningful. In [18], by using the quasilinearization
method [25], Jankowski obtained the quadratic approximation of solutions for differen-
tial equations with nonlinear boundary conditions. In [32], Sun et al. presented quadratic
approximation of solutions for boundary value problems with nonlocal boundary condi-
tions. Inspired by [18, 25, 32], in this paper, we consider the following functional integro-
differential equation with nonlinear boundary conditions:

{
x′(t) = f (t, x(t), x(θ (t)), (Sx)(t)), t ∈ J ,
0 = g(x(0), x(T)),

(1.1)

where f ∈ C(J × R3, R), g ∈ C(R × R, R), J = [0, T], θ ∈ C(J , R+), θ (t) ≤ t, (Sx)(t) =∫ t
0 k(t, s)x(s) ds, k ∈ C(D, R+), D = {(t, s) ∈ J × J : 0 ≤ s ≤ t, t ∈ J}, k0 = max(t,s)∈D k(t, s).
The aim of this paper is to investigate the problem of the convergence of solutions for

Eq. (1.1). By employing the comparison principles and the quasilinearization method, we
obtain two monotone sequences of iterates converging uniformly and quadratically to the
unique solution of the problem. Meanwhile, an example is given to demonstrate appli-
cations of the result established. Equation (1.1) contains many special types. In addition,
the nonlinear boundary conditions of Eq. (1.1) contain a lot of special types. For instance,
Eq. (1.1) can be reduced to initial value problems for g(x(0), x(T)) = x(0)–c, that is, x(0) = c;
Eq. (1.1) reduces to anti-periodic boundary value problems for g(x(0), x(T)) = x(0) + x(T),
that is, x(0) = –x(T).

2 Preliminaries
We introduce the following definitions and lemmas which are used throughout this paper.

Definition 2.1 We say that a function α ∈ C1(J , R) is a lower solution of Eq. (1.1) if

{
α′(t) ≤ f (t,α(t),α(θ (t)), (Sα)(t)), t ∈ J ,
g(α(0),α(T)) ≤ 0.

Definition 2.2 We say that a function β ∈ C1(J , R) is an upper solution of Eq. (1.1) if

{
β ′(t) ≥ f (t,β(t),β(θ (t)), (Sβ)(t)), t ∈ J ,
g(β(0),β(T)) ≥ 0.
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Definition 2.3 We say that the functions α,β ∈ C1(J , R) are coupled quasisolutions of
Eq. (1.1) if

{
α′(t) = f (t,α(t),α(θ (t)), (Sα)(t)), t ∈ J ,
g(α(0),β(T)) = 0,

or

{
β ′(t) = f (t,β(t),β(θ (t)), (Sβ)(t)), t ∈ J ,
g(β(0),α(T)) = 0.

Definition 2.4 We say that the functions α,β ∈ C1(J , R) are coupled lower solution and
upper solution of Eq. (1.1) if

{
α′(t) ≤ f (t,α(t),α(θ (t)), (Sα)(t)), t ∈ J ,
g(α(0),β(T)) ≤ 0,

(2.1)

and

{
β ′(t) ≥ f (t,β(t),β(θ (t)), (Sβ)(t)), t ∈ J ,
g(β(0),α(T)) ≥ 0,

(2.2)

respectively.

Lemma 2.1 Assume that the following condition holds.
(H2.1) There exist integrable functions hi(t) < 0, i = 1, 2, 3 such that

∫ T

0

{
h1(t) + h2(t) + k0Th3(t)

}
dt ≥ –1. (2.3)

If there exists a function p ∈ C1(J , R) such that

⎧⎨
⎩p′(t) ≤ h1(t)p(t) + h2(t)p(θ (t)) + h3(t)(Sp)(t), t ∈ J ,

p(0) ≤ 0,
(2.4)

then p(t) ≤ 0.

Proof Suppose, to the contrary, that there exists a t∗ ∈ (0, T] such that p(t∗) > 0. Let t∗ ∈
[0, t∗] be such that p(t∗) = inf p(t) = –b, b ≥ 0. By virtue of (2.4), we have

p′(t) ≤ –b
[
h1(t) + h2(t) + k0Th3(t)

]
.

Integrating both sides of the above inequality, we get

p
(
t∗) – p(t∗) ≤ –b

∫ t∗

t∗

{
h1(t) + h2(t) + k0Th3(t)

}
dt,



Wang et al. Advances in Difference Equations        (2019) 2019:521 Page 4 of 16

and so

0 < p
(
t∗) ≤ p(t∗) – b

∫ t∗

t∗

{
h1(t) + h2(t) + k0Th3(t)

}
dt.

Furthermore, we obtain

b < –b
∫ T

0

{
h1(t) + h2(t) + k0Th3(t)

}
dt, (2.5)

which contradicts (2.3), and thus p(t) ≤ 0. This completes the proof. �

Lemma 2.2 Assume that condition (H2.1) is satisfied. If there exist functions p ∈ C1(J , R)
and q ∈ C1(J , R) such that

⎧⎨
⎩p′(t) ≤ h1(t)p(t) + h2(t)p(θ (t)) + h3(t)(Sp)(t), p(0) ≤ Aq(T), t ∈ J ,

q′(t) ≤ h1(t)q(t) + h2(t)q(θ (t)) + h3(t)(Sq)(t), q(0) ≤ Ap(T), t ∈ J ,
(2.6)

where 0 < A ≤ 1 is a constant, then p(t) ≤ 0 and q(t) ≤ 0, t ∈ J .

Proof Without loss of generality, we prove one case of p(t) ≤ 0. Suppose that the conclu-
sion is not true. We consider the following two cases where p(0) ≤ 0 and p(0) > 0, respec-
tively.

Case 1. Let p(0) ≤ 0. As in the proof of Lemma 2.1, we arrive at (2.5), which contradicts
(2.3).

Case 2. Let p(0) > 0. There are two cases where for all t ∈ J , p(t) > 0 and there exist t̄, t
such that p(t) ≤ 0, p(t̄) > 0, respectively.

Case 2.1. When p(t) > 0, t ∈ J , if q(0) ≤ 0, Lemma 2.1 implies that q(T) ≤ 0, then we have
p(0) ≤ Aq(T) ≤ 0, which is a contradiction.

If q(0) > 0, by 0 < p(0) ≤ Aq(T), then q(T) > 0. Hence, there are two cases where for all
t ∈ J , q(t) > 0 and there exist t̃, t̂ such that q(t̃) ≤ 0, q(t̂) > 0, respectively.

Case 2.1.1. First, when q(t) > 0 for all t ∈ J , condition (2.6) implies that q′(t) < 0, and so q
is decreasing. The inequalities p(t) > 0 and (2.6) yield p′(t) < 0, and hence p is decreasing
and A2q(0) > A2q(T) > Ap(0) > Ap(T) > q(0), which is a contradiction.

Case 2.1.2. Then there exist t̃, t̂ such that q(t̃) ≤ 0, q(t̂) > 0, and we obtain q(t̃∗) = inf q(t) =
–b, where t̃∗ ∈ (0, T), b ≥ 0. Condition (2.6) implies that

q′(t) ≤ –b
[
h1(t) + h2(t) + k0Th3(t)

]
.

Integrating the above inequality from t̃∗ to T , we deduce that

0 < q(T) ≤ q(t̃∗) – b
∫ T

t̃∗

{
h1(t) + h2(t) + k0Th3(t)

}
dt,

and thus

b < –b
∫ T

0

{
h1(t) + h2(t) + k0Th3(t)

}
dt,

which is a contradiction.
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Case 2.2. Next, we consider the following case, there exist t̄, t such that p(t) ≤ 0, p(t̄) > 0.
If q(0) ≤ 0, Lemma 2.1 yields q(t) ≤ 0, then p(0) ≤ Aq(T) ≤ 0, it is a contradiction.

If q(0) > 0 and 0 < p(0) ≤ Aq(T), then q(T) > 0, and so q(t̄∗) = inf q(t) = –b, where t̄∗ ∈
(0, T), b ≥ 0. Similarly to the proof of Case 2.1.2, we can get a contradiction. Therefore,
we conclude that p(t) ≤ 0.

Similarly, the case of q(t) ≤ 0 can be proved. The proof is complete. �

Remark 2.1 When p(T) = q(T), Lemma 2.2 is also valid.

Lemma 2.3 Assume that condition (H2.1) is satisfied and

f
(
t, γ̄ , γ̄ (θ ), T γ̄

)
– f

(
t,γ ,γ (θ ), Tγ

) ≥ h1(t)[γ̄ – γ ] + h2(t)
[
γ̄ (θ ) – γ (θ )

]
+ h3(t)

[
(Sγ̄ )(t) – (Sγ )(t)

]
, (2.7)

where γ (t) ≤ γ̄ (t), γ (θ ) ≤ γ̄ (θ ), (Sγ )(t) ≤ (Sγ̄ )(t), t ∈ J , hi(t) < 0, i = 1, 2, 3.
(H2.2) There exist two constants 0 < N2 < N1 such that

g(ᾱ,β) – g(α, β̄) ≤ N1[ᾱ – α] – N2[β̄ – β], (2.8)

where α(0) ≤ ᾱ(0), β(T) ≤ β̄(T).
Moreover, let u, v ∈ C1(J , R) be coupled lower and upper solutions of problem (1.1). If y, z ∈
C1(J , R) and

⎧⎪⎪⎨
⎪⎪⎩

y′(t) = f (t, u(t), u(θ (t)), (Su)(t)) + h1(t)[y(t) – u(t)] + h2(t)[y(θ ) – u(θ )]

+ h3(t)[(Sy)(t) – (Su)(t)], t ∈ J ,

0 = g(u(0), v(T)) + N1[y(0) – u(0)] + N2[z(T) – v(T)],

(2.9)

⎧⎪⎪⎨
⎪⎪⎩

z′(t) = f (t, v(t), v(θ (t)), (Sv)(t)) + h1(t)[z(t) – v(t)] + h2(t)[z(θ ) – v(θ )]

+ h3(t)[(Sz)(t) – (Sv)(t)], t ∈ J ,

0 = g(v(0), u(T)) + N1[z(0) – v(0)] + N2[y(T) – u(T)],

(2.10)

then u(t) ≤ y(t) ≤ z(t) ≤ v(t), and y, z are coupled lower and upper solutions of (1.1), re-
spectively.

Proof First, we need to prove that the inequalities u(t) ≤ y(t) and z(t) ≤ v(t) hold. Set

p(t) = u(t) – y(t) and q(t) = z(t) – v(t).

This yields

p′(t) ≤ f
(
t, u(t), u

(
θ (t)

)
, (Su)(t)

)
– f

(
t, u(t), u

(
θ (t)

)
, (Su)(t)

)
– h1(t)

[
y(t) – u(t)

]
– h2(t)

[
y(θ ) – u(θ )

]
– h3(t)

[
(Sy)(t) – (Su)(t)

]
= h1(t)p(t) + h2(t)p(θ ) + h3(t)(Sp)(t).

Condition (2.9) implies that 0 = g(u(0), v(T)) – N1p(0) + N2q(T). By virtue of (2.1), we ob-
tain p(0) ≤ (N2/N1)q(T).
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Similarly, we can conclude that
⎧⎨
⎩q′(t) ≤ h1(t)q(t) + h2(t)q(θ ) + h3(t)(Sq)(t), t ∈ J ,

q(0) ≤ N2
N1

p(T).

It follows from Lemma 2.2 that p(t) ≤ 0, q(t) ≤ 0, that is, u(t) ≤ y(t), z(t) ≤ v(t).
Now, we prove that y(t) ≤ z(t). Letting m(t) = y(t) – z(t), we have

m′(t) ≤ f
(
t, u(t), u

(
θ (t)

)
, (Su)(t)

)
– f

(
t, v(t), v

(
θ (t)

)
, (Sv)(t)

)
+ h1(t)

[
y(t) – u(t)

]
+ h2(t)

[
y(θ ) – u(θ )

]
+ h3(t)

[
(Sy)(t) – (Su)(t)

]
– h1(t)

[
z(t) – v(t)

]
– h2(t)

[
z(θ ) – v(θ )

]
– h3(t)

[
(Sz)(t) – (Sv)(t)

]
≤ –h1(t)

[
v(t) – u(t)

]
– h2(t)

[
v(θ ) – u(θ )

]
– h3(t)

[
(Sv)(t) – (Su)(t)

]
+ h1(t)

[
v(t) – u(t) + m(t)

]
+ h2(t)

[
v(θ ) – u(θ ) + m(θ )

]
+ h3(t)

[
(Sv)(t) – (Su)(t) + (Sm)(t)

]
= h1(t)m(t) + h2(t)m(θ ) + h3(t)(Sm)(t).

In view of (2.9) and (2.10), we arrive at

0 = g
(
u(0), v(T)

)
– g

(
v(0), u(T)

)
+ N1

[
y(0) – u(0)

]
+ N2

[
z(T) – v(T)

]
– N1

[
z(0) – v(0)

]
– N2

[
y(T) – u(T)

]
≥ –N1

[
v(0) – u(0)

]
+ N2

[
v(T) – u(T)

]
+ N1

[
v(0) – u(0) + m(0)

]
+ N2

[
m(T) – v(T) + u(T)

]
= N1m(0) – N2m(T),

which finally gives m(0) ≤ (N2/N1)m(T). It follows now from Lemma 2.2 that m(t) ≤ 0.
Now, we need to prove that y and z are coupled lower and upper solutions of Eq. (1.1).

In fact, by (2.7) and (2.8), we get

y′(t) = f
(
t, u(t), u

(
θ (t)

)
, (Su)(t)

)
– f

(
t, y(t), y

(
θ (t)

)
, (Sy)(t)

)
+ f

(
t, y(t), y

(
θ (t)

)
, (Sy)(t)

)
+ h1(t)

[
y(t) – u(t)

]
+ h2(t)

[
y(θ ) – u(θ )

]
+ h3(t)

[
(Sy)(t) – (Su)(t)

]
≤ f

(
t, y(t), y

(
θ (t)

)
, (Sy)(t)

)
and

g
(
y(0), z(T)

)
– g

(
u(0), v(T)

) ≤ N1
[
y(0) – u(0)

]
– N2

[
v(T) – z(T)

]
≤ g

(
u(0), v(T)

)
+ N1

[
y(0) – u(0)

]
– N2

[
v(T) – z(T)

]
= 0.

Similarly, we deduce that z′(t) ≥ f (t, z(t), z(θ (t)), (Sz)(t)) and g(z(0), y(T)) ≥ 0. This proves
that y and z are coupled lower and upper solutions of Eq. (1.1). �
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3 Main result
In this section, the quadratic convergence of successive approximation sequences is
proved by the quasilinearization method.

Theorem 3.1 Set Ω = {(t, u) ∈ J × R : y0(t) ≤ u(t) ≤ z0(t)}, Ω1 = [y0(0), z0(0)], and Ω2 =
[y0(T), z0(T)]. Assume that the following conditions hold.

(A3.1) y0, z0 are coupled lower and upper solutions of Eq. (1.1), and y0(t) ≤ z0(t) on J ;
(A3.2) fx ∈ C(Ω , R), gx, gy ∈ C(Ω1 × Ω2, R), fx < 0, fy < 0, fz < 0, 0 < gy < gx < 1;
(A3.3) fxx, fxy, fyy ∈ C(Ω , R), gxx, gxy, gyy ∈ C(Ω1 × Ω2, R), fxx ≥ 0, fxy ≥ 0, fxz ≥ 0, fyy ≥ 0,

fzz ≥ 0, fyz ≥ 0, gxx ≤ 0, gxy ≤ 0, gyy ≤ 0.
If

∫ T

0

{
fx
(
t, y0, y0(θ ), (Sy0)(t)

)
+ fy

(
t, y0, y0(θ ), (Sy0)(t)

)
+ k0Tfz

(
t, y0, y0(θ ), (Sy0)(t)

)}
dt

≥ –1, (3.1)

then there exist the monotone sequences {yn(t)} and {zn(t)} converging uniformly to the
unique solution x of Eq. (1.1) and the convergence is quadratic, that is,

max
t∈J

∣∣x(t) – yn+1(t)
∣∣ ≤ d1 max

t∈J

∣∣x(t) – yn(t)
∣∣2 + d2 max

t∈J

∣∣x(t) – zn(t)
∣∣2,

max
t∈J

∣∣x(t) – zn+1(t)
∣∣ ≤ d3 max

t∈J

∣∣x(t) – yn(t)
∣∣2 + d4 max

t∈J

∣∣x(t) – zn(t)
∣∣2,

where the coefficients d1, d2, d3, and d4 are nonnegative constants.

Proof Consider the following problems:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

y′
n+1(t) = f (t, yn(t), yn(θ (t)), (Syn)(t)) + fx(t, yn(t), yn(θ (t)), (Syn)(t))[yn+1(t)

– yn(t)] + fy(t, yn(t), yn(θ (t)), (Syn)(t))[yn+1(θ ) – yn(θ )]

+ fz(t, yn(t), yn(θ (t)), (Syn)(t))[(Syn+1)(t) – (Syn)(t)], t ∈ J ,

0 = g(yn(0), zn(T)) + gx(yn(0), yn(T))[yn+1(0) – yn(0)]

+ gy(yn(0), zn(T))[zn+1(T) – zn(T)],

(3.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

z′
n+1(t) = f (t, zn(t), zn(θ (t)), (Szn)(t)) + fx(t, yn(t), yn(θ (t)), (Syn)(t))[zn+1(t)

– zn(t)] + fy(t, yn(t), yn(θ (t)), (Syn)(t))[zn+1(θ ) – zn(θ )]

+ fz(t, yn(t), yn(θ (t)), (Syn)(t))[(Szn+1)(t) – (Szn)(t)], t ∈ J ,

0 = g(zn(0), yn(T)) + gx(yn(0), yn(T))[zn+1(0) – zn(0)]

+ gy(yn(0), zn(T))[yn+1(T) – yn(T)],

(3.3)

in which n = 0, 1, . . . . By the mean value theorem, we conclude that

g(ᾱ,β) – g(α, β̄) = g(ᾱ,β) – g(α,β) + g(α,β) – g(α, β̄)

≤ gx(δ1,β)[ᾱ – α] – gy(α, δ2)[β̄ – β],
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where α(0) ≤ δ1 ≤ ᾱ(0), β(T) ≤ δ2 ≤ β̄(T). Note that

f
(
t, γ̄ (t), γ̄ (θ ), (Sγ̄ )(t)

)
– f

(
t,γ (t),γ (θ ), (Sγ )(t)

)
= fx

(
t, δ3, γ̄ (θ ), (Sγ̄ )(t)

)[
γ̄ (t) – γ (t)

]
+ fy

(
t,γ (t), δ4, (Sγ̄ )(t)

)[
γ̄ (θ ) – γ (θ )

]
+ fz

(
t,γ (t),γ (θ ), δ5

)[
(Sγ̄ )(t) – (Sγ )(t)

]
≥ fx

(
t,γ (t),γ (θ ), (Sγ )(t)

)[
γ̄ (t) – γ (t)

]
+ fy

(
t,γ (t),γ (θ ), (Sγ )(t)

)[
γ̄ (θ ) – γ (θ )

]
+ fz

(
t,γ (t),γ (θ ), (Sγ )(t)

)[
(Sγ̄ )(t) – (Sγ )(t)

]
,

where γ (t) ≤ δ3 ≤ γ̄ (t), γ (θ ) ≤ δ4 ≤ γ̄ (θ ), (Sγ )(t) ≤ δ5 ≤ (Sγ̄ )(t), and

∫ T

0

{
fx
(
t, zn, zn(θ ), (Szn)(t)

)
+ fy

(
t, zn, zn(θ ), (Szn)(t)

)
+ k0Tfz

(
t, zn, zn(θ ), (Szn)(t)

)}
dt

≥
∫ T

0

{
fx
(
t, yn, yn(θ ), (Syn)(t)

)
+ fy

(
t, yn, yn(θ ), (Syn)(t)

)
+ k0Tfz

(
t, yn, yn(θ ), (Syn)(t)

)}
dt

≥
∫ T

0

{
fx
(
t, y0, y0(θ ), (Sy0)(t)

)
+ fy

(
t, y0, y0(θ ), (Sy0)(t)

)
+ k0Tfz

(
t, y0, y0(θ ), (Sy0)(t)

)}
dt

≥ –1.

Using Lemma 2.3 and mathematical induction, we can deduce that

y0(t) ≤ y1(t) ≤ · · · ≤ yn(t) ≤ zn(t) ≤ · · · ≤ z1(t) ≤ z0(t), n = 0, 1, . . . , t ∈ J .

Thus, the sequences {yn} and {zn} are uniformly bounded and equicontinuous on J .

∣∣yn(t) – yn(s)
∣∣ =

∣∣∣∣yn(0) +
∫ t

0

{
f
(
ϕ, yn(ϕ), yn

(
θ (ϕ)

)
, (Syn)(ϕ)

)
+ fx

(
ϕ, yn(ϕ), yn

(
θ (ϕ)

)
, (Syn)(ϕ)

)[
yn+1(ϕ)

– yn(ϕ)
]

+ fy
(
ϕ, yn(ϕ), yn

(
θ (ϕ)

)
, (Syn)(ϕ)

)[
yn+1(θ ) – yn(θ )

]
+ fz

(
ϕ, yn(ϕ), yn

(
θ (ϕ)

)
, (Syn)(ϕ)

)[
(Syn+1)(ϕ) – (Syn)(ϕ)

]}
dϕ

–
{

yn(0) +
∫ s

0

{
f
(
ϕ, yn(ϕ), yn

(
θ (ϕ)

)
, (Syn)(ϕ)

)
+ fx

(
ϕ, yn(ϕ), yn

(
θ (ϕ)

)
, (Syn)(ϕ)

)[
yn+1(ϕ)

– yn(ϕ)
]

+ fy
(
ϕ, yn(ϕ), yn

(
θ (ϕ)

)
, (Syn)(ϕ)

)[
yn+1(θ ) – yn(θ )

]
+ fz

(
ϕ, yn(ϕ), yn

(
θ (ϕ)

)
, (Syn)(ϕ)

)[
(Syn+1)(ϕ) – (Syn)(ϕ)

]}
dϕ

}∣∣∣∣
=

∣∣∣∣
∫ t

s

{
f
(
ϕ, yn(ϕ), yn

(
θ (ϕ)

)
, (Syn)(ϕ)

)
+ fx

(
ϕ, yn(ϕ), yn

(
θ (ϕ)

)
, (Syn)(ϕ)

)[
yn+1(ϕ)
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– yn(ϕ)
]

+ fy
(
ϕ, yn(ϕ), yn

(
θ (ϕ)

)
, (Syn)(ϕ)

)[
yn+1(θ ) – yn(θ )

]
+ fz

(
ϕ, yn(ϕ), yn

(
θ (ϕ)

)
, (Syn)(ϕ)

)[
(Syn+1)(ϕ) – (Syn)(ϕ)

]}
dϕ

∣∣∣∣
≤

∫ t

s

∣∣f (ϕ, yn(ϕ), yn
(
θ (ϕ)

)
, (Syn)(ϕ)

)
+ fx

(
ϕ, yn(ϕ), yn

(
θ (ϕ)

)
, (Syn)(ϕ)

)[
yn+1(ϕ)

– yn(ϕ)
]

+ fy
(
ϕ, yn(ϕ), yn

(
θ (ϕ)

)
, (Syn)(ϕ)

)[
yn+1(θ ) – yn(θ )

]
+ fz

(
ϕ, yn(ϕ), yn

(
θ (ϕ)

)
, (Syn)(ϕ)

)[
(Syn+1)(ϕ) – (Syn)(ϕ)

]∣∣dϕ

≤ M|t – s|.

By virtue of Arzelà–Ascoli theorem, there exist the subsequences {ynk } and {znk } converg-
ing uniformly on J to some continuous functions y and z, respectively, and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

y′
nk+1

(t) = f (t, ynk (t), ynk (θ (t)), (Synk )(t)) + fx(t, ynk (t), ynk (θ (t)), (Synk )(t))[ynk+1 (t)

– ynk (t)] + fy(t, ynk (t), ynk (θ (t)), (Synk )(t))[ynk+1 (θ ) – ynk (θ )]

+ fz(t, ynk (t), ynk (θ (t)), (Synk )(t))[(Synk+1 )(t) – (Synk )(t)], t ∈ J ,

0 = g(ynk (0), znk (T)) + gx(ynk (0), ynk (T))[ynk+1 (0) – ynk (0)]

+ gy(ynk (0), znk (T))[znk+1 (T) – znk (T)],⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

z′
nk+1

(t) = f (t, znk (t), znk (θ (t)), (Sznk )(t)) + fx(t, ynk (t), ynk (θ (t)), (Synk )(t))[znk+1 (t)

– znk (t)] + fy(t, ynk (t), ynk (θ (t)), (Synk )(t))[znk+1 (θ ) – znk (θ )]

+ fz(t, ynk (t), ynk (θ (t)), (Synk )(t))[(Sznk+1 )(t) – (Sznk )(t)], t ∈ J ,

0 = g(znk (0), ynk (T)) + gx(ynk (0), ynk (T))[znk+1 (0) – znk (0)]

+ gy(ynk (0), znk (T))[ynk+1 (T) – ynk (T)],

when nk → ∞, y and z satisfy the equations

⎧⎨
⎩y′(t) = f (t, y(t), y(θ (t)), (Sy)(t)), t ∈ J ,

0 = g(y(0), z(T)),

and ⎧⎨
⎩z′(t) = f (t, z(t), z(θ (t)), (Sz)(t)), t ∈ J ,

0 = g(z(0), y(T)).

Thus, y, z ∈ C1(J , R) are coupled solutions of Eq. (1.1).
Now, we prove that y = z is a unique solution of Eq. (1.1). Clearly, y(t) ≤ z(t). Let p(t) =

z(t) – y(t). Then

p′(t) = f
(
t, z(t), z

(
θ (t)

)
, (Sz)(t)

)
– f

(
t, y(t), y

(
θ (t)

)
, (Sy)(t)

)
= fx

(
t, ξ1, z

(
θ (t)

)
, (Sz)(t)

)
p(t) + fy

(
t, y(t), ξ2, (Sz)(t)

)
p(θ )

+ fz
(
t, y(t), y

(
θ (t)

)
, ξ3

)
(Sp)(t),
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where y(t) ≤ ξ1 ≤ z(t), y(θ (t)) ≤ ξ2 ≤ z(θ (t)), (Sy)(t) ≤ ξ3 ≤ (Sz)(t), and

g
(
z(0), y(T)

)
– g

(
y(0), z(T)

) ≤ N1
[
z(0) – y(0)

]
– N2

[
z(T) – y(T)

]
= N1p(0) – N2p(T).

In view of (2.1), we get p(0) ≤ (N2/N1)p(T). An application of Lemma 2.2 yields p(t) ≤ 0,
that is, z(t) ≤ y(t). Hence, we have y(t) = z(t).

Let x ∈ [y0, z0] be any solution of Eq. (1.1). It is not difficult to prove that yn(t) ≤ x(t) ≤
zn(t). Letting n → ∞, then y(t) = z(t) = x(t), it means that {ynk } and {znk } converge to the
unique solution x of Eq. (1.1).

Finally, we prove the quadratic convergence of {yn} and {zn} to x. Let pn+1(t) = x(t) –
yn+1(t) ≥ 0 and qn+1(t) = zn+1(t) – x(t) ≥ 0. Then

p′
n+1(t) = fx

(
t,ρ1, x

(
θ (t)

)
, (Sx)(t)

)
pn(t) + fy

(
t, yn(t),ρ2, (Sx)(t)

)
pn(θ )

+ fz
(
t, yn(t), yn

(
θ (t)

)
,ρ3

)
(Spn)(t)

– fx
(
t, yn(t), yn

(
θ (t)

)
, (Syn)(t)

)
pn(t)

– fy
(
t, yn(t), yn

(
θ (t)

)
, (Syn)(t)

)
pn(θ )

– fz
(
t, yn(t), yn

(
θ (t)

)
, (Syn)(t)

)
(Spn)(t)

+ fx
(
t, yn(t), yn

(
θ (t)

)
, (Syn)(t)

)
pn+1(t)

+ fy
(
t, yn(t), yn

(
θ (t)

)
, (Syn)(t)

)
pn+1(θ )

+ fz
(
t, yn(t), yn

(
θ (t)

)
, (Syn)(t)

)
(Spn+1)(t)

≤ fxx
(
t,ρ4, x

(
θ (t)

)
, (Sx)(t)

)
p2

n(t)

+ fxy
(
t, yn(t),ρ5, (Sx)(t)

)
pn(t)pn(θ )

+ fxz
(
t, yn(t), yn

(
θ (t)

)
,ρ6

)
pn(t)(Spn)(t)

+ fyy
(
t, yn(t),ρ7, (Sx)(t)

)
p2

n(θ )

+ fyz
(
t, yn(t), yn

(
θ (t)

)
,ρ8

)
pn(θ )(Spn)(t)

+ fzz
(
t, yn(t), yn

(
θ (t)

)
, (Syn)(t)

)
(Spn)2(t)

+ fx
(
t, yn(t), yn

(
θ (t)

)
, (Syn)(t)

)
pn+1(t)

+ fy
(
t, yn(t), yn

(
θ (t)

)
, (Syn)(t)

)
pn+1(θ )

+ fz
(
t, yn(t), yn

(
θ (t)

)
, (Syn)(t)

)
(Spn+1)(t)

≤ fxx
(
t,ρ4, x

(
θ (t)

)
, (Sx)(t)

)
p2

n(t) +
1
2

fxy
(
t, yn(t),ρ5, (Sx)(t)

)[
p2

n(t)

+ p2
n(θ )

]
+

1
2

fxz
(
t, yn(t), yn

(
θ (t)

)
,ρ6

)[
p2

n(t) + (Spn)2(t)
]

+ fyy
(
t, yn(t),ρ7, (Sx)(t)

)
p2

n(θ ) +
1
2

fyz
(
t, yn(t), yn

(
θ (t)

)
,ρ8

)[
p2

n(θ )

+ (Spn)2(t)
]

+ fzz
(
t, yn(t), yn

(
θ (t)

)
, (Syn)(t)

)
(Spn)2(t)

≤
{

fxx
(
t,ρ4, x

(
θ (t)

)
, (Sx)(t)

)
+

1
2

fxy
(
t, yn(t),ρ5, (Sx)(t)

)
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+
1
2

fxz
(
t, yn(t), yn

(
θ (t)

)
,ρ6

)}
p2

n(t) +
{

fyy
(
t, yn(t),ρ7, (Sx)(t)

)

+
1
2

fxy
(
t, yn(t),ρ5, (Sx)(t)

)
+

1
2

fyz
(
t, yn(t), yn

(
θ (t)

)
,ρ8

)}
p2

n(θ )

+
{

fzz
(
t, yn(t), yn

(
θ (t)

)
, (Syn)(t)

)
+

1
2

fxz
(
t, yn(t), yn

(
θ (t)

)
,ρ6

)

+
1
2

fyz
(
t, yn(t), yn

(
θ (t)

)
,ρ8

)}
(Spn)2(t)

≤ D0p2
n(t) + D1p2

n(θ ) + D2(Spn)2(t),

where yn(t) ≤ ρ4 ≤ ρ1 ≤ x(t), yn(θ ) ≤ ρ5 ≤ x(θ ), (Syn)(t) ≤ ρ3,ρ6,ρ8 ≤ (Sx)(t), yn(θ ) ≤ ρ7 ≤
ρ2 ≤ x(θ ). Hence, we conclude that

pn+1(t) ≤ pn+1(0) +
∫ t

0

{
D0p2

n(s) + D1p2
n(θ ) + D2(Spn)2(s)

}
ds

≤ pn+1(0) +
∫ T

0

{
D0p2

n(s) + D1p2
n(θ ) + D2(Spn)2(s)

}
ds

≤ pn+1(0) + C0 max
t∈J

p2
n(t), (3.4)

where C0 = T[D0 + D1 + D2T2k2
0]. Moreover, we obtain

0 = g
(
x(0), x(T)

)
– g

(
yn(0), zn(T)

)
– gx

(
yn(0), yn(T)

)[
–pn+1(0) + pn(0)

]
– gy

(
yn(0), zn(T)

)[
qn+1(T) – qn(T)

]
= gx

(
δ1, x(T)

)
pn(0) – gy

(
yn(0), δ2

)
qn(T) – gx

(
yn(0), yn(T)

)[
–pn+1(0)

+ pn(0)
]

– gy
(
yn(0), zn(T)

)[
qn+1(T) – qn(T)

]

and

gx
(
yn(0), yn(T)

)
pn+1(0)

=
[
gy

(
yn(0), δ2

)
– gy

(
yn(0), zn(T)

)]
qn(T)

+
[
gx

(
yn(0), yn(T)

)
– gx

(
δ1, x(T)

)]
pn(0) + gy

(
yn(0), zn(T)

)
qn+1(T)

= –gyy
(
yn(0), δ3

)
q2

n(T) – gxx
(
δ4, x(T)

)
p2

n(0) – gxy
(
yn(0), δ5

)
pn(T)pn(0)

+ gy
(
yn(0), zn(T)

)
qn+1(T),

where yn(0) ≤ δ4 ≤ δ1 ≤ x(0), x(T) ≤ δ2 ≤ δ3 ≤ zn(T). Therefore, we deduce that

pn+1(0) ≤ B0q2
n(T) + B1p2

n(0) + B2p2
n(T) + gy

(
yn(0), zn(T)

)
qn+1(T)

≤ B0 max
t∈J

q2
n(t) + B1 max

t∈J
p2

n(t) + B2 max
t∈J

p2
n(t) +

gy(yn(0), zn(T))
gx(yn(0), yn(T))

qn+1(T)

≤ C1 max
t∈J

p2
n(t) + C2 max

t∈J
q2

n(t) + C0
1qn+1(T), (3.5)
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where

B0 = –
gyy(yn(0), δ3)

gx(yn(0), yn(T))
, B1 = –

gxx(δ4, x(T))
gx(yn(0), yn(T))

,

B2 = –
1
2

gxy(yn(0), δ5)
gx(yn(0), yn(T))

, C1 = B1 + B2, C2 = B0, C0
1 =

gy(yn(0), zn(T))
gx(yn(0), yn(T))

.

In a similar way, we can arrive at

q′
n+1(t) ≤ fxx

(
t, ξ4, zn

(
θ (t)

)
, (Szn)(t)

)
qn(t)

(
qn(t) + pn(t)

)
+ fxy

(
t, yn(t), ξ5, (Szn)(t)

)
qn(t)

(
qn(θ ) + pn(θ )

)
+ fxz

(
t, yn(t), yn

(
θ (t)

)
, ξ6

)
qn(t)

[
(Sqn)(t) + (Spn)(t)

]
+ fyx

(
t, ξ7, ξ2, (Szn)(t)

)
qn(θ )pn(t)

+ fyy
(
t, yn(t), ξ8, (Szn)(t)

)
qn(θ )

[
pn(θ ) + qn(θ )

]
+ fyz

(
t, yn(t), yn

(
θ (t)

)
, ξ9

)
qn(θ )

[
(Spn)(t) + (Sqn)(t)

]
+ fzx

(
t, ξ10, x

(
θ (t)

)
, ξ3

)
pn(t)(Sqn)(t)

+ fzy
(
t, yn(t), ξ11, ξ3

)
pn(θ )(Sqn)(t)

+ fzz
(
t, yn(t), yn

(
θ (t)

)
, ξ12

)[
(Spn)(t) + (Sqn)(t)

]
(Sqn)(t)

≤
{

3
2

fxx
(
t, ξ4, zn

(
θ (t)

)
, (Szn)(t)

)
+ fxy

(
t, yn(t), ξ5, (Szn)(t)

)

+ fxz
(
t, yn(t), yn

(
θ (t)

)
, ξ6

)}
q2

n(t) +
1
2
{

fxx
(
t, ξ4, zn

(
θ (t)

)
, (Szn)(t)

)
+ fyx

(
t, ξ7, ξ2, (Szn)(t)

)
+ fzx

(
t, ξ10, x

(
θ (t)

)
, ξ3

)}
p2

n(t)

+
{

1
2

fxy
(
t, yn(t), ξ5, (Szn)(t)

)
+

1
2

fyx
(
t, ξ7, ξ2, (Szn)(t)

)

+
3
2

fyy
(
t, yn(t), ξ8, (Szn)(t)

)
+ fyx

(
t, ξ7, ξ2, (Szn)(t)

)}
q2

n(θ )

+
1
2
{

fxy
(
t, yn(t), ξ5, (Szn)(t)

)
+ fyy

(
t, yn(t), ξ8, (Szn)(t)

)
+ fzy

(
t, yn(t), ξ11, ξ3

)}
p2

n(θ ) +
1
2
{

fxz
(
t, yn(t), yn

(
θ (t)

)
, ξ6

)
+ fyz

(
t, yn(t), yn

(
θ (t)

)
, ξ9

)
+ fzx

(
t, ξ10, x

(
θ (t)

)
, ξ3

)
+ fzy

(
t, yn(t), ξ11, ξ3

)
+ 3fzz

(
t, yn(t), yn

(
θ (t)

)
, ξ12

)}
(Sqn)2(t)

+
1
2
{

fxz
(
t, yn(t), yn

(
θ (t)

)
, ξ6

)
+ fyz

(
t, yn(t), yn

(
θ (t)

)
, ξ9

)
+ fzz

(
t, yn(t), yn

(
θ (t)

)
, ξ12

)}
(Spn)2(t)

≤ D3q2
n(t) + D4p2

n(t) + D5q2
n(θ ) + D6p2

n(θ ) + D7(Sqn)2(t) + D8(Spn)2(t)
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and

qn+1(t) ≤ qn+1(0) +
∫ T

0

{
D3q2

n(s) + D4p2
n(s) + D5q2

n(θ ) + D6p2
n(θ )

+ D7(Sqn)2(s) + D8(Spn)2(s)
}

ds

≤ qn+1(0) + max
t∈J

p2
n(t)T

[
D4 + D6 + D8T2k2

0
]

+ max
t∈J

q2
n(t)T

[
D3

+ D5 + D7T2k2
0
]

= qn+1(0) + C3 max
t∈J

p2
n(t) + C4 max

t∈J
q2

n(t), (3.6)

where C3 = T[D4 + D6 + D8T2k2
0], C4 = T[D3 + D5 + D7T2k2

0], yn(t) ≤ ξ4 ≤ ξ1, yn(θ ) ≤ ξ5 ≤
zn(θ ), x(t) ≤ ξ1 ≤ zn(t), (Syn)(t) ≤ ξ6, ξ9 ≤ (Szn)(t), x(θ ) ≤ ξ2 ≤ zn(θ ), yn(t) ≤ ξ7, ξ10 ≤ x(t),
(Sx)(t) ≤ ξ3 ≤ (Szn)(t), yn(θ ) ≤ ξ8 ≤ ξ2, yn(θ ) ≤ ξ11 ≤ x(θ ), (Syn)(t) ≤ ξ12 ≤ ξ3. Meanwhile,
we have

0 = –g
(
x(0), x(T)

)
+ g

(
zn(0), yn(T)

)
+ gx

(
yn(0), yn(T)

)[
qn+1(0) – qn(0)

]
+ gy

(
yn(0), zn(T)

)[
–pn+1(T) + pn(T)

]
= gx

(
α1, yn(T)

)
qn(0) – gy

(
x(0),α2

)
pn(T)

+ gx
(
yn(0), yn(T)

)[
qn+1(0) – qn(0)

]
+ gy

(
yn(0), zn(T)

)[
–pn+1(T) + pn(T)

]

and

gx
(
yn(0), yn(T)

)
qn+1(0)

≤ –gxx
(
α3, yn(T)

)
qn(0)

[
qn(0) + pn(0)

]
– gyy

(
y(0),α5

)
pn(T)

[
qn(T) + pn(T)

]
+ gyx

(
α4,α2(T)

)
pn(T)pn(0)

+ gy
(
yn(0), zn(T)

)
pn+1(T)

≤ –gxx
(
α3, yn(T)

)
qn(0)

[
qn(0) + pn(0)

]
– gyy

(
y(0),α5

)
pn(T)

[
qn(T) + pn(T)

]
+ gy

(
yn(0), zn(T)

)
pn+1(T).

Hence, we conclude that

qn+1(0) ≤ B3q2
n(T) + B4q2

n(0) + B5p2
n(0) + B6p2

n(T) + gy
(
yn(0), zn(T)

)
pn+1(T)

≤ B3 max
t∈J

q2
n(t) + B4 max

t∈J
q2

n(t) + B5 max
t∈J

p2
n(t) + B6 max

t∈J
p2

n(t)

+
gy(yn(0), zn(T))
gx(yn(0), yn(T))

pn+1(T)

≤ C5 max
t∈J

p2
n(t) + C6 max

t∈J
q2

n(t) + C0
2pn+1(T), (3.7)
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where

B3 = –
1
2

gyy(y(0),α5)
gx(yn(0), yn(T))

, B4 = –
3
2

gxx(α3, yn(T))
gx(yn(0), yn(T))

,

B5 = –
1
2

gxx(α3, yn(T))
gx(yn(0), yn(T))

, B6 = –
3
2

gyy(y(0),α5)
gx(yn(0), yn(T))

,

C5 = B5 + B6, C6 = B3 + B4, C0
2 =

gy(yn(0), zn(T))
gx(yn(0), yn(T))

.

It follows from (3.4)–(3.7) that

pn+1(0) ≤ C1
1p2

n(t) + C1
2q2

n(t),

qn+1(0) ≤ C1
3p2

n(t) + C1
4q2

n(t),
(3.8)

where

C1
1 =

1
(1 – C0

2)(1 – C0
1)

[
C0

1C0
2C0 + C0

1C5 + C0
1C3 + C1

]
,

C1
2 =

1
(1 – C0

2)(1 – C0
1)

[
C0

1C2 + C0
1C4 + C6

]
,

C1
3 = C5 + C1

2C0
2 + C0C0

2 , C1
4 = C6 + C1

2C0
2 .

By virtue of (3.4), (3.6), and (3.8), we see that

max
t∈J

∣∣x(t) – yn+1(t)
∣∣ ≤ d1 max

t∈J

∣∣x(t) – yn(t)
∣∣2 + d2 max

t∈J

∣∣x(t) – zn(t)
∣∣2,

max
t∈J

∣∣x(t) – zn+1(t)
∣∣ ≤ d3 max

t∈J

∣∣x(t) – yn(t)
∣∣2 + d4 max

t∈J

∣∣x(t) – zn(t)
∣∣2,

where d1 = C1
1 + C0, d2 = C1

2 , d3 = C1
3 + C3, d4 = C1

4 + C4. This completes the proof. �

4 Example
To illustrate the validity of the theoretical result obtained in the previous section, we give
the following example.

Example 4.1 Consider the boundary value problem

⎧⎨
⎩x′(t) = 1

10 x2(t) – 1
4 x( t

2 ) – 1
80

∫ t
0 x(s) ds – 1

10 x(t), t ∈ [0, 1],
1
2 x(0) – 1

12 x2(1) + 1
12 x(1) + 1

4 = 0,
(4.1)

where

f
(
t, x(t), x

(
θ (t)

)
, (Sx)(t)

)
=

1
10

x2(t) –
1
4

x
(

t
2

)
–

1
80

∫ t

0
x(s) ds –

1
10

x(t), t ∈ [0, 1],

g
(
x(0), x(1)

)
=

1
2

x(0) –
1

12
x2(1) +

1
12

x(1) +
1
4

.
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Letting y0(t) = –1, z0(t) = 0, t ∈ [0, 1], then y0(t) < z0(t) and

f
(
t, y0(t), y0

(
θ (t)

)
, (Sy0)(t)

) ≥ y′
0(t), t ∈ [0, 1], g

(
y0(0), z0(1)

)
= –

1
4

,

f
(
t, z0(t), z0

(
θ (t)

)
, (Sz0)(t)

)
= 0 = z′

0(t), t ∈ [0, 1], g
(
z0(0), y0(1)

)
=

1
12

.

Thus, y0 and z0 are coupled lower and upper solutions of Eq. (4.1), and y0(t) ≤ x(t) ≤ z0(t),
that is, –1 ≤ x(t) ≤ 0. Moreover, by Eq. (4.1), we have

∫ 1

0

{
fx
(
t, y0, y0(θ ), (Sy0)(t)

)
+ fy

(
t, y0, y0(θ ), (Sy0)(t)

)
+ fz

(
t, y0, y0(θ ), (Sy0)(t)

)
k0T

}
dt

= –
9

16
≥ –1.

It is not difficult to verify that all conditions of Theorem 3.1 are satisfied. Therefore, there
exist the monotone sequences {yn(t)} and {zn(t)} converging uniformly to the unique so-
lution x of equation (4.1) and the convergence is quadratic.
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