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Abstract
In this paper we study the numerical method for a time-fractional Black–Scholes
equation, which is used for option pricing. The solution of the fractional-order
differential equation may be singular near certain domain boundaries, which leads to
numerical difficulty. In order to capture the singular phenomena, a numerical method
based on an adaptive moving mesh is developed. A finite difference method is used
to discretize the time-fractional Black–Scholes equation and error analysis for the
discretization scheme is derived. Then, an adaptive moving mesh based on an a priori
error analysis is established by equidistributing monitor function. Numerical
experiments support these theoretical results.
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1 Introduction
In this paper we consider the following time-fractional Black–Scholes (B–S) equation:

∂α
R V

∂τα
+

1
2
σ̄ 2(τ )x2 ∂2V

∂x2 + r̄(τ )x
∂V
∂x

– r̄(τ )V = 0, (x, τ ) ∈R
+ × [0, T), (1.1)

V (x, T) = max{x – E, 0}, x ∈R
+, (1.2)

V (0, τ ) = 0, τ ∈ [0, T), (1.3)

where V is the value of a European call option with strike price E and expiry date T , x is
the asset price, r̄ is the risk-free interest rate, σ̄ is the volatility of the underlying asset, ∂α

R V
∂τα

is the right modified Riemann–Liouville derivative defined as

∂α
R V

∂τα
=

1
Γ (1 – α)

∂

∂τ

∫ T

τ

V (x, ξ ) – V (x, T)
(ξ – τ )α

dξ , 0 < α < 1.

Here we assume that σ̄ 2(τ ) ≥ μ > 0,β∗ ≥ r̄(τ ) ≥ β > 0. We note that when the func-
tions σ̄ (τ ) and r̄(τ ) are constants, problem (1.1)–(1.3) reduces to the Wyss time-fractional
Black–Schole equation [26].
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There are a few analytical and numerical methods for the valuation of the time-fractional
B–S equations. The analytical methods for the time-fractional B–S equations are usu-
ally based on integral transform methods [5, 12, 26], homotopy analysis methods [17], or
wavelet based hybrid methods [11], etc. But the solutions obtained by analytical methods
usually take the form of a convolution of some special functions or an infinite series with
an integral, which makes them hard to calculate. Therefore, efficient numerical methods
become essential. Zhang et al. [27] and Staelen and Hendy [7] developed implicit finite dif-
ference methods for pricing the barrier options under the Wyss’ time-fractional B–S equa-
tion. Golbabai and Nikan [8] also proposed a numerical approach based on the moving
least-squares method to approximate the Wyss’ time-fractional B–S equation for pricing
the barrier options. Chen [4] described a new operator splitting method for pricing Amer-
ican options under the Wyss’ time-fractional B–S equation. Song and Wang [23] presented
an implicit difference method for the Jumarie time-fractional B–S equation. Koleva and
Vulkov [15] derived a weighted finite difference scheme for the Jumarie time-fractional
B–S equation. Kalantari and Shahmorad [13] used a Grünwald–Letnikov scheme to solve
the Jumarie time-fractional B–S equation for pricing the American put option. But these
papers only study the case that the exact solutions of the B–S equations are sufficiently
smooth.

As discussed in [24], the exact solutions of the time-fractional B–S equations may exhibit
singularity. Based on a priori information of the exact solution, Cen et al. [2] presented an
integral discretization scheme on a priori graded mesh for the Wyss time-fractional B–S
equation. When the coefficients of the time-fractional B–S equation are related to time
τ , a priori information of the exact solution is difficult to obtain. In this paper, an adap-
tive moving mesh method is developed in order to deal with the possible singularity effec-
tively for the time-fractional B–S equation. A finite difference method is used to discretize
the time-fractional Black–Scholes equation and error analysis for the discrete scheme is
derived. Then, an adaptive moving mesh based on a priori error analysis is established
by equidistribution of a positive monitor function which involves the second-order time
derivative of the computed solution. Numerical experiments are provided to validate the
theoretical results.

The remainder of the paper is organized as follows. Some theoretical results on the con-
tinuous time-fractional B–S equation are described in Sect. 2. The discretization scheme
is derived in Sect. 3. An adaptive algorithm is established in Sect. 4. Finally, numerical
experiments are presented in Sect. 5.

Notation. Throughout the paper, C will denote a generic positive constant that is in-
dependent of the mesh. Note that C is not necessarily the same at each occurrence. To
simplify the notation we set gj

i = g(xi, tj) for any function g on the domain of definition.
We use the (pointwise) maximum norm on the domain of definition Ω by ‖ · ‖Ω̄ .

2 The continuous problem
By using the change of variables t = T –τ , u(x, t) = V (x, T – t) and the relationship between
the Riemann–Liouville derivative and the Caputo derivative, it is shown in [2, 4] that the
model can be reformulated into

∂αu
∂tα

–
1
2
σ 2(t)x2 ∂2u

∂x2 – r(t)x
∂u
∂x

+ r(t)u = 0, (x, t) ∈ R
+ × (0, T], (2.1)

u(x, 0) = max{x – E, 0}, x ∈ R
+, (2.2)
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u(0, t) = 0, t ∈ (0, T], (2.3)

where σ (t) = σ̄ (T – t), r(t) = r̄(T – t), and ∂αu
∂tα is the Caputo derivative defined as

∂αu
∂tα

=
1

Γ (1 – α)

∫ t

0
(t – s)–α ∂u

∂t
(x, s) ds, 0 < α < 1.

The infinite domain R
+ × (0, T] is truncated into Ω = (0, X) × (0, T] for numerical cal-

culation. The boundary conditions X = 4E and u(X, t) = X – Ee–rt are chosen for the Euro-
pean call option based on Wilmott et al.’s estimate [25]. Normally, the error caused by this
truncation can be neglected. Therefore, in the remaining of this paper we will consider
the following time-fractional differential equation:

Lu(x, t) = 0, (x, t) ∈ Ω , (2.4)

u(x, 0) = max(x – E, 0), x ∈ [0, X], (2.5)

u(0, t) = 0, u(X, t) = X – Ee–rt , t ∈ [0, T], (2.6)

where

Lu(x, t) ≡ ∂αu
∂tα

–
1
2
σ 2(t)x2 ∂2u

∂x2 – r(t)x
∂u
∂x

+ r(t)u. (2.7)

Let W 1
t ((0, T]) denote the space of functions w(t) ∈ C1((0, T]) such that w′ is Lebesgue

integrable in (0, T]. The following result for the differential operator L can be obtained as
Theorem 3 of [21] on the function space C(Ω̄) ∩ W 1

t ((0, T]) ∩ C2
x ((0, X)).

Lemma 2.1 (Maximum principle) Let u(x, t) ∈ C(Ω̄)∩W 1
t ((0, T])∩C2

x ((0, X)). If Lu(x, t) ≥
0 for x ∈ Ω with u(0, t) ≥ 0, u(X, t) ≥ 0 for t ∈ (0, T] and u(x, 0) ≥ 0 for x ∈ (0, X), then
u(x, t) ≥ 0 for all x ∈ Ω̄ .

By applying this maximum principle the following stability result can be obtained as
Theorem 4 of [21].

Lemma 2.2 (Stability result) The exact solution u(x, t) of problem (2.4)–(2.6) satisfies the
following stability estimate:

∥∥u(x, t)
∥∥

Ω̄
≤ X – Ee–rT .

Referring to [1, 2, 10, 18, 22, 24] it can be further seen that the time derivatives of the ex-
act solution may blow up at t = 0, which complicates the construction of the discretization
scheme.

3 Discretization scheme
Let ΩK = {0 = t0 < t1 < · · · < tK = T} and ΩN = {0 = x0 < x1 < · · · < xN = X}. An approxima-
tion to the time-fractional derivative on ΩK can be obtained by the quadrature formula,

∂αu(xi, tj)
∂tα

=
1

Γ (1 – α)

j∑
k=1

∫ tk

tk–1

(tj – s)–α ∂u(xi, s)
∂s

ds
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≈ 1
Γ (2 – α)

j∑
k=1

[
(tj – tk–1)1–α – (tj – tk)1–α

]
D–

t uk
i ,

where D–
t uk

i = uk
i –uk–1

i
�tk

with �tk = tk – tk–1.
Since the Black–Scholes differential operator becomes a convection-dominated when

the volatility or the asset price is small, a piecewise uniform mesh ΩN is constructed as
that in [3] for the spatial discretization to ensure the stability:

xi =

⎧⎨
⎩

h, i = 1,

h[1 + μ

β∗ (i – 1)], i = 2, . . . , N ,
(3.1)

where

h =
X

1 + μ

β∗ (N – 1)
.

Then the mesh sizes hi = xi – xi–1 satisfy

hi =

⎧⎨
⎩

h, i = 1,
μ

β∗ h, i = 2, . . . , N .
(3.2)

On the piecewise uniform mesh ΩN we apply a central difference scheme to approximate
the spatial derivatives.

Hence, combining the time discretization scheme with spatial discretization scheme we
can derive the fully discretized scheme on ΩN×K ≡ ΩN × ΩK as follows:

LN ,K Uj
i = 0, 1 ≤ i < N , 1 ≤ j ≤ K , (3.3)

U0
i = max(xi – E, 0), 0 ≤ i ≤ N , (3.4)

Uj
0 = 0, Uj

N = X – Ee–rtj , 0 ≤ j ≤ K , (3.5)

where Uj
i is the approximation solution of u(xi, tj),

LN ,K Uj
i =

1
Γ (2 – α)

j∑
k=1

[
(tj – tk–1)1–α – (tj – tk)1–α

]
D–

t Uk
i

–
1
2
(
σ j)2x2

i δ
2
x Uj

i – rjxiD0
xUj

i + rjUj
i , (3.6)

and

δ2
x Uj

i =
2

hi + hi+1

(
Uj

i+1 – Uj
i

hi+1
–

Uj
i – Uj

i–1
hi

)
,

D0
xUj

i =
Uj

i+1 – Uj
i–1

hi + hi+1
, D–

t Uj
i =

Uj
i – Uj–1

i
�tj

.

Next we show that the matrix associated with the discrete operator LN ,K is an M-matrix.
Hence the scheme is maximum-norm stable.
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Lemma 3.1 (Discrete maximum principle) The operator LN ,K defined by (3.6) on the mesh
ΩN×K satisfies a discrete maximum principle, i.e. if vj

i is a mesh function that satisfies
vj

0 ≥ 0, vj
N ≥ 0 (0 ≤ j ≤ K), v0

i ≥ 0 (0 ≤ i ≤ N) and LN ,K vj
i ≥ 0 (1 ≤ i < N , 0 < j ≤ K), then

vj
i ≥ 0 for all i, j.

Proof Let

aj
i,i–1 = –

(σ j)2x2
i

(hi + hi+1)hi
+

rjxi

hi + hi+1
, aj

i,i+1 = –
(σ j)2x2

i
(hi + hi+1)hi+1

–
rjxi

hi + hi+1
,

aj
i,i =

(σ j)2x2
i

hihi+1
+ rj +

(�tj)–α

Γ (2 – α)
, 1 ≤ i < N , 1 ≤ j ≤ K ,

and

ak
i,i =

1
Γ (2 – α)�tk

[
(tj – tk–1)1–α – (tj – tk)1–α

]

–
1

Γ (2 – α)�tk+1

[
(tj – tk)1–α – (tj – tk+1)1–α

]
, 1 ≤ k ≤ j – 1.

By simple calculation we have

aj
i,i–1 < –

(σ j)2x1xi

(hi + hi+1)hi
+

rjxi

hi + hi+1
=

[rjhi – (σ j)2x1]xi

(hi + hi+1)hi

=
[rj μ

β∗ – (σ j)2]hxi

(hi + hi+1)hi
≤ 0

for 2 ≤ i < N . It is easy to show

aj
i,i+1 < 0, aj

i,i > 0, 1 ≤ i < N , 1 ≤ j ≤ K ,

ak
i,i =

1
Γ (1 – α)

[
(tj – ξk)–α – (tj – ξk+1)–α

] ≤ 0, 1 ≤ k ≤ j – 1,

and

aj
1,1 + aj

1,2 > 0, 1 ≤ j ≤ K ,

aj
i,i–1 + aj

i,i + aj
i,i+1 +

j–1∑
k=1

ak
i,i > 0, 1 < i < N , 1 ≤ j ≤ K ,

aj
N–1,N–1 + aj

N–1,N > 0, 1 ≤ j ≤ K ,

where ξk ∈ (tk–1, tk). Hence, it is easy to see that the matrix associated with LN ,K is a
strictly diagonally dominant L-matrix, which means that it is an M-matrix. By applying
the same argument as that in [14, Lemma 3.1], it is straightforward to obtain the result of
our lemma. �

The next lemma gives us a useful formula for the truncation error.
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Lemma 3.2 Let U be the solution of the difference scheme (3.3)–(3.5) and u be the exact
solution of problem (2.4)–(2.6). Then we have the following truncation error estimates:

∣∣LN ,K(
uj

i – Uj
i
)∣∣ ≤ C max

1≤k≤j
(�tk)1–α

∫ tk

tk–1

∣∣∣∣∂
2u

∂t2 (xi, s)
∣∣∣∣ds

+ C(hi + hi+1)
∫ xi+1

xi–1

(
x2

i

∣∣∣∣∂
4u

∂x4 (y, tj)
∣∣∣∣ + xi

∣∣∣∣∂
3u

∂x3 (y, tj)
∣∣∣∣
)

dy

for 1 ≤ i < N and 1 ≤ j ≤ K , where C is a positive constant independent of the mesh.

Proof It follows from (3.3) and (3.6) that

∣∣LN ,K(
uj

i – Uj
i
)∣∣ =

∣∣LN ,K uj
i – Lu(xi, tj)

∣∣

≤ 1
Γ (1 – α)

j∑
k=1

∣∣∣∣
∫ tk

tk–1

(tj – s)–α

[
D–

t uk
i –

∂u
∂s

(xi, s)
]

ds
∣∣∣∣

+
1
2
(
σ j)2x2

i

∣∣∣∣δ2
x uj

i –
∂2u
∂x2 (xi, tj)

∣∣∣∣ + rjxi

∣∣∣∣D0
xuj

i –
∂u
∂x

(xi, tj)
∣∣∣∣. (3.7)

For k < j we use an integration by parts as that in [24] to obtain

∫ tk

tk–1

(tj – s)–α

[
D–

t uk
i –

∂u
∂s

(xi, s)
]

ds

= –α

∫ tk

tk–1

(tj – s)–α–1[(s – tk–1)D–
t uk

i –
(
u(xi, s) – u(xi, tk–1)

)]
ds

= –α
[
(γ1 – tk–1)D–

t uk
i –

(
u(xi,γ1) – u(xi, tk–1)

)]∫ tk

tk–1

(tj – s)–α–1 ds

= –α(γ1 – tk–1)
[

∂u
∂t

(xi,γ2) –
∂u
∂t

(xi,γ3)
]∫ tk

tk–1

(tj – s)–α–1 ds,

where we have used the mean value theorem with γ1,γ2,γ3 ∈ (tk–1, tk). Hence, applying a
Taylor formula with the integral form of the remainder we can obtain

∣∣∣∣
∫ tk

tk–1

(tj – s)–α

[
D–

t uk
i –

∂u
∂s

(xi, s)
]

ds
∣∣∣∣

≤ C�tk

∫ tk

tk–1

∣∣∣∣∂
2u

∂t2 (xi, s)
∣∣∣∣ds

∫ tk

tk–1

(tj – s)–α–1 ds

≤ C(�tk)1–α

∫ tk

tk–1

∣∣∣∣∂
2u

∂t2 (xi, s)
∣∣∣∣ds (3.8)

for k < j. Similarly, we have

∣∣∣∣
∫ tj

tj–1

(tj – s)–α

[
D–

t uj
i –

∂u
∂s

(xi, s)
]

ds
∣∣∣∣

=
∣∣∣∣∂u
∂t

(xi,γ4) –
∂u
∂t

(xi,γ5)
∣∣∣∣
∫ tj

tj–1

(tj – s)–α ds
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≤ C(�tj)1–α

∫ tj

tj–1

∣∣∣∣∂
2u

∂t2 (xi, s)
∣∣∣∣ds, (3.9)

where we also have used the mean value theorem with γ4,γ5 ∈ (tj–1, tj). By applying Taylor’s
formulas about xi we also have

∣∣∣∣δ2
x uj

i –
∂2u
∂x2 (xi, tj)

∣∣∣∣ ≤ C(hi + hi+1)
∫ xi+1

xi–1

∣∣∣∣∂
4u

∂x4 (y, tj)
∣∣∣∣dy (3.10)

and
∣∣∣∣D0

xuj
i –

∂u
∂x

(xi, tj)
∣∣∣∣ ≤ C(hi + hi+1)

∫ xi+1

xi–1

∣∣∣∣∂
3u

∂x3 (y, tj)
∣∣∣∣dy. (3.11)

Combining (3.7) with (3.8)–(3.11) we have

∣∣LN ,K(
uj

i – Uj
i
)∣∣

≤ C max
1≤k≤j

(�tk)1–α

∫ tk

tk–1

∣∣∣∣∂
2u

∂t2 (xi, s)
∣∣∣∣ds

+ C(hi + hi+1)
∫ xi+1

xi–1

(
x2

i

∣∣∣∣∂
4u

∂x4 (y, tj)
∣∣∣∣ + xi

∣∣∣∣∂
3u

∂x3 (y, tj)
∣∣∣∣
)

dy. (3.12)

From this we complete the proof. �

Based on the properties of the European option [2, 3, 25] we assume that the solution u
satisfies the following regularities:

∣∣∣∣x2 ∂4u
∂x4

∣∣∣∣ ≤ C,
∣∣∣∣x∂3u

∂x3

∣∣∣∣ ≤ C for (x, t) ∈ Ω . (3.13)

Then applying the maximum principle and the truncation error estimates we have the
following bound.

Theorem 3.3 Let U be the solution of difference scheme (3.3)–(3.5) and u be the exact
solution of problem (2.4)–(2.6). Then, under the assumption (3.13) we have the following
bound:

‖u – U‖Ω̄N ,K ≤ C max
1≤i≤N ,1≤j≤K

(�tj)1–α

∫ tj

tj–1

∣∣∣∣∂
2u

∂t2 (xi, s)
∣∣∣∣ds + CN–2, (3.14)

where C is a positive constant independent of the mesh.

4 Adaptive time meshes via equidistribution
Since the solution u(x, t) of the problem exhibits singularity at t = 0, one has to use adapted
nonuniform time meshes which are fine inside the singular region and coarse in the outer
region. To obtain such a mesh, we use the idea of equidistribution principle which has
been applied to a wide range of practical problems (see, e.g. [6, 9, 16, 19, 20]). A mesh ΩK

is said to be equidistributed, if

∫ tj

tj–1

M̄(s) ds =
1
K

∫ T

0
M̄(s) ds, j = 1, 2, . . . , K , (4.1)
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where M̄(t) is called the monitor function. In accordance with the estimate (3.14) in The-
orem 3.3, a piecewise constant function is chosen to be the monitor function M(xi, t), i.e.,

M(xi, t) = Mj
i = 1 +

√∣∣δ2
t Uj

i
∣∣, t ∈ (tj–1, tj), (4.2)

where

δ2
t Uj

i =
2

�tj + �tj+1

(
Uj+1

i – Uj
i

�tj+1
–

Uj
i – Uj–1

i
�tj

)
, 1 ≤ j < K .

This type of monitor function has been used in some literature; see e.g., Das and Vigo-
Aguiar [6], Gowrisankar and Natesan [9] and Kopteva et al. [16].

In order to solve the equidistribution problem (4.1), we construct the following iteration
algorithm for the time discretization:

Step 1. Take the uniform mesh ΩN ,K ,(0) = {(xi, t(0)
j )|0 ≤ i ≤ N , 0 ≤ j ≤ K} as the initial

mesh for the iteration and go to Step 2 with k = 0.
Step 2. Compute the discrete solution {Uj,(k)

i } satisfying (3.3)–(3.5) with the help of the
mesh ΩN ,K ,(k) = {(xi, t(k)

j )|0 ≤ i ≤ N , 0 ≤ j ≤ K}. Set �t(k)
j = t(k)

j – t(k)
j–1 for each j. Compute

Φ
j,(k)
i =

j∑
p=1

�t(k)
p Mp,(k)

i ,

and find i∗ such that

Φ
K ,(k)
i∗ = max

1≤i<N

{
Φ

K ,(k)
i

}
,

where Mp,(k)
i is the value of the monitor function computed at the pth interior node of the

current mesh. We set M0,(k)
i = M1,(k)

i and MK ,(k)
i = MK–1,(k)

i .
Step 3. Choose a constant C0 > 1. The stopping criterion for the iteration algorithm is

max1≤j≤K �t(k)
j Mj,(k)

i∗

Φ
K ,(k)
i∗

≤ C0

K
.

If it holds true, then go to Step 5, else continue with Step 4.
Step 4. Set Y (k)

j = jΦK ,(k)
i∗ /K . Interpolate (Y (k)

j , t(k+1)
j ) to (Φ j,(k)

i∗ , t(k)
j ) by using the piecewise

linear interpolation. Then generate a new mesh

ΩN ,K ,(k+1) =
{(

xi, t(k+1)
j

)|0 ≤ i ≤ N , 0 ≤ j ≤ K
}

.

Set k = k + 1 and return to Step 2.
Step 5. Set ΩN ,K ,∗ = ΩN ,K ,(k) and {Uj,∗

i } = {Uj,(k)
i }, then stop.

5 Numerical experiments
In this section we carry out numerical experiments for two test problems to indicate the
efficiency and accuracy of our numerical scheme.
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Table 1 Error estimates and convergence rates for Example 5.1

α mesh Number of mesh points N = K

64 128 256 512 1024
0.2 adapted 4.2452E-3 1.5506E-3 6.4332E-4 2.6089E-4 1.0631E-4

1.453 1.269 1.302 1.295 –
uniform 6.2643E-2 5.4541E-2 4.7512E-2 4.1391E-2 3.6056E-2

0.200 0.199 0.199 0.199 –
0.4 adapted 1.4939E-3 4.1038E-4 1.2679E-4 4.2684E-5 1.4316E-5

1.864 1.695 1.571 1.576 –
uniform 3.9175E-2 2.9693E-2 2.2512E-2 1.7067E-2 1.2938E-2

0.400 0.399 0.399 0.400 –
0.6 adapted 1.8122E-3 6.6974E-4 2.5097E-4 9.4729E-5 3.5860E-5

1.436 1.416 1.406 1.401 –
uniform 1.7082E-2 1.1268E-2 7.4347E-3 4.9058E-3 3.2370E-3

0.600 0.600 0.600 0.600 –
0.8 adapted 2.5894E-3 1.0941E-3 4.6645E-4 2.0025E-4 8.6448E-5

1.243 1.230 1.220 1.212 –
uniform 5.8127E-3 3.3318E-3 1.9131E-3 1.0989E-3 6.3119E-4

0.803 0.800 0.800 0.800 –

Example 5.1 A fractional differential equation with a known exact solution:

∂αu
∂tα

–
1
2
σ 2x2 ∂2u

∂x2 – rx
∂u
∂x

+ ru = f (x, t), (x, t) ∈ (0, 1) × (0, 1],

u(x, 0) = ex + x + 1, x ∈ (0, 1),

u(0, t) = tα + 2, u(1, t) = tα + e + 2, t ∈ (0, 1]

with σ = 0.1, r = 0.06 and 0 < α < 1, where f (x, t) is chosen such that the exact solution is
u(x, t) = tα + ex + x + 1.

The maximum error is denoted by

eN ,K = max
0≤i≤N ,0≤j≤K

∣∣uj
i – Uj

i
∣∣,

and the corresponding convergence rate is computed by

rN = log2
(
eN ,K /e2N ,2K)

.

The numerical results on an adaptive moving mesh for Example 5.1 are tabulated in Ta-
ble 1. In order to aid the reader’s understanding of the mesh computed by the algorithm
when solving Example 5.1, Fig. 1, which should be read from bottom to top, shows the
time mesh after each iteration. Figure 2 represents the final computed time mesh for Ex-
ample 5.1 with α = 0.2, which shows that the mesh points are concentrated near t = 0.

Example 5.2 A time-fractional Black–Scholes equation without a known exact solution:

∂αu
∂tα

–
1
2
σ 2(t)x2 ∂2u

∂x2 – r(t)x
∂u
∂x

+ r(t)u = 0, (x, t) ∈ (0, X) × (0, T],

u(x, 0) = max(x – E, 0), x ∈ (0, X),

u(0, t) = 0, u(X, t) = X – Ee–rt , t ∈ (0, T],
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Figure 1 Evolution of the time mesh for Example 5.1 with α = 0.2

Figure 2 Final computed time mesh for Example 5.1 with α = 0.2

with parameters: σ = 0.3(1 + t), r = 0.04(1 + sin t), E = 10, T = 1 and X = 40.
The double mesh principle is used to estimate the errors and compute the experiment

convergence rates. Set ŪN ,K (x, t) be a linear interpolation of the approximated solution
{Uj

i} with spatial discretization parameter N and time discretization parameter K and
ŪN ,K (xi, tj) be the value of the function ŪN ,K (x, t) at mesh point (xi, tj). Then the maximum
errors

eN ,K = max
1≤i≤N ,1≤j≤K

∣∣ŪN ,K (xi, tj) – Ū2N ,2K (xi, tj)
∣∣,
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Table 2 Error estimates and convergence rates for Example 5.2

α mesh Number of mesh points N = K

64 128 256 512 1024
0.2 adapted 2.3834E-2 1.1803E-2 5.8392E-3 2.9060E-3 1.4470E-3

1.014 1.015 1.007 1.006 –
uniform 5.2830E-2 4.2487E-2 3.7610E-2 3.4421E-2 3.1746E-2

0.314 0.176 0.128 0.117 –
0.4 adapted 2.5111E-2 1.2307E-2 6.0822E-3 3.0210E-3 1.5042E-3

1.029 1.017 1.010 1.006 –
uniform 5.3781E-2 3.8291E-2 3.0463E-2 2.5531E-2 2.1827E-2

0.490 0.330 0.255 0.226 –
0.6 adapted 2.7214E-2 1.3251E-2 6.5106E-3 3.2190E-3 1.5983E-3

1.038 1.025 1.016 1.010 –
uniform 4.6346E-2 2.8593E-2 1.9703E-2 1.4776E-2 1.1579E-2

0.697 0.537 0.415 0.352 –
0.8 adapted 2.9851E-2 1.4546E-2 7.1417E-3 3.5184E-3 1.7431E-3

1.037 1.026 1.021 1.013 –
uniform 3.8350E-2 2.1702E-2 1.2715E-2 8.1152E-3 5.5935E-3

0.821 0.771 0.648 0.537 –

Figure 3 Evolution of the time mesh for Example 5.2 with α = 0.2

and the convergence rates

rN = log2
(
eN ,K /e2N ,2K)

for Example 5.2 are listed in Table 2. The generation of adapted moving meshes after each
iteration for the time discretization is depicted in Fig. 3. The final computed time mesh
for the time-fractional Black–Scholes equation with α = 0.2 is depicted in Fig. 4, which
also shows that the mesh points are concentrated near t = 0. The computed option value
U is depicted in Fig. 5, which shows that the numerical solution by our method is non-
oscillatory.
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Figure 4 Final computed time mesh for Example 5.2 with α = 0.2

Figure 5 Computed option value U for Example 5.2 with α = 0.2

Tables 1 and 2 show that the computed solution converges to the exact solution on an
adaptive moving mesh with first order accuracy and the numerical results do not depend
strongly on the value of α, which supports the convergence estimate of Theorem 3.3. From
these results we confirm that our method with an adaptive moving mesh is more accurate
than the method on the uniform mesh.
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