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Abstract
In this paper, we present some sufficient conditions and necessary conditions for the
existence of nonoscillatory solutions to a class of fourth-order nonlinear neutral
dynamic equations on time scales by employing Banach spaces and Krasnoselskii’s
fixed point theorem. Two examples are given to illustrate the applications of the
results.
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1 Introduction
In this paper, we consider the existence of nonoscillatory solutions to fourth-order non-
linear neutral dynamic equations of the form

(
r1(t)

(
r2(t)

(
r3(t)

(
x(t) + p(t)x

(
g(t)

))�)�)�)� + f
(
t, x

(
h(t)

))
= 0 (1)

on a time scale T satisfying supT = ∞, where t ∈ [t0,∞)T with t0 ∈ T.
The oscillation and nonoscillation of nonlinear differential and difference equations

have been developed rapidly in the recent decades. Afterwards, the theory of time scale
united the differential and difference ones, and since then many researchers have investi-
gated the oscillation and nonoscillation criteria of nonlinear dynamic equations on time
scales; see, for instance, the papers [1–19] and the references cited therein. The majority
of the scholars obtained the sufficient conditions to ensure that the solutions of the equa-
tions oscillate or tend to zero by using the generalized Riccati transformation and integral
averaging technique. The correlative research has made a great achievement. However,
we note that there is not much research into the field of existence of nonoscillatory solu-
tions to dynamic equations on time scales. Generally, a functional space and a fixed point
theorem would be employed to analyze it. We refer the reader to [20–25] for details of the
theory of time scale and to [4–16, 19] for the studies on the existence of nonoscillatory
solutions to nonlinear neutral dynamic equations on time scales.
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Definition 1.1 A solution x to (1) is defined to be eventually positive (or eventually neg-
ative) if there exists c ∈ T such that x(t) > 0 (or x(t) < 0) on [c,∞)T. If a solution is either
eventually positive or eventually negative, then we say it is nonoscillatory.

For a class of nth-order nonlinear neutral dynamic equations as follows:

Rn
(
t, x(t)

)
+ f

(
t, x

(
h(t)

))
= 0, (2)

where

Rk
(
t, x(t)

)
=

⎧
⎪⎪⎨

⎪⎪⎩

z(t) = x(t) + p(t)x(g(t)), k = 0,

rn–k(t)R�
k–1(t, x(t)), 1 ≤ k ≤ n – 1,

R�
n–1(t, x(t)), k = n,

some scholars had been concerned with the existence of nonoscillatory solutions to (2),
successively. Without loss of generality, only the eventually positive solutions were dis-
cussed. Zhu and Wang [19] considered (2) for n = 1. The authors introduced a Banach
space

BC[T0,∞)T =
{

x ∈ C
(
[T0,∞)T,R

)
: sup

t∈[T0,∞)T

∣∣x(t)
∣∣ < ∞

}

with the norm ‖x‖ = supt∈[T0,∞)T |x(t)|, where C([T0,∞)T,R) denotes all continuous func-
tions mapping [T0,∞)T into R, and established the existence of nonoscillatory solutions
to (2) by Krasnoselskii’s fixed point theorem. Note that there exist only two cases for every
eventually positive solution x to (2): limt→∞ x(t) = a > 0 or limt→∞ x(t) = 0.

Gao and Wang [5] and Deng and Wang [4] investigated (2) for n = 2 under different
conditions

∫ ∞
t0

1/r1(t)�t < ∞ and
∫ ∞

t0
1/r1(t)�t = ∞, respectively. Gao and Wang [5] in-

troduced the same Banach space as in [19] and concluded that all the eventually positive
solutions to (2) converge to a positive constant or zero. Deng and Wang [4] defined an
improved Banach space

BCλ[T0,∞)T =
{

x ∈ C
(
[T0,∞)T,R

)
: sup

t∈[T0,∞)T

∣∣
∣∣

x(t)
R2λ(t)

∣∣
∣∣ < ∞

}
(3)

with the norm ‖x‖λ = supt∈[T0,∞)T |x(t)/R2λ(t)|, where λ = 0, 1 and R(t) = 1 +
∫ t

t0
1/r1(s)�s,

and presented four cases for the eventually positive solution x to (2): (i) x ∈ A(0, 0), (ii)
x ∈ A(b, 0) for some positive constant b, (iii) x ∈ A(∞, b) for some positive constant b, (iv)
lim supt→∞ x(t) = ∞ and limt→∞ x(t)/R(t) = 0, where

A(α,β) =
{

x : lim
t→∞ x(t) = α and lim

t→∞
x(t)
R(t)

= β

}
.

Therefore, it is not difficult to see that the existences of nonoscillatory solutions to (2)
are greatly different for diverse cases of convergence and divergence of the integrals
∫ ∞

t0
1/ri(t)�t, i = 1, 2, . . . , n – 1.

For n = 3, Qiu [12] studied (2) under the assumption
∫ ∞

t0
1/r1(t)�t =

∫ ∞
t0

1/r2(t)�t = ∞
and summarized five cases for the eventually positive solutions to (2). To obtain the
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existence and asymptotic behavior of nonoscillatory solutions to (2) for other cases of
∫ ∞

t0
1/ri(t)�t, i = 1, 2, Qiu et al. [16] were concerned with (2) under

∫ ∞
t0

1/r1(t)�t = ∞ and
∫ ∞

t0
1/r2(t)�t < ∞, while the case that

∫ ∞
t0

1/r1(t)�t < ∞ and
∫ ∞

t0
1/r2(t)�t = ∞ was con-

sidered in Qiu et al. [14]. There are four cases for the eventually positive solutions to (2).
However, the existence and asymptotic behavior of the solutions are evidently different
between [14] and [16].

Furthermore, for n ≥ 3, Qiu and Wang [15] investigated (2) under the condition
∫ ∞

t0
1/ri(t)�t < ∞, i = 1, 2, . . . , n – 1, and deduced that every eventually positive solution

converges to a positive constant or zero, which complements and unites the results in [5,
19]. Qiu et al. [13] continued to study (2) with

∫ ∞
t0

1/r1(t)�t = ∞ and
∫ ∞

t0
1/ri(t)�t < ∞,

i = 2, 3, . . . , n – 1. Four cases for the eventually positive solutions have also been presented,
and the results are consistent with those in [16] when n = 3.

In this paper, we consider the existence of nonoscillatory solutions to (1), which is (2)
for n = 4, under the following conditions:

(C1) r1, r2, r3 ∈ Crd([t0,∞)T, (0,∞)) and there exist two positive constants M1 and M3

such that
∫ ∞

t0

�t
ri(t)

= Mi < ∞, i = 1, 3 and
∫ ∞

t0

�t
r2(t)

= ∞;

(C2) p ∈ Crd([t0,∞)T,R) and –1 < limt→∞ p(t) = p0 < 1;
(C3) g, h ∈ Crd([t0,∞)T,T), g(t) ≤ t, and limt→∞ g(t) = limt→∞ h(t) = ∞; if p0 ∈ (–1, 0],

then there exists a sequence {ck}k≥0 such that limk→∞ ck = ∞ and g(ck+1) = ck ;
(C4) f ∈ C([t0,∞)T ×R,R), f (t, x) is nondecreasing in x, and xf (t, x) > 0 for x �= 0;
(C5) if

∫ ∞

t0

∫ u3

t0

�u2�u3

r2(u2)r3(u3)
= ∞, (4)

then we define

R(t) = 1 +
∫ t

t0

∫ u3

t0

�u2�u3

r2(u2)r3(u3)
,

where limt→∞ R(g(t))/R(t) = η ∈ (0, 1] is satisfied.
In view of (C1), it is clear that the results in the references are not available for (1). The

conclusions in this paper can bring a deeper understanding of the existence and asymp-
totic behavior of nonoscillatory solutions to (2). In addition, we provide two significant
examples to illustrate our results.

2 Auxiliary results
Firstly, we state Krasnoselskii’s fixed point theorem (see [3]) as follows, which will be used
in the sequel.

Lemma 2.1 Suppose that X is a Banach space and Ω is a bounded, convex, and closed
subset of X. If there exist two operators U , V : Ω → X such that Ux+Vy ∈ Ω for all x, y ∈ Ω ,
U is a contraction mapping, and V is completely continuous, then U + V has a fixed point
in Ω .
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Then, we have another lemma to show the relationship between the functions z and x.
The proof is omitted since it is similar to those in [4, Lemma 2.3], [5, Theorem 1], [15,
Lemma 2.3], and [19, Theorem 7].

Lemma 2.2 Suppose that x is an eventually positive solution to (1) and

lim
t→∞

z(t)
Rλ(t)

= a, λ = 0, 1,

where λ = 1 only if (4) holds. If a is finite, then we have

lim
t→∞

x(t)
Rλ(t)

=
a

1 + p0ηλ
,

or lim supt→∞ x(t)/Rλ(t) = ∞.

Finally, we need to divide all the eventually positive solutions to (1) into four groups for
the sake of simplicity. In addition, define

A(α) =
{

x ∈ S : lim
t→∞ x(t) = ∞ and lim

t→∞
x(t)
R(t)

= α

}
,

where S is the set of all eventually positive solutions to (1).

Theorem 2.3 Suppose that x is an eventually positive solution to (1). Then the solution x
belongs to one of the following four cases:

(A1) limt→∞ x(t) = 0;
(A2) limt→∞ x(t) = b, where b is a positive constant;
(A3) x ∈ A(b), where b is a positive constant;
(A4) lim supt→∞ x(t) = ∞ and limt→∞ x(t)/R(t) = 0.

Proof In view of (C2) and (C3), for any eventually positive solution x to (1), there always
exist t1 ∈ [t0,∞)T and p1 with |p0| < p1 < 1 such that x(t) > 0, x(g(t)) > 0, x(h(t)) > 0, and
|p(t)| ≤ p1, t ∈ [t1,∞)T. From (1) and (C4), for t ∈ [t1,∞)T, we have

R4
(
t, x(t)

)
= R�

3
(
t, x(t)

)
= –f

(
t, x

(
h(t)

))
< 0,

which means that R3 is strictly decreasing on [t1,∞)T. Hence, it follows that

R�
2
(
t, x(t)

) ≤ r1(t1)R�
2 (t1, x(t1))
r1(t)

, t ∈ [t1,∞)T. (5)

From (5) we deduce that there are two cases for R2. Assume that there exists T ∈ [t1,∞)T
satisfying R�

2 (T , x(T)) ≤ 0, then it is clear that R�
2 is eventually negative. If not, then we

get R�
2 (t, x(t)) > 0, t ∈ [t1,∞)T. That is, R2 is always eventually monotonic. Substituting s

for t in (5) and integrating (5) from t1 to t, where t ∈ [σ (t1),∞)T, we obtain

R2
(
t, x(t)

)
– R2

(
t1, x(t1)

) ≤ r1(t1)R�
2
(
t1, x(t1)

)∫ t

t1

�s
r1(s)
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< r1(t1)
∣∣R�

2
(
t1, x(t1)

)∣∣ · M1,

which implies that R2 is upper bounded. Therefore, R2 (or r2R�
1 ) is eventually monotonic

and upper bounded. There are two cases to be discussed.
Case 1. r2R�

1 is eventually decreasing. It follows that

–∞ ≤ lim
t→∞ r2(t)R�

1
(
t, x(t)

)
= L1 < ∞.

(a) If –∞ ≤ L1 < 0, then there exist t2 ∈ [t1,∞)T and a constant a1 < 0 such that
r2(t)R�

1 (t, x(t)) ≤ a1 or

R�
1
(
t, x(t)

) ≤ a1

r2(t)
, t ∈ [t2,∞)T. (6)

Letting t be replaced by s in (6) and integrating (6) from t2 to t, where t ∈ [σ (t2),∞)T, we
derive

r3(t)z�(t) = R1
(
t, x(t)

) ≤ R1
(
t2, x(t2)

)
+ a1

∫ t

t2

�s
r2(s)

→ –∞, t → ∞,

which means that z� is eventually negative, and thus z is eventually strictly decreasing. It
is easy to see that z is eventually positive or eventually negative, but we can claim that z
is eventually positive in terms of (C3). Assume not; then we have –1 < p0 ≤ 0. Moreover,
there exists t3 ∈ [t2,∞)T such that x(t) < –p(t)x(g(t)) ≤ p1x(g(t)) for t ∈ [t3,∞)T. Choose a
positive integer N satisfying ck ∈ [t3,∞)T for all k ≥ N . For any k > N , we always have

x(ck) < p1x(ck–1) < p2
1x(ck–2) < · · · < pk–N

1 x(cN ),

which implies that limk→∞ x(ck) = limk→∞ z(ck) = 0. It causes a contradiction, since z is
eventually strictly decreasing and eventually negative. Therefore, we deduce

0 ≤ lim
t→∞ z(t) = L0 < ∞.

By virtue of Lemma 2.2, it follows that case (A1) or (A2) holds.
(b) If 0 < L1 < ∞, then there exist t4 ∈ [t1,∞)T and a constant a2 > 0 such that

r2(t)R�
1 (t, x(t)) ≥ a2 or

R�
1
(
t, x(t)

) ≥ a2

r2(t)
, t ∈ [t4,∞)T.

Similarly, we have

r3(t)z�(t) = R1
(
t, x(t)

) ≥ R1
(
t4, x(t4)

)
+ a2

∫ t

t4

�s
r2(s)

→ ∞, t → ∞.

It means that z� is eventually positive and thus z is eventually strictly increasing. Similar
to the proof in (a), we derive

0 ≤ lim
t→∞ z(t) = L0 ≤ ∞. (7)
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If L0 = ∞, then we deduce

lim
t→∞ r2(t)R�

1
(
t, x(t)

)
= lim

t→∞
z(t)
R(t)

= L1

according to L’Hôpital’s rule (see [24, Theorem 1.120]). By Lemma 2.2 we know that one
of cases (A1)–(A3) holds.

(c) If L1 = 0, since r2R�
1 is eventually strictly decreasing, then r2R�

1 and R�
1 are both even-

tually positive, and so R1 (or r3z�) is eventually strictly increasing. It follows that r3z� and
z� are both eventually positive or eventually negative, and z is always eventually mono-
tonic, which implies that z is eventually positive or eventually negative. Similarly, we also
obtain (7). In view of (C3), we see that one of cases (A1), (A2), and (A4) holds.

Case 2. r2R�
1 is eventually increasing. It follows that

–∞ < lim
t→∞ r2(t)R�

1
(
t, x(t)

)
= L1 < ∞.

(a) If –∞ < L1 < 0, then there also exist t5 ∈ [t1,∞)T and a constant a3 < 0 such that
r2(t)R�

1 (t, x(t)) ≤ a3 for t ∈ [t5,∞)T. Similar to the proof in Case 1, we get one of cases
(A1) or (A2) holds.

(b) If 0 < L1 < ∞, similarly, then one of cases (A1)–(A3) holds.
(c) If L1 = 0, since r2R�

1 is eventually strictly increasing, then r2R�
1 and R�

1 are both even-
tually negative. Hence, R1 (or r3z�) is eventually strictly decreasing. Similarly, we always
have (7), and one of cases (A1), (A2), and (A4) holds.

The proof is complete. �

3 Sufficient conditions
In this section, we firstly present some sufficient conditions for the existence of each type
of eventually positive solutions to (1).

Theorem 3.1 If there exists some constant K > 0 such that

∫ ∞

t0

∫ u3

t0

∫ u2

t0

∫ u1

t0

f (u0, K)
r1(u1)r2(u2)r3(u3)

�u0�u1�u2�u3 < ∞, (8)

then (1) has an eventually positive solution x with limt→∞ x(t) = b, where b is a positive
constant.

Proof Suppose that there exists some constant K > 0 satisfying (8). For 0 ≤ p0 < 1, there
are two cases p0 > 0 and p0 = 0. If p0 > 0, then we choose a constant p1 with p0 < p1 <
(1 + 4p0)/5 < 1, and thus there exists T0 ∈ [t0,∞)T such that for t ∈ [T0,∞)T, we have
p(t) > 0, (5p1 – 1)/4 ≤ p(t) ≤ p1 < 1, and

∫ ∞

T0

∫ u3

T0

∫ u2

T0

∫ u1

T0

f (u0, K)
r1(u1)r2(u2)r3(u3)

�u0�u1�u2�u3 ≤ (1 – p1)K
8

.

If p0 = 0, then we take p1 satisfying that |p(t)| ≤ p1 ≤ 1/13 for t ∈ [T0,∞)T.
Choose T1 ∈ (T0,∞)T such that g(t) ≥ T0 and h(t) ≥ T0 for t ∈ [T1,∞)T. Let Ω1 =

{x ∈ BC0[T0,∞)T : K/2 ≤ x(t) ≤ K}, where BC0[T0,∞)T is defined as (3) when λ = 0, and
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U1, V1 : Ω1 → BC0[T0,∞)T as follows:

(U1x)(t) =

⎧
⎨

⎩
(U1x)(T1), t ∈ [T0, T1)T,

3Kp1/4 – p(t)x(g(t)), t ∈ [T1,∞)T,

(V1x)(t) =

⎧
⎨

⎩
(V1x)(T1), t ∈ [T0, T1)T,

3K/4 +
∫ ∞

t
∫ u3

T1

∫ u2
T1

∫ u1
T1

f (u0,x(h(u0)))
r1(u1)r2(u2)r3(u3)�u0�u1�u2�u3, t ∈ [T1,∞)T.

Similar to the proofs in [4, Theorem 2.5], [5, Theorem 2], [12, Theorem 3.1], [15, Theorem
3.1], and [19, Theorem 8], we omit the explanation that U1 and V1 satisfy the conditions
in Lemma 2.1. Then there exists x ∈ Ω1 such that (U1 + V1)x = x, which means that, for
t ∈ [T1,∞)T, we obtain

x(t) =
3(1 + p1)K

4
– p(t)x

(
g(t)

)

+
∫ ∞

t

∫ u3

T1

∫ u2

T1

∫ u1

T1

f (u0, x(h(u0)))
r1(u1)r2(u2)r3(u3)

�u0�u1�u2�u3.

Letting t → ∞, from (C4) and Lemma 2.2, we deduce

lim
t→∞ z(t) =

3(1 + p1)K
4

and lim
t→∞ x(t) =

3(1 + p1)K
4(1 + p0)

> 0.

For –1 < p0 < 0, change p1 to satisfy –p0 < p1 < (1 – 4p0)/5 < 1 and (5p1 – 1)/4 ≤ –p(t) ≤
p1 < 1 for t ∈ [T0,∞)T. Let

(U1x)(t) =

⎧
⎨

⎩
(U1x)(T1), t ∈ [T0, T1)T,

–3Kp1/4 – p(t)x(g(t)), t ∈ [T1,∞)T.

Similarly, there also exists x ∈ Ω1 such that (U1 + V1)x = x, and we obtain

lim
t→∞ z(t) =

3(1 – p1)K
4

and lim
t→∞ x(t) =

3(1 – p1)K
4(1 + p0)

> 0.

This completes the proof. �

Theorem 3.2 Assume that (4) holds. If there exists some constant K > 0 such that

∫ ∞

t0

∫ u1

t0

f (u0, KR(h(u0)))
r1(u1)

�u0�u1 < ∞, (9)

then (1) has an eventually positive solution x ∈ A(b), where b is a positive constant.

Proof Suppose that there exists some constant K > 0 such that (9) holds. Proceed as in
the proof of Theorem 3.1, except that, for p0 > 0, take T0 ∈ [t0,∞)T satisfying p(t) > 0,
(5p1 – 1)/4 ≤ p(t) ≤ p1 < 1, p(t)R(g(t))/R(t) ≥ (5p1 – 1)η/4 for t ∈ [T0,∞)T, and

∫ ∞

T0

∫ u1

T0

f (u0, KR(h(u0)))
r1(u1)

�u0�u1 ≤ (1 – p1η)K
8

.
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Let Ω2 = {x ∈ BC1[T0,∞)T : KR(t)/2 ≤ x(t) ≤ KR(t)}, where BC1[T0,∞)T is defined as (3)
when λ = 1, and U2, V2 : Ω2 → BC1[T0,∞)T as follows:

(U2x)(t) =

⎧
⎨

⎩
3Kp1ηR(t)/4 – p(T1)x(g(T1))R(t)/R(T1), t ∈ [T0, T1)T,

3Kp1ηR(t)/4 – p(t)x(g(t)), t ∈ [T1,∞)T,

(V2x)(t) =

⎧
⎪⎪⎨

⎪⎪⎩

3KR(t)/4, t ∈ [T0, T1)T,

3KR(t)/4

+
∫ t

T1

∫ u3
T1

∫ ∞
u2

∫ u1
T1

f (u0,x(h(u0)))
r1(u1)r2(u2)r3(u3)�u0�u1�u2�u3, t ∈ [T1,∞)T,

where T1 is defined as in Theorem 3.1. Similarly, there exists x ∈ Ω2 such that (U2 + V2)x =
x. For t ∈ [T1,∞)T, it follows that

x(t) =
3(1 + p1η)KR(t)

4
– p(t)x

(
g(t)

)

+
∫ t

T1

∫ u3

T1

∫ ∞

u2

∫ u1

T1

f (u0, x(h(u0)))
r1(u1)r2(u2)r3(u3)

�u0�u1�u2�u3.

Letting t → ∞, we derive

lim
t→∞

z(t)
R(t)

=
3(1 + p1η)K

4
and lim

t→∞
x(t)
R(t)

=
3(1 + p1η)K
4(1 + p0η)

> 0.

For –1 < p0 < 0, similar to the proof in Theorem 3.1, we have

lim
t→∞

z(t)
R(t)

=
3(1 – p1η)K

4
and lim

t→∞
x(t)
R(t)

=
3(1 – p1η)K
4(1 + p0η)

> 0.

Moreover, it is clear that limt→∞ x(t) = ∞. The proof is complete. �

Theorem 3.3 Assume that (4) holds. If there exists a positive constant M satisfying that
|p(t)R(t)| ≤ M for t ∈ [t0,∞)T,

∫ ∞

t0

∫ u1

t0

f (u0, R(h(u0)))
r1(u1)

�u0�u1 < ∞, (10)

and
∫ ∞

t0

∫ u3

t0

∫ ∞

u2

∫ u1

t0

f (u0, M + 3/4)
r1(u1)r2(u2)r3(u3)

�u0�u1�u2�u3 = ∞, (11)

then (1) has an eventually positive solution x ∈ A(0).

Proof Suppose that there exists a constant M > 0 such that |p(t)R(t)| ≤ M for t ∈ [t0,∞)T,
and both of (10) and (11) hold. It is easy to see that p0 = 0. There exist T0 ∈ [t0,∞)T and p1

with 0 < p1 < 1 such that, for t ∈ [T0,∞)T, we have |p(t)| ≤ p1 < 1, 2M + 3/2 ≤ R(t)/4, and

∫ ∞

T0

∫ u1

T0

f (u0, R(h(u0)))
r1(u1)

�u0�u1 ≤ 1 – p1

8
.
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Let Ω3 = {x ∈ BC1[T0,∞)T : M + 3/4 ≤ x(t) ≤ R(t)} and U3, V3 : Ω3 → BC1[T0,∞)T as
follows:

(U3x)(t) =

⎧
⎨

⎩
M + 3/4 – p(T1)x(g(T1))R(t)/R(T1), t ∈ [T0, T1)T,

M + 3/4 – p(t)x(g(t)), t ∈ [T1,∞)T,

(V3x)(t) =

⎧
⎨

⎩
M + 3/4, t ∈ [T0, T1)T,

M + 3/4 +
∫ t

T1

∫ u3
T1

∫ ∞
u2

∫ u1
T1

f (u0,x(h(u0)))
r1(u1)r2(u2)r3(u3)�u0�u1�u2�u3, t ∈ [T1,∞)T,

where T1 is defined as in Theorem 3.1. Similarly, there exists x ∈ Ω3 such that, for t ∈
[T1,∞)T, we have

x(t) = 2M +
3
2

– p(t)x
(
g(t)

)

+
∫ t

T1

∫ u3

T1

∫ ∞

u2

∫ u1

T1

f (u0, x(h(u0)))
r1(u1)r2(u2)r3(u3)

�u0�u1�u2�u3.

Letting t → ∞, it is not difficult to see that

lim
t→∞ z(t) = ∞ and lim

t→∞
z(t)
R(t)

= 0,

which implies that

lim
t→∞ x(t) = ∞ and lim

t→∞
x(t)
R(t)

= 0

since |p(t)x(g(t))| ≤ |p(t)R(t)| ≤ M for t ∈ [T1,∞)T. This completes the proof. �

Remark 3.4 It is not easy to find a sufficient condition for the existence of nonoscillatory
solutions tending to zero to (1) since their asymptotic behaviors are more complex than
those of other solutions. However, we refer the reader to [4, Theorem 2.8 and Remark 2.9],
[5, Theorem 3], [12, Theorems 3.5 and 3.6], [15, Theorems 3.2 and 3.3], and [19, Theorems
9 and 10], where some instructive results are presented.

4 Necessary conditions
Some necessary conditions for the existence of eventually positive solutions to (1) are pro-
vided in this section, where an additional assumption is needed as follows:

∫ ∞

t0

∫ u3

t0

∫ u2

t0

�u1�u2�u3

r1(u1)r2(u2)r3(u3)
< ∞. (12)

Theorem 4.1 Assume that (12) holds and

∫ ∞

t0

∫ u3

t0

�u2�u3

r2(u2)r3(u3)
< ∞. (13)

If (1) has an eventually positive solution x with limt→∞ x(t) = b, where b is a positive con-
stant, then there exists some constant K > 0 satisfying (8).
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Proof Suppose that (12) and (13) hold, and (1) has an eventually positive solution x with
limt→∞ x(t) = b > 0. It follows that limt→∞ z(t) = (1 + p0)b, and there exists t1 ∈ [t0,∞)T
such that x(t) > 0, x(g(t)) > 0, and x(h(t)) ≥ b/2 for t ∈ [t1,∞)T. Letting t be replaced by u0

in (1) and integrating (1) from t1 to u1, where u1 ∈ [σ (t1),∞)T, we have

R3
(
u1, x(u1)

)
= R3

(
t1, x(t1)

)
–

∫ u1

t1

f
(
u0, x

(
h(u0)

))
�u0

and thus

R�
2
(
u1, x(u1)

)
=

R3(t1, x(t1))
r1(u1)

–
∫ u1

t1

f (u0, x(h(u0)))
r1(u1)

�u0. (14)

Integrating (14) with respect to u1 from t1 to u2, where u2 ∈ [σ (t1),∞)T, we have

R2
(
u2, x(u2)

)
= R2

(
t1, x(t1)

)
+ R3

(
t1, x(t1)

)∫ u2

t1

�u1

r1(u1)

–
∫ u2

t1

∫ u1

t1

f (u0, x(h(u0)))
r1(u1)

�u0�u1. (15)

By analogy, we deduce

z(t) = z(t1) + R1
(
t1, x(t1)

)∫ t

t1

�u3

r3(u3)
+ R2

(
t1, x(t1)

)∫ t

t1

∫ u3

t1

�u2�u3

r2(u2)r3(u3)

+ R3
(
t1, x(t1)

)∫ t

t1

∫ u3

t1

∫ u2

t1

�u1�u2�u3

r1(u1)r2(u2)r3(u3)

–
∫ t

t1

∫ u3

t1

∫ u2

t1

∫ u1

t1

f (u0, x(h(u0)))
r1(u1)r2(u2)r3(u3)

�u0�u1�u2�u3. (16)

Letting t → ∞, in terms of (C1), (C4), (12), (13), and the fact that x(h(t)) ≥ b/2 for t ∈
[t1,∞)T, we conclude

∫ ∞

t1

∫ u3

t1

∫ u2

t1

∫ u1

t1

f (u0, b/2)
r1(u1)r2(u2)r3(u3)

�u0�u1�u2�u3 < ∞,

which means that (8) holds. The proof is complete. �

Here is a lemma to present a sufficient condition to ensure that (4) is satisfied, and then
Theorems 4.3 and 4.4 follow.

Lemma 4.2 Assume that (12) holds. If (1) has an eventually positive solution x with
limt→∞ x(t) = ∞, then (4) holds.

Proof If (1) has an eventually positive solution x with limt→∞ x(t) = ∞, then we claim
that limt→∞ z(t) = ∞. Assume not; by Theorem 2.3 we have 0 ≤ limt→∞ z(t) < ∞, which
implies that 0 ≤ limt→∞ x(t) < ∞ in view of Lemma 2.2. Hence, we deduce limt→∞ z(t) =
∞. Similar to the proof in Theorem 4.1, we arrive at (16). Letting t → ∞, from (C1) and
(12) we obtain (4) and complete the proof. �
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Theorem 4.3 Assume that (12) holds. If (1) has an eventually positive solution x ∈ A(b),
where b is a positive constant, then there exists some constant K > 0 satisfying (9).

Proof Suppose that (12) holds and (1) has an eventually positive solution x ∈ A(b), where
b is a positive constant, then (4) holds according to Lemma 4.2. Define R as in (C5), by
Lemma 2.2 and Theorem 2.3 we obtain

lim
t→∞ z(t) = ∞ and lim

t→∞ R2
(
t, x(t)

)
= lim

t→∞
z(t)
R(t)

= (1 + p0η)b.

Then there exists t1 ∈ [t0,∞)T such that x(t) > 0, x(g(t)) > 0, and x(h(t)) ≥ bR(h(t))/2 for
t ∈ [t1,∞)T. Proceeding as the proof in Theorem 4.1, we get (15). Letting u2 → ∞, by (C1)
and (C4) we conclude

∫ ∞

t1

∫ u1

t1

f (u0, bR(h(u0))/2)
r1(u1)

�u0�u1 < ∞,

which implies that (9) holds. The proof is complete. �

Theorem 4.4 Assume that (12) holds. If (1) has an eventually positive solution x ∈ A(0),
then we have

∫ ∞

t0

∫ u1

t0

f (u0, 3/4)
r1(u1)

�u0�u1 < ∞ (17)

and
∫ ∞

t0

∫ u3

t0

∫ ∞

u2

∫ u1

t0

f (u0, R(h(u0)))
r1(u1)r2(u2)r3(u3)

�u0�u1�u2�u3 = ∞. (18)

Proof Suppose that (12) holds and (1) has an eventually positive solution x ∈ A(0). It fol-
lows that (4) holds, and we define R as in (C5), then we obtain

lim
t→∞ z(t) = ∞ and lim

t→∞ R2
(
t, x(t)

)
= lim

t→∞
z(t)
R(t)

= 0.

There exists t1 ∈ [t0,∞)T such that 3/4 ≤ x(t) ≤ R(t), 3/4 ≤ x(g(t)) ≤ R(g(t)), and 3/4 ≤
x(h(t)) ≤ R(h(t)) for t ∈ [t1,∞)T. Similar to the proof in Theorem 4.1, we get (14). Inte-
grating (14) with respect to u1 from t2 to t, where t2 ∈ [σ (t1),∞)T and t ∈ [σ (t2),∞)T, we
have

R2
(
t, x(t)

)
= R2

(
t2, x(t2)

)
+ R3

(
t1, x(t1)

)∫ t

t2

�u1

r1(u1)

–
∫ t

t2

∫ u1

t1

f (u0, x(h(u0)))
r1(u1)

�u0�u1.

Letting t → ∞, we obtain

R2
(
t2, x(t2)

)
= –R3

(
t1, x(t1)

)∫ ∞

t2

�u1

r1(u1)
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+
∫ ∞

t2

∫ u1

t1

f (u0, x(h(u0)))
r1(u1)

�u0�u1. (19)

According to (C1) and (C4), it follows that

∫ ∞

t2

∫ u1

t1

f (u0, 3/4)
r1(u1)

�u0�u1 < ∞,

which implies that (17) holds. Substituting u2 for t2 in (19) and integrating (19) with re-
spect to u2 from t1 to u3, where u3 ∈ [σ (t1),∞)T, we have

R1
(
u3, x(u3)

)
= R1

(
t1, x(t1)

)
– R3

(
t1, x(t1)

)∫ u3

t1

∫ ∞

u2

�u1�u2

r1(u1)r2(u2)

+
∫ u3

t1

∫ ∞

u2

∫ u1

t1

f (u0, x(h(u0)))
r1(u1)r2(u2)

�u0�u1�u2.

Similarly, it follows that

z(t) = z(t1) + R1
(
t1, x(t1)

)∫ t

t1

�u3

r3(u3)

– R3
(
t1, x(t1)

)∫ t

t1

∫ u3

t1

∫ ∞

u2

�u1�u2�u3

r1(u1)r2(u2)r3(u3)

+
∫ t

t1

∫ u3

t1

∫ ∞

u2

∫ u1

t1

f (u0, x(h(u0)))
r1(u1)r2(u2)r3(u3)

�u0�u1�u2�u3.

Letting t → ∞, we conclude that (18) holds and complete the proof. �

Now, we can present some necessary and sufficient conditions for the existence of even-
tually positive solutions to (1). In fact, according to Theorems 3.1 and 4.1, we obtain the
following corollary.

Corollary 4.5 Assume that (12) and (13) hold. Then (1) has an eventually positive solution
x with limt→∞ x(t) = b > 0 if and only if there exists some constant K > 0 satisfying (8).

Similarly, we get another corollary in terms of Theorems 3.2 and 4.3.

Corollary 4.6 Assume that (4) holds. Then (1) has an eventually positive solution x ∈ A(b)
if and only if there exists some constant K > 0 satisfying (9), where b is a positive constant.

5 Examples
To illustrate the applications of the conclusions in this paper, two interesting examples are
presented as follows.

Example 5.1 Let T =
⋃∞

n=0[3n, 2 · 3n]. For t ∈ [3,∞)T, consider

(
t3

(
1
tα

(
tβ

(
x(t) –

t + cos t
3t

x
(

t
3

))�)�)�)�

+ t2x(3t) = 0. (20)
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Here, r1(t) = t3, r2(t) = 1/tα , r3(t) = tβ , p(t) = –(t + cos t)/(3t), g(t) = t/3, h(t) = 3t, f (t, x) =
t2x, t0 = 3, and p0 = –1/3, where α ≥ 0 and β > α + 3. It is clear that conditions (C1)–(C4)
are satisfied. Moreover, we have

∫ ∞

3

∫ u3

3

∫ u2

3

∫ u1

3

f (u0, 1)
r1(u1)r2(u2)r3(u3)

�u0�u1�u2�u3

=
∫ ∞

3

∫ u3

3

∫ u2

3

∫ u1

3

u2
0uα

2

u3
1uβ

3
�u0�u1�u2�u3

<
1
3

∫ ∞

3

∫ u3

3

∫ u2

3

uα
2

uβ
3
�u1�u2�u3 <

1
3

∫ ∞

3

∫ u3

3

uα+1
2

uβ
3

�u2�u3

<
1

3(α + 2)

∫ ∞

3

�u3

uβ–α–2
3

< ∞.

According to Theorem 3.1, we conclude that (20) has an eventually positive solution x
with limt→∞ x(t) = b > 0.

Example 5.2 Let T = [1,∞)R. For t ∈ [2,∞)T, consider

(
tλ

(
1
t

(
t2

(
x(t) +

1
2t

x(t – 1)
)′)′)′)′

+
x(t)
t2 = 0. (21)

Here, we have r1(t) = tλ, r2(t) = 1/t, r3(t) = t2, p(t) = 1/(2t), g(t) = t –1, h(t) = t, f (t, x) = x/t2,
t0 = 2, and p0 = 0, where 1 < λ ≤ 2. It is obvious that conditions (C1)–(C4) and (4) are
satisfied. From (C5), we have

R(t) = 1 +
∫ t

2

∫ u3

2

du2 du3

r2(u2)r3(u3)
= 1 +

∫ t

2

∫ u3

2

u2

u2
3

du2 du3 =
t
2

– 1 +
2
t

,

which satisfies that η = limt→∞ R(g(t))/R(t) = 1. Moreover, we deduce

∣
∣p(t)R(t)

∣
∣ =

1
2t

·
(

t
2

– 1 +
2
t

)
≤ M =

1
4

, t ∈ [2,∞)T,

∫ ∞

2

∫ u1

2

f (u0, R(h(u0)))
r1(u1)

du0 du1

=
∫ ∞

2

∫ u1

2

u0/2 – 1 + 2/u0

u2
0uλ

1
du0 du1

<
1
2

∫ ∞

2

∫ u1

2

1
u0uλ

1
du0 du1 <

1
2

∫ ∞

2

ln u1

uλ
1

du1 < ∞,

and
∫ ∞

2

∫ u3

2

∫ ∞

u2

∫ u1

2

f (u0, M + 3/4)
r1(u1)r2(u2)r3(u3)

du0 du1 du2 du3

=
∫ ∞

2

∫ u3

2

∫ ∞

u2

∫ u1

2

u2

u2
0uλ

1u2
3

du0 du1 du2 du3 = ∞.

By virtue of Theorems 3.2 and 3.3, we conclude that (21) has two eventually positive so-
lutions x1 ∈ A(b) for some positive constant b and x2 ∈ A(0).
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On the other hand, if we take r3(t) = t4 and f (t, x) = t · x, but other functions remain
unchanged in (21), then (C1)–(C4) are still satisfied. In addition, we derive

∫ ∞

2

∫ u3

2

∫ u2

2

u2

uλ
1u4

3
du1 du2 du3 < ∞ and

∫ ∞

2

∫ u3

2

u2

u4
3

du2 du3 < ∞,

which means that both of (12) and (13) hold. However, for all K > 0, we always have

∫ ∞

2

∫ u3

2

∫ u2

2

∫ u1

2

f (u0, K)
r1(u1)r2(u2)r3(u3)

du0 du1 du2 du3

= K
∫ ∞

2

∫ u3

2

∫ u2

2

∫ u1

2

u0u2

uλ
1u4

3
du0 du1 du2 du3 = ∞,

which implies that (8) is not satisfied. Therefore, we deduce that (21) has no eventually
positive solution tending to a positive constant in terms of Theorem 4.1 or Corollary 4.5.
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