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Abstract
This paper proposes a system of difference equations to model mosquito population.
In this study, we develop and analyze the stage-structured models which consist of
four distinct mosquito metamorphic stages: eggs, larvae, pupae, and adults. First, a
model with constant birth rate is studied, and the inherent net reproduction number
�0 of the model is derived. If �0 < 1, the extinction equilibrium is globally
asymptotically stable. If �0 > 1, there exists a unique positive equilibrium which is
uniformly persistent. When breeding is seasonal for a special case, it indicates that a
unique globally asymptotically stable periodic solution is admitted when the net
reproductive number is larger than one. When this value is less than one, the
mosquito population goes to extinction. Finally, numerical simulations to
demonstrate our findings and brief discussion are also provided.
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1 Introduction
The Asian tiger mosquito or forest day mosquito (Aedes albopictus), from the mosquito
family Culicidae, is characterized by its black and white striped legs, small black and white
body. It is native in the tropical and subtropical areas of Southeast Asia. Over the past few
decades, this species has invaded many countries around the world through the increas-
ing transport of goods and international travel [1]. It is a competent vector for more than
25 arboviruses, including dengue, Zika [2] and chikungunya [1], which was first reported
in the Reunion Island in March 2005. For controlling the mosquito-borne diseases, the
most traditional measures are to directly kill mosquitoes by spraying insecticides, reduc-
ing the source of larvae, and eliminating mosquitoes. On the one hand, although the cur-
rent vector control strategies, including insecticide spraying and community-based source
reduction, have taken some effect in a short time period, innovative prevention and con-
trol methods with long-term effect are still needed to control mosquito-borne disease. On
the other hand, due to the lack of commercially available vaccines for dengue, Zika, and
chikungunya, current mosquito-borne disease control methods focus on suppressing the
prevalence of vectors and their capacity to transmit viruses [3, 4]. Developing tools to bet-
ter understand the dynamics of mosquito populations and control them is a critical area
of research.
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The complete metamorphosis of the mosquito goes through four different stages of life
cycle development, starting with the egg and hatching into larvae within a week under
the right conditions. Larvae will use their tubes to breathe air by poking above the surface
of the water and eat a bit of floating organic matter. Larvae molt four times totally when
they grow and after the fourth molt, they are called pupae. Pupae also live near the surface
of water and breathe through two horn-like tubes on their back, but pupae do not eat.
When the skin splits after a few days from a pupa, an adult mosquito emerges [5]. Female
mosquitoes then feed on human or animal blood to provide protein for their eggs. After
biting, female mosquitoes rest while their eggs develop. Once eggs are fully developed, the
females oviposit and then proceed to finding another blood meal to complete the mosquito
feeding cycle [6]. The adults live for only a few weeks, and a full life-cycle of a mosquito
takes about a month.

To have more realistic modelling of mosquitoes, we need to study stage structure, be-
cause the different stages respond to environment differently and regulate the popula-
tion differently. Comparing the homogeneous stage-structured models, the latter model
is more reasonable and realistic. Our goal is, after having a fundamental understanding of
the dynamics for the mosquitoes, to have the mosquito models incorporated into disease
transmission models for the mosquito-borne diseases [7]. There have been many elab-
orate works for the dynamical behavior of the transmission of mosquito-borne diseases
[8–10], but many of these models do not take into account the metamorphic structure
differences of mosquito populations. As we know, individuals differ in size or develop-
mental stage, they also differ in their vital rates. Recently, continuous-time dynamical sys-
tems of stage-structured mosquito populations have been studied [9, 11]. However, since
the experimental data of the detection of mosquito population in the field are discrete,
we ought to establish a discrete model no matter considering the research background
or the rationality of the model establishment. In this paper, our model is of discrete time
and based on difference equations. The discrete model is referred to what we may call
a discrete domain. The structure is indeed decomposed into parts called elements, and
the set of such parts is what we call the discrete domain to which the discrete model is
referred. Moreover, we consider stage-structured mosquito populations without distin-
guishing male and female individuals and assume that the mosquito dynamics follow the
nonlinearity of Beverton–Holt type. Also, it should be noticed that interspecific competi-
tion and predation are rather rare events in mosquito populations. In this context, matrix
models can describe population changes from one time step to the next. Commonly, it
takes the form: x(t + 1) = B(x(t))x(t), where x(t) is a vector of counts or densities at each
stage at time t, and B(x(t)) = (bij) is a standard density-dependent population projection
matrix detailing survival, maturation, and reproduction of existing individuals.

Recently, Lu and Li [12] studied the dynamics for mosquito population which included
the discrete stage-structured model and formulated the following model:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

E(t + 1) = bs0A(t),

L(t + 1) = se(L(t))E(t),

P(t + 1) = sl(L(t))L(t),

A(t + 1) = spP(t) + sa(A(t))A(t),

(1.1)
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where the mosquitoes are divided into four stages: eggs, larvae, pupae, and adults. E(t),
L(t), P(t), A(t) denote the numbers of mosquitoes in every stage, respectively, at time t.
The remaining coefficients are denoted as follows:

• b, s0: rate of oviposition and survival probability;
• se: hatching rate from eggs to larvae;
• sl : pupation rate from larvae to pupae;
• sp, sa: emergence rate from pupae to adults and density-dependent survival function

of adults.
In the process of mathematical modeling, the inhibition of larva density on egg hatching

is considered. They assume the surviving-adjusted hatching rate, denoted by se = se(L),
to be a function of larvae L. These rates have the Beverton–Holt or Ricker-type form. It
was shown by the analytical results that when the inherent net reproductive number is
less than one, the trivial fixed point of system (1.1) is globally asymptotically stable, and
is unstable if it is larger than one. However, for the unique positive fixed point, they only
showed its local asymptotic stability under some conditions. Later, in 2017, Tian and Ruan
[13] studied a free boundary problem for Aedes aegypti mosquito invasion, including the
stage-structured mosquito population. Recently, Huang and Hu [14] developed a stage-
structured model of delay differential equations that combines larval density-dependent
competition with diapause eggs in order to compare the efficiency of different suppression
strategies.

Based on an extensive review of current knowledge on mosquito biology, we estimate the
seasonal oviposition rate that changes with the environmental conditions. Egg is treated
by dividing one time unit into favorable (rainy season) and unfavorable (dry season) sea-
sons during which adults will either not reproduce, or produce eggs that do not hatch.
These lead us to considering the following discrete-time mathematical model to describe
the dynamics of Aedes aegypti mosquito population, based on systems of difference equa-
tions:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

E(t + 1) = b(t)A(t) + (1 – γ1)s1(E(t))E(t),

L(t + 1) = γ1s1(E(t))E(t) + (1 – γ2)s2(L(t))L(t),

P(t + 1) = γ2s2(L(t))L(t) + (1 – γ3)s3P(t),

A(t + 1) = γ3s3P(t) + s4(A(t))A(t),

(E(0), L(0), P(0), A(0)) ∈R
4
+\(0, 0, 0, 0).

(1.2)

The state variables E(t), L(t), P(t), and A(t) represent the numbers of eggs, larvae, pupae,
adults, respectively, at time t. The parameter b(t) is the average number of eggs produced
per female adult in one time unit, while γi (i = 1, 2, 3) represents the rate (in one time
unit) of eggs that hatch into larvae, larvae develop into pupae, and pupae that become
adult mosquitoes, respectively. Hence, we assume 0 < γi ≤ 1 for i = 1, 2, 3. The function
si (i = 1, 2, 4) is the nonlinear survivorship rate of stage i. Since the pupae do not eat, we
shall assume the survivorship rate from pupae to adults to be constant denoted by s3,
and 0 < s3 < 1. Specially, interspecific competition and predation are rather rare events in
the population dynamics of mosquitoes. Thus, we also assume that each stage of popu-
lation only competes with themselves and are mutually independent. While only female
mosquitoes are involved in the transmission of vector-borne diseases, this model ignores
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males. Furthermore, the mosquito survival rate in each stage si has the following proper-
ties:

(H1) si(x) ∈ C1[0,∞), si(0) = ai, 0 < ai < 1, s′
i(x) < 0,

d(si(x)x)
dx

> 0,

lim
x→∞ si(x) = 0, lim

x→∞ si(x)x = âi < ∞ for i = 1, 2, 4.

Clearly, (H1) is satisfied by the Beverton–Holt dynamics given by si(x) = αiki/(ki + αix) for
i = 1, 2, 4. It represents that the surviving rates of hatching, pupation, and adult stage are
all decreasing, but the total numbers of eggs, pupae, and adults are increasing and satu-
rating to fixed numbers as the number of individuals increases [12]. Here, we are mainly
interested in analysing model (1.2) for two cases. In the first case, we assume that b(t) = b,
independent of t, is a positive constant, while in the second case, we assume that b(t) is
periodic with period 2. In this paper, our aim is to investigate the dynamical properties of
a discrete stage-structured mosquito population with stage specific competition.

The remainder of this paper is organized as follows. In Sect. 2, we analyze global dynam-
ical properties of the difference equation model when breeding is a constant, including
basic reproductive number, existence of equilibria, stability of mosquito-free equilibrium
E0, as well as persistence of positive equilibrium E1. In Sect. 3, we study a special case
when breeding is seasonal with period-2 birth rates and provide the conditions on the
inherent net reproductive number that lead to the population reaching a globally asymp-
totically stable two-cycle or going to extinction. In Sect. 4, some numerical simulations
are presented to interpret the behaviour of the model, and we explain our main results
biologically. Meanwhile, we show numerically for the case where density-dependent vi-
tal rate has the Ricker-type form, which reveals much more complex dynamics. A short
discussion on research results is also given in this section.

2 Constant birth
In this section, we consider system (1.2) where breeding is continuous. That is, for the
remainder of this section, we assume that b(t) = b is a positive constant. Thus, system
(1.2) can be written as the following difference equation:

x(t + 1) = B
(
x(t)

)
x(t). (2.1)

Here, x(t) = (E(t), L(t), P(t), A(t))T , and the projection matrix B that maps the density at
time t to the density at time t + 1 has the form

B(x) =

⎛

⎜
⎜
⎜
⎝

(1 – γ1)s1(E) 0 0 b
γ1s1(E) (1 – γ2)s2(L) 0 0

0 γ2s2(L) (1 – γ3)s3 0
0 0 γ3s3 s4(A)

⎞

⎟
⎟
⎟
⎠

. (2.2)

This allows us to determine the steady state values by solving the system of equations

x = B(x)x.

In population dynamic applications, we are interested in solutions with non-negative com-
ponents E(t) ≥ 0, L(t) ≥ 0, P(t) ≥ 0, A(t) ≥ 0. Let R4

+
.= (0, +∞) × (0, +∞) × (0, +∞) ×
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(0, +∞). It must be pointed out that the solution of system (1.2) remains non-negative.
System (1.2) will always have a trivial steady state E0 = (0, 0, 0, 0), where all four of the pop-
ulation classes are zero. From (H1), we obtain that system (1.2) or (2.1) has the property:
if x ≤ y, B(x) ≥ B(y), where vector and matrix inequalities hold componentwise.

We shall use the techniques in [15–17] to find the net reproductive number �0 of the
population. Notice that the inherent projection matrix is B(0) = G + T(0), where the tran-
sition matrix T(0) is

T(0) =

⎛

⎜
⎜
⎜
⎝

(1 – γ1)a1 0 0 0
γ1a1 (1 – γ2)a2 0 0

0 γ2a2 (1 – γ3)s3 0
0 0 γ3s3 a4

⎞

⎟
⎟
⎟
⎠

,

and the fertility matrix G is

G =

⎛

⎜
⎜
⎜
⎝

0 0 0 b
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎟
⎠

.

Thus, the net reproductive number is the positive, simple, and strictly dominant eigen-
value of the matrix G(I – T(0))–1. Through direct calculations, we know that

(
I – T(0)

)–1

=
1

η1η2η3(1 – a4)

×

⎛

⎜
⎜
⎜
⎝

η2η3(1 – a4) 0 0 0
γ1a1η3(1 – a4) η1η3(1 – a4) 0 0

γ1γ2a1a2(1 – a4) η1γ2a2(1 – a4) η1η2(1 – a4) η1η2(1 – a4)
γ1γ2γ3a1a2s3 η1γ2γ3a2s3 γ3s3η1η2 η1η2η3

⎞

⎟
⎟
⎟
⎠

,

where η1 = 1 – (1 – γ1)a1, η2 = 1 – (1 – γ2)a2, η3 = 1 – (1 – γ3)s3. Thus,

G
(
I – T(0)

)–1 =
bγ1γ2γ3a1a2s3

η1η2η3(1 – a4)
.

It is easily seen that

�0(γ1,γ2,γ3) =
bγ1γ2γ3a1a2s3

(1 – (1 – γ1)a1)(1 – (1 – γ2)a2)(1 – (1 – γ3)s3)(1 – a4)
. (2.3)

It is worth noting that we use the notation �0(γ1,γ2,γ3) to indicate the dependency of
�0 on γ1, γ2, and γ3. Furthermore, if system (1.2) has a nontrivial interior steady state
E1 = (̃E, L̃, P̃, Ã), where all stages have positive density, then Ẽ-component of a nontrivial
steady state must satisfy

1 = (1 – γ1)s1(̃E) +
bγ1γ2γ3s1(̃E)s2(̃L)s3

(1 – (1 – γ2)s2(̃L))(1 – (1 – γ3)s3)(1 – s4(Ã))
≡ F (̃E), (2.4)
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where

L̃ =
1

1 – (1 – γ2)s2(̃L)
γ1s1(̃E)̃E,

P̃ =
γ2s2(̃L)̃L

1 – (1 – γ3)s3
=

γ1γ2s1(̃E)s2(̃L)̃E
(1 – (1 – γ2)s2(̃L))(1 – (1 – γ3)s3)

,

Ã =
1

1 – s4(Ã)
γ3s3P̃ =

γ1γ2γ3s1(̃E)s2(̃L)s3Ẽ
(1 – (1 – γ2)s2(̃L))(1 – (1 – γ3)s3)(1 – s4(Ã))

.

Since F ′ (̃E) < 0 and limẼ→∞ F (̃E) = 0, we see that if

F(0) = (1 – γ1)a1 +
bγ1γ2γ3a1a2s3

(1 – (1 – γ2)a2)(1 – (1 – γ3)s3)(1 – a4)
> 1,

which is equivalent to �0(γ1,γ2,γ3) > 1, then system (1.2) has a nontrivial unique interior
steady state E1 = (̃E, L̃, P̃, Ã). Furthermore, we shall show that system (1.2) is point dissipa-
tive. In fact, with assumption (H1), we obtain

P(t + 1) = γ2s2
(
L(t)

)
L(t) + (1 – γ3)s3P(t) ≤ γ2â2 + s3P(t).

Let P(t + 1) satisfy the recursion P(t + 1) = γ2â2 +s3P(t). Then it is easy to see that P(t + 1) =
γ2â2

∑t–1
j=0 sj

3 + st
3P(0) and P(t) converges at t → ∞. Since 0 ≤ P(t) ≤ P(t), P(t) is bounded

as t → ∞. Assume that P(t) ≤ M, ∀t = 0, 1, 2, . . . . Then, it follows from system (1.2) that

L(t) ≤ γ1â1 + (1 – γ2)â2, ∀t ≥ 0,

A(t) ≤ â4 + γ3s3M := δ1, ∀t = 1, 2, . . . ,

E(t) ≤ b(â4 + γ3s3M) + (1 – γ1)â1 := δ2, ∀t = 2, 3, . . . .

Upon the positivity and boundedness of solutions for model (1.2), we claim the following
result.

Lemma 2.1 Let (E(t), L(t), P(t), A(t)) be the solution of model (1.2). Then the positive octant
{(E(t) > 0, L(t) > 0, P(t) > 0, A(t) > 0)} is invariant, the sequence (E(t), L(t), P(t), A(t)), t ≥ 0
is ultimately bounded for as t → ∞. That is to say, there is a compact set Γ ∈R

4
+ such that

every forward solution sequence of (1.2) enters Γ in at most two time steps, and remain in
Γ forever after.

Proof The first part is obvious. As for the boundedness of solutions to model (1.2), we
denote

Γ =
{

(E, L, P, M) ∈R
4
+ : E ∈ [0, δ2], L ∈ [

0,γ1â1 + (1 – γ2)â2
]
,

P ∈ [0, M], A ∈ [0, δ1]
}

. (2.5)

This implies that the compact set Γ is positively invariant and all the solutions are non-
negative and ultimately bounded.



Xing et al. Advances in Difference Equations        (2019) 2019:518 Page 7 of 22

The following results can be verified by direct calculations.
(i) If �0(γ1,γ2,γ3) < 1, then (1.2) always has a unique extinction equilibrium

E0 = (0, 0, 0, 0).
(ii) If �0(γ1,γ2,γ3) > 1, then (1.2) has a nontrivial equilibria, denoted by E1 = (̃E, L̃, P̃, Ã).
Thus, �0(γ1,γ2,γ3), which indicates the average number of offspring produced per in-

dividual, plays a key role in determining the existence and stability of equilibria of model
(1.2). Now, we prove the following stability result for (1.2). Notice that an equilibrium
is globally asymptotically stable on R

4
+ if it is locally asymptotically stable on R

4
+ and if

(E(0), L(0), P(0), A(0)) ∈ R
4
+ implies that (E(t), L(t), P(t), A(t)) tends to the equilibrium as

t → ∞. �

Theorem 2.1 If �0(γ1,γ2,γ3) < 1, then the extinction equilibrium E0 of model (1.2) is glob-
ally asymptotically stable. Moreover, E0 is unstable if �0(γ1,γ2,γ3) > 1.

Proof The proof is similar to that of [18–20] with some minor modifications. Since
�0(γ1,γ2,γ3) < 1, system (1.2) only has a trivial steady state E0 = (0, 0, 0, 0). Define the map
P : R4

+ →R
4
+ for the right-hand side of system (1.2). To calculate the stability of E0, we need

to linearize model (1.2) about steady state E0 and evaluate the resulting Jacobian matrix

JP(E0) =

⎛

⎜
⎜
⎜
⎝

(1 – γ1)a1 0 0 b
γ1a1 (1 – γ2)a2 0 0

0 γ2a2 (1 – γ3)a3 0
0 0 γ3a3 a4

⎞

⎟
⎟
⎟
⎠

. (2.6)

Then the eigenvalues of JP(E0) have magnitude less than one, and hence, equilibrium E0

is locally asymptotically stable.
We next establish global asymptotic stability of E0. Note that the inherent projection

matrix B(0) of system (1.2) is non-negative, irreducible, and primitive. It has positive, sim-
ple, and strictly dominant eigenvalues r. Moreover, since �0(γ1,γ2,γ3) < 1, it follows from
[16] that r < 1 and limt→∞ Bt(0) = 0. Thus, for any x(0), we have 0 ≤ x(1) = B(x(0))x(0) ≤
B(0)x(0), and repeating this we get that 0 ≤ x(t) ≤ Bt(0)x(0) → 0 as t → ∞. Hence, E0

is globally asymptotically stable. That is to say, if the extinction steady state is stable, the
mosquito population can not persist.

In addition, when �0(γ1,γ2,γ3) > 1, it follows from Theorem 1.1.3 in [16] that B(0) has
a positive strictly dominant eigenvalue greater than one. That is, the linearization of (1.2)
at E0 has a positive eigenvalue greater than one, which means trivial fixed point E0 is un-
stable. �

Theorem 2.2 If �0(γ1,γ2,γ3) > 1, then system (1.2) is uniformly persistent.

Proof Assume �0(γ1,γ2,γ3) > 1, let f be the map on the right-hand side of (1.2) from R
4
+ to

R
4
+, and D denotes the boundary of Γ defined in (2.5). Since intR4

+ is positively invariant
for system (1.2), it follows from Lemma 2.1 that f t(Γ \D) ⊂ Γ \D, where f t(x) denotes the
tth iteration of x under f . Moreover, employing Theorem 2.1 in [21] and Lemma 2.1, we
know that there exists a global attractor X in Γ .

Let M = (0, 0, 0, 0) be the maximal compact invariant set in X, and Γ \M is positively
invariant. In order to prove if r > 1, system (1.2) is uniformly persistent, which is equivalent
to saying that M is a uniform repeller.
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In the following, we will construct a continuous function Q : R4
+ → R+ satisfying the

conditions:
(1) Q(x) = 0 for x ∈ M;
(2) there exists a neighborhood U of M such that ∀x ∈ U\M, ∃n > 0, such that

Q(f n(x)) > Q(x).
Since B(0) is non-negative and irreducible, it has a dominant eigenvalue r > 1, which has

a corresponding positive left eigenvector θ > 0,

θT B(0) = rθT .

Let r∗ ∈ (1, r) such that θT B(0) > r∗θT . Furthermore, there exists a neighbourhood U of M
by the continuity of B(x) such that

θT B(x) > r∗θT .

Define Q : R4
+ →R+ as follows:

Q(x) = θT x.

Then Q(x) = 0 for x ∈ U iff x ∈ M, and positive elsewhere in U . Moreover,

Q
(
f (x)

)
= θT B(x)x > r∗θT x > θT x = Q(x), ∀x ∈ U\M.

Hence, (1.2) is uniformly persistent. This implies that there exists a positive number ρ ∈
R

4
+ such that, for every solution (E(t), L(t), P(t), A(t)), we have

lim inf
t→∞

(
E(t), L(t), P(t), A(t)

) ≥ ρ > 0

for all non-zero orbits in R
4
+. This completes the proof. �

In the following, we describe the situation when all translating rates equal one. Namely,
γ1 = γ2 = γ3 = 1. That is, we include a term that describes the survivorship of population
from generation to generation. To proceed further, we review the relevant existing results
on the k + 1-order nonlinear difference equation before we formulate the problem that we
subsequently study.

xn+1 = F(xn, xn–1, . . . , xn–k), n = 0, 1, 2, . . . , (2.7)

where F ∈ C(Ik+1,R) and I is an open interval of R.

Lemma 2.2 Let x∗ ∈ I be an equilibrium of (2.7). Suppose that F satisfies the following two
conditions:

(1) F is non-decreasing in each of its arguments;
(2) F satisfies (u – x∗)[F(u, u, . . . , u) – u] < 0 for all u ∈ I\x∗.

Then equilibrium point x∗ is a global attractor of all solutions of equation (2.7).
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The analysis given below focuses on the case of the following system of difference equa-
tions:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

E(t + 1) = bA(t),

L(t + 1) = s1(E(t))E(t),

P(t + 1) = s2(L(t))L(t),

A(t + 1) = s3P(t) + s4(A(t))A(t).

(2.8)

We first observe that (2.8) has a trivial steady state E0. It is easily seen that a nontrivial
constant equilibrium (E, L, P, A) must be an equilibrium that has all positive components.
The A-component of a nontrivial steady state must satisfy

1 = bs3s2
(
s1(bA)bA

)
s1(bA) + s4(A). (2.9)

Consequently, equation (2.8) has a coexistence steady state E∗ = (E, L, P, A), where all
stages have positive density if and only if

bs3a1a2

1 – a4
> 1,

where E = bA, L = s1(bA)bA, P = s2(s1(bA)bA)s1(bA)bA. The interior steady state is unique
whenever it exists. Specially, if we consider the inhibition of larvae density on the egg
hatching, namely s1 = s1(L), then system (2.8) is the same as (1.1) in [12]. Consequently,
we can use the stability information about the steady states to understand the asymptotic
dynamics of our model.

Theorem 2.3 If �0(1, 1, 1) = bs3a1a2
1–a4

> 1, then (2.8) has a unique equilibrium E∗ =
(E, L, P, A) which is globally asymptotically stable in the interior of R4

+.

Proof Since �0(1, 1, 1) > 1, it is clear that E∗ exists by the above analysis. We now turn our
attention to equilibrium point E∗. First, we prove that E∗ is locally asymptotically stable.
To calculate the local stability of E∗, the linearization of (2.8) about E∗ yields the Jacobian
matrix

J
(
E∗) =

⎛

⎜
⎜
⎜
⎝

0 0 0 b
J21 0 0 0
0 J32 0 0
0 0 s3 J44

⎞

⎟
⎟
⎟
⎠

,

where J21 = s′
1(E)E + s1(E) > 0, J32 = s′

2(L)L + s2(L) > 0, and J44 = s′
4(A)A + s4(A) > 0. Fur-

thermore, at equilibrium E∗, the characteristic equation for the corresponding linearized
model of (2.8) is

f (λ) = λ4 – J44λ
3 – bs3J21J32 = 0. (2.10)
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To show local asymptotic stability of E∗, we need to show that the following inequalities
hold:

(i) f (1) > 0,

(ii) f (–1) > 0,

(iii) |–bs3J21J32| < 1,

(iv)
∣
∣1 – b2s2

3J2
21J2

32
∣
∣ > |–bs3J21J32J44|,

(v)
∣
∣
(
1 – b2s2

3J2
21J2

32
)2 – b2s2

3J2
21J2

32J2
44

∣
∣ >

∣
∣–bs3J21J32J2

44
∣
∣.

Since A satisfies (2.9), E = bA, L = s1(E)E, and P = s2(L)L, we have by (2.9) that

1 = bs3s1(E)s2(L) + s4(A). (2.11)

Substituting the above expression of 1 into f (1), and with the assumptions of (H1), we have

f (1) = 1 – J44 – bs3J21J32

= 1 –
(
s′

4(A)A + s4(A)
)

– bs3
(
s′

1(E)E + s1(E)
)(

s′
2(L)L + s2(L)

)

= –s′
4(A)A – bs3s2(L)s′

1(E)E – bs3s′
2(L)L

(
s′

1(E)E + s1(E)
)

> 0.

It is also clear that

f (–1) = 1 + J44 – bs3J21J32 > 2J44 > 0,

as J44 > 0. Next, we prove the third inequality

|–bs3J21J32| < 1. (2.12)

Note that the term inside the absolute value on the left-hand side of equation (2.12) is
negative, yielding

|–bs3J21J32| = bs3J21J32 = bs3
(
s′

1(E)E + s1(E)
)(

s′
2(L)L + s2(L)

)

< bs3s1(E)s2(L) < bs3s1(E)s2(L) + s4(A) = 1.

Because of equation (2.12) and b, s3, J21, J32, J44 > 0, condition (iv) becomes

1 – b2s2
3J2

21J2
32 – bs3J21J32J44 > 0.

Since (i) has been satisfied, then

1 – b2s2
3J2

21J2
32 – bs3J21J32J44 = 1 – bs3J21J32(bs3J21J32 + J44),

= 1 + bs3J21J32
(
f (1) – 1

)

= 1 – bs3J21J32 + bs3J21J32f (1) > 0.
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At last, we proceed to verifying the last inequality (v). For convenience, we denote m =
–bs3J21J32, n = –J44. Then (v) is equal to

∣
∣
(
1 – b2s2

3J2
21J2

32
)2 – b2s2

3J2
21J2

32J2
44

∣
∣ –

∣
∣–bs3J21J32J2

44
∣
∣

=
(
1 – m2)2 – n2m2 + n2m

= (1 – m)
(
(1 + m)2(1 – m) + n2m

)
.

Since –1 < m < 0, n < 0, we have 1 – m > 0. Then (v) is satisfied if (1 + m)2(1 – m) + n2m > 0.
However, by f (1) = 1 + m + n > 0, we obtain

(1 + m)2(1 – m) + n2m > n2(1 – m) + n2m = n2 > 0.

This implies that E∗ is locally asymptotically stable.
In what follows, we show the convergence of equilibrium E∗. Notice that (2.8) can be

converted into the following scalar difference equation:

A(t + 4) = s3s2
(
s1

(
bA(t)

)
bA(t)

)
s1

(
bA(t)

)
bA(t) + s4

(
A(t + 3)

)
A(t + 3). (2.13)

Since bs3a1a2 + a4 > 1, (2.13) admits a unique positive steady state A. It is sufficient to
prove that A is globally attracting for (2.13) in (0,∞).

Let

g(E, L, P, A) = s3s2
(
s1(bE)bE

)
s1(bE)bE + s4(A)A,

we obtain

∂g
∂E

= s3
[
s2

(
s1(bE)bE

)
s1(bE)bE + s′

2
(
s1(bE)bE

)
s1(bE)bE

][
s′

1(bE)bE + s1(bE)
]

> 0,

∂g
∂L

=
∂g
∂P

= 0,

∂g
∂A

= s′
4(A)A + s4(A) > 0

for all E, L, P, A > 0. Moreover,

(A – A)
[
g(A, A, A, A) – A

]

= (A – A)
[
s3s2

(
s1(bA)bA

)
s1(bA)bA + s4(A)A – A

]

= (A – A)
[
s3s2

(
s1(bA)bA

)
s1(bA)b + s4(A) – 1

]
A < 0

for A > 0 and A �= A. Hence A is globally attracting for (2.13) in the interior of R4
+. By using

Lemma 2.2, equilibrium E∗ is globally attracting for (2.8). This concludes the proof of this
theorem. �

Furthermore, we also know that system (2.8) is uniform in the parameters for a pertur-
bation around γ1 = γ2 = γ3 = 1.
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Theorem 2.4 If �0(1, 1, 1) = bs3a1a2
1–a4

> 1, then the extinction equilibrium for system (2.8) is
a repeller, uniform in the parameter γ = (γ1,γ2,γ3) near (1, 1, 1). That is, there is an open
neighbourhood U0 of 0 in R

4
+, and positive constants ci ∈ (0, 1), i = 1, 2, 3, such that, for every

x(0) �= 0 and every γ ∈ [c1, 1] × [c2, 1] × [c3, 1], there is some N(x(0),γ ) ≥ 0 such that

f n(x(t)
)

/∈ U0, ∀n ≥ N ,

where x(t) = (E(t), L(t), P(t), A(t)), f (x(t)) denotes the right-hand side of system (2.8), and
f n(x) denotes the nth iteration of x under f .

Proof The proof is similar to that of Ackleh ([19], Lemma 5) with some minor modifica-
tions, so we omit it here. �

3 Seasonal breeding
In this section, we assume that breeding of the mosquito population is seasonal. Further-
more, to make the model mathematically tractable, we only consider a case for (2.8) with
b = b(t). That is to say, all survived individuals move into the subsequent stage within one
time step. Then the model equations become

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

E(t + 1) = b(t)A(t),

L(t + 1) = s1(E(t))E(t),

P(t + 1) = s2(L(t))L(t),

A(t + 1) = s3P(t) + s4(A(t))A(t).

(3.1)

We know that there are times when the environment is suitable for mosquitoes to lay,
and to escape harsh environment, the adults do not lay eggs or eggs do not hatch. All
their life processes drop to a very low level. Additionally, we assume in model (3.1) that
the function b(t) is periodic with period 2. Specifically, we let b(0) = b̂, b(1) = 0, b(2) =
b̂, b(3) = 0, . . . . In other words, if the time unit is half a day and a full cycle consists of
one day, the mosquito population gives birth only half the day, while in the other half
there is no birth. Let (E(0), L(0), P(0), A(0)) ∈R

4
+\{(0, 0, 0, 0)} be given. It is easy to see that

(E(t), L(t), P(t), A(t)) ∈R
4
+\{(0, 0, 0, 0)} for t > 0. Moreover, from system (3.1), we get

E(1) = b(0)A(0) = b̂A(0), L(1) = s1
(
E(0)

)
E(0),

P(1) = s2
(
L(0)

)
L(0), A(1) = s3P(0) + s4

(
A(0)

)
A(0).

Hence, if (E(0), L(0), P(0), A(0)) is a part of two-cycle, with a little algebra one can show
that E(2) = b(1)A(1) = 0, L(2) = s1(̂bA(0))̂bA(0), P(2) = s2(L(1))L(1) = 0, and

A(2) = s3s2
(
s1

(
b̂A(0)

)
b̂A(0)

)
s1

(
b̂A(0)

)
b̂A(0) + s4

(
s4

(
A(0)

)
A(0)

)
s4

(
A(0)

)
A(0).

If A(0) �= 0, then A(0) must satisfy

1 = s3s2
(
s1

(
b̂A(0)

)
b̂A(0)

)
s1

(
b̂A(0)

)
b̂ + s4

(
s4

(
A(0)

)
A(0)

)
s4

(
A(0)

)
. (3.2)
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Let

H(A) = s3s2
(
s1(̂bA)̂bA

)
s1(̂bA)̂b + s4

(
s4(A)A

)
s4(A).

It follows that

H ′(A) = b̂s3
[
s′

2
(
s1(̂bA)̂bA

)
s1(̂bA)

(
s1(̂bA)̂bA

)′ + s2
(
s1(̂bA)̂bA

)
s′

1(̂bA)̂b
]

+ s′
4
(
s4(A)A

)
s4(A)

(
s4(A)A

)′ + s4
(
s4(A)A

)
s′

4(A)

for all A > 0 and si satisfies (H1) for i = 1, 2, 4. Moreover, using similar calculations as
before, one can show that H(0) = b̂a1a2s3 + a2

4, limA→∞ H(A) = 0, and H ′(A) < 0. Denote
A(0) = A∗, and thus, we conclude that (3.2) has a positive solution A∗ if and only if

b̂a1a2s3 + a2
4 > 1, (3.3)

which is equivalent to

�̂0 :=
b̂a1a2s3

1 – a2
4

> 1, (3.4)

where �̂0 is the inherent net reproductive number for the seasonal mosquito population.
Let L(0) = L∗, therefore (3.1) has a unique two-cycle

{(
0, L∗, 0, A∗),

(
b̂A∗, 0, s2

(
L∗)L∗, s4

(
A∗)A∗)},

if and only if (3.4) holds, where A∗ satisfies

H
(
A∗) = s3s2

(
s1

(
b̂A∗)b̂A∗)s1

(
b̂A∗)b̂ + s4

(
s4

(
A∗)A∗)s4

(
A∗) = 1 (3.5)

and

A∗ = s3s2
(
L∗)L∗ + s4

(
s4

(
A∗)A∗)s4

(
A∗)A∗.

Here, it is worth noting that system (3.1) is a periodic system. In the next theorem, we
summarize the main stability results for linear non-autonomous system (3.1). To facilitate
the proof of the theorem, we first establish a stability result that is of independent interest,
following the analysis of Saber Elaydi [22].

For the autonomous (time-independent) linear system x(n + 1) = Bx(n), the eigen-
values of B determine the stability properties of the system. But for a periodic system
x(n + 1) = B(n)x(n), the eigenvalues of B(n) do not play any role in the determination of the
stability properties of the system. Instead, the Floquet multipliers of B(n) determine those
properties. Considering the following periodic system:

x(n + 1) = B(n)x(n), B(n + N) = B(n), (3.6)

we now give a simple but powerful criterion for asymptotic stability of system (3.6).
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Lemma 3.1 The steady state solution of equation (3.6) is asymptotically stable if and only
if each eigenvalue of C = B(N – 1)B(N – 2) · · ·B(0) has modulus less than 1.

Theorem 3.1 For t = 0, 1, 2, . . . , and b(2t) = b̂ > 0, b(2t + 1) = 0. Assume that (H1) holds.
Then the following statements hold:

(i) If �̂0 < 1, then Ê0 = (0, 0, 0, 0) is globally asymptotically stable.
(ii) If �̂0 > 1, then there exists a unique nontrivial two-cycle for system (3.1) which is

globally asymptotically stable.

Proof We divide the proof into the two cases.
First, we start by proving (i). By using Lemma 3.1, since system (3.1) is periodic with

period two, the local stability of Ê0 can be determined by establishing the eigenvalues of
the projection matrix over a full cycle

⎛

⎜
⎜
⎜
⎝

0 0 0 b̂
a1 0 0 0
0 a2 0 0
0 0 s3 a4

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

0 0 0 0
a1 0 0 0
0 a2 0 0
0 0 s3 a4

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

0 0 b̂s3 b̂a4

0 0 0 0
a1a2 0 0 0

0 s3a2 s3a4 a2
4

⎞

⎟
⎟
⎟
⎠

.

Denote the resulting product matrix by A0, then the characteristic polynomial associated
with this matrix is given by

g(λ) = λ2(λ2 – a2
4λ – b̂a1a2s3

)
.

Then the eigenvalues of A0 are 0 and the roots of equation

λ2 – a2
4λ – b̂a1a2s3 = 0. (3.7)

We conclude from [22] that the roots of (3.7) lie inside the unit disk if and only if

1 + a2
4 – b̂a1a2s3 > 0, 1 – a2

4 – b̂a1a2s3 > 0, 1 + b̂a1a2s3 > 0,

or, equivalently,

∣
∣a2

4
∣
∣ < 1 – b̂a1a2s3 < 2. (3.8)

If condition (3.8) holds, then Ê0 is locally asymptotically stable. However, (3.8) can re-
duce to a2

4 < 1 – b̂a1a2s3 < 2 as a4 > 0. Note that b̂ > 0, s3 > 0, and a1, a2 > 0 under as-
sumption (H1), we know 1 – b̂a1a2s3 < 2 is trivially true. Furthermore, the left-hand side
of inequality is satisfied by �̂0 < 1. Then (3.8) holds. Therefore, Ê0 is locally asymptotically
stable.

The next step is to establish the global attractivity of Ê0 by virtue of a simple comparison
method. From system (3.1), we see that E(2t + 1) = b̂A(2t), E(2t + 2) = 0, L(2t + 1) = 0,
P(2t + 2) = 0, which implies that

P(2t + 1) ≤ a2L(2t), A(2t + 1) ≤ a4A(2t), L(2t + 2) ≤ a1E(2t + 1),

A(2t + 2) = s3P(2t + 1) + s4
(
A(2t + 1)

)
A(2t + 1),
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i.e.,

L(2t + 2) ≤ a1̂bA(2t), A(2t + 2) ≤ s3a2L(2t) + a2
4A(2t)

for t ≥ 1. Letting n + i = 2(t + i) for i ≥ 0, consider the following linear system of difference
equations:

M(n + 1) = a1̂bN(n), N(n + 1) = s3a2M(n) + a2
4N(n),

with M(1) = L(2), N(1) = A(2).

(
M(n + 1)
N(n + 1)

)

=

(
0 b̂a1

s3a2 a2
4

)(
M(n)
N(n)

)

. (3.9)

From this, we get that the eigenvalues of the above coefficient matrix satisfy

λ2 – a2
4λ – b̂a1a2s3 = 0.

Similar to the above analysis, all the eigenvalues have modulus less than 1, and using a sim-
ple comparison method, we have limn→∞ M(n) = limn→∞ N(n) = 0. Thus, limn→∞ L(2t +
2) = limn→∞ A(2t + 2) = 0 and, as a result, limn→∞ E(2t + 1) ≤ b̂ limn→∞ A(2t) = 0,
limn→∞ P(2t +1) ≤ a2 limn→∞ L(2t) = 0, and limn→∞ A(2t +1) ≤ a4 limn→∞ A(2t) = 0. Con-
sequently, we know that Ê0 is globally attracting of system (3.1). Therefore, Ê0 is globally
asymptotically stable.

From the above analysis, we have known that (3.1) has a unique two-cycle

{(
0, L∗, 0, A∗),

(
b̂A∗, 0, s2

(
L∗)L∗, s4

(
A∗)A∗)},

if and only if �̂0 > 1 holds, and

L∗ = s1
(
b̂A∗)b̂A∗. (3.10)

In the following, we show that the two-cycle is globally asymptotically stable.
To prove (ii), we first prove that the two-cycle is locally asymptotically stable. Recall that

its stability depends on the eigenvalues of the product of the matrices

⎛

⎜
⎜
⎜
⎝

0 0 0 b̂
a1 0 0 0
0 a32 0 0
0 0 s3 a44

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

0 0 0 0
C 0 0 0
0 a2 0 0
0 0 s3 B

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

0 0 b̂s3 b̂B
0 0 0 0

a32C 0 0 0
0 s3a2 s3a44 Ba44

⎞

⎟
⎟
⎟
⎠

,

where

a32 = s′
2
(
L∗)L∗ + s2

(
L∗) > 0,

a44 = s′
4
(
A∗)A∗ + s2

(
A∗) > 0,
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B = s′
4
(
s4

(
A∗)A∗)s4

(
A∗)A∗ + s4

(
s4

(
A∗)A∗) > 0,

C = s′
1
(
b̂A∗)b̂A∗ + s1

(
b̂A∗) > 0.

Denote the resulting product matrix by A1. Then the characteristic polynomial associated
with this matrix is given by

p(λ) = λ2(λ2 – Ba44λ – b̂s3a32C
)
.

Then the eigenvalues of A1 are 0 and the roots of equation λ2 – Ba44λ – b̂s3a32C = 0. In or-
der to show that the two-cycle is locally asymptotically stable, it is necessary and sufficient
that

|–Ba44| < 1 – b̂s3a32C < 2,

which reduces to Ba44 < 1 – b̂s3a32C < 2 as B, a44 > 0. Note that b̂, s3 > 0 and a32, C > 0
under assumption (H1), we know 1 – b̂s3a32C < 2 is always true. Therefore, we only need
to prove

1 – b̂s3a32C – Ba44 > 0. (3.11)

Replacing 1 by the right-hand side of equilibrium equation (3.5), we have

1 – b̂s3a32C – Ba44

= 1 – b̂s3s′
2
(
L∗)L∗s′

1
(
b̂A∗)b̂A∗ – b̂s3s′

2
(
L∗)L∗s1

(
b̂A∗) – b̂s3s2

(
L∗)s1

(
b̂A∗)

– b̂s3s2
(
L∗)s′

1
(
b̂A∗)b̂A∗ – s′

4
(
s4

(
A∗)A∗)s4

(
A∗)A∗s′

4
(
A∗)A∗

– s′
4
(
s4

(
A∗)A∗)s4

(
A∗)A∗s4

(
A∗) – s4

(
s4

(
A∗)A∗)s′

4
(
A∗)A∗ – s4

(
A∗)s4

(
s4

(
A∗)A∗)

= b̂s3s2
(
s1

(
b̂A∗)b̂A∗)s1

(
b̂A∗) – b̂s3s2

(
L∗)[s′

1
(
b̂A∗)b̂A∗ + s1

(
b̂A∗)]

– b̂s3s′
2
(
L∗)L∗[s′

1
(
b̂A∗)b̂A∗ + s1

(
b̂A∗)]

– s′
4
(
s4

(
A∗)A∗)s4

(
A∗)A∗[s′

4
(
A∗)A∗ + s4

(
A∗)]

– s4
(
s4

(
A∗)A∗)s′

4
(
A∗)A∗.

Notice that the last three terms in the above expression are all positive, and the first two
terms can be combined to yield a positive term –̂bs3s2(L∗)s′

1(̂bA∗ )̂bA∗ by (3.10). Therefore
(3.11) holds and the two-cycle is locally asymptotically stable.

To finish the proof of (ii), it remains to show that the two-cycle is globally attracting in
the interior of R4

+. The proof is similar to the proof of Sect. 2. Let (E(0), L(0), P(0), A(0)) ∈
R

4
+\{(0, 0, 0, 0)} be given. Note that

E(2t + 1) = b(2t)A(2t) = b̂A(2t), P(2t + 1) = s2
(
L(2t)

)
L(2t), (3.12)

A(2t + 1) = s4
(
A(2t)

)
A(2t) (3.13)
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for t ≥ 1. From this, we get

L(2t + 2) = s1
(
E(2t + 1)

)
E(2t + 1) = s1

(
b̂A(2t)

)
b̂A(2t),

A(2t + 2) = s3P(2t + 1) + s4
(
A(2t + 1)

)
A(2t + 1)

= s3s2
(
L(2t)

)
L(2t) + s4

(
s4

(
A(2t)

)
A(2t)

)
s4

(
A(2t)

)
A(2t).

Let n + i = 2(t + i) for i ≥ 0, we obtain

G(n + 1) = s1
(
b̂K(n)

)
b̂K(n),

K(n + 1) = s3s2
(
G(n)

)
G(n) + s4

(
s4

(
K(n)

)
K(n)

)
s4

(
K(n)

)
K(n)

for n ≥ 1, which is equivalent to the following second-order scalar equation:

K(n + 2) = s3s2
(
s1

(
b̂K(n)

)
b̂K(n)

)
s1

(
b̂K(n)

)
b̂K(n)

+ s4
(
s4

(
K(n + 1)

)
K(n + 1)

)
s4

(
K(n + 1)

)
K(n + 1). (3.14)

Let the right-hand side of (3.14) be denoted by q(x, y), i.e.,

q(x, y) = s3s2
(
s1(̂bx)̂bx

)
s1(̂bx)̂bx) + s4

(
s4(y)y

)
s4(y)y.

Then

∂q
∂x

= s3
[
s′

2
(
s1(̂bx)̂bx

)
s1(̂bx)̂bx + s2

(
s1(̂bx)̂bx

)](
s1(̂bx)̂bx

)′ > 0

and

∂q
∂y

=
[
s′

4
(
s4(y)y

)
s4(y)y + s4

(
s4(y)y

)](
s4(y)y

)′ > 0.

Furthermore, (3.14) admits a unique interior steady state A∗ since b̂a1a2s3 + a2
4 > 1. It is

easy to see that

(
u – A∗)[q(u, u) – u

]
=

(
u – A∗)[s3s2

(
s1(̂bu)̂bu

)
b̂u)̂bu + s4

(
s4(u)u

)
s4(u)u – 1

]
u < 0.

Employing the results of Lemma 2.2, we have the following result, limt→∞ L(2t) = L∗,
limt→∞ A(2t) = A∗. That is to say, the even subsequence (E(2t), L(2t), P(2t), A(2t)) of the
solution converges to (0, L∗, 0, A∗). Meanwhile, it follows from (3.12) and (3.13), we ob-
tain limt→∞ E(2t + 1) = b̂A∗, limt→∞ P(2t + 1) = s2(L∗)L∗, and limt→∞ A(2t + 1) = s4(A∗)A∗,
and thereby the odd subsequence (E(2t + 1), L(2t + 1), P(2t + 1), A(2t + 1)) converges to
(̂bA∗, 0, s2(L∗)L∗, s4(A∗)A∗). Since (E(0), L(0), P(0), A(0)) �= (0, 0, 0, 0) is arbitrary, we get that
the two-cycle solution is globally attracting in the interior of R4

+. Hence, the two-cycle is
globally asymptotically stable. �

Remark 3.1 For system (3.6), every local stability property of the zero solution implies the
corresponding global stability property.
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Figure 1 The red, blue, black, and green curves correspond to the eggs, larvae, pupae, adults classes,
respectively. The survivorship functions are si(x) = aiki/(ki + aix), i = 1, 2, 4, with parameter values a1 = 0.5,
a2 = 0.4, a4 = 0.8, k1 = 400, k2 = 300, k4 = 800, γ1 = 0.3, γ2 = 0.4, γ3 = 0.5, and s3 = 0.6. The initial conditions
are given by E(0) = L(0) = P(0) = A(0) = 50. If b = 9, the inherent net reproductive number �0 = 0.9370 < 1,
mosquito-free equilibrium E0 is globally asymptotically stable. Solution approach E0 as t → ∞, shown in the
left figure, where γ1 = γ2 = γ3 = 1, with the same function forms and some parameters. As b = 3, the inherent
net reproductive number �0(1, 1, 1) = 1.8 > 1, E1 = (30, 70, 82, 210) is globally asymptotically stable. Solutions
approach E1, as t → ∞, shown in the right figure

4 Simulations, biological explanations, and discussions
In order to interpret the conclusions from a quantitative perspective, the dynamics of
the mosquito population by numerical simulations will be analyzed in the following.
In this section, we use MATLAB technical computing software to find the numeri-
cal solutions of model (1.2) and analyze the effect of basic reproduction number �0

and �̂0.
With parameter values given in Fig. 1, the breeding of mosquito population is continu-

ous, if b = 9, the inherent net reproductive number �0 = 0.9370 < 1 (see Fig. 1(a)). Thus,
Theorem 2.1 indicates that mosquito-free equilibrium E0 is globally asymptotically stable,
and the mosquito population goes extinct. Meanwhile, this result shows that the mosquito
population can be eliminated by controlling birth rate of adults. If b = 12, the inherent net
reproductive number �0 = 1.2493 > 1. While we are only to show the persistence of the
positive fixed point for model (1.2) with the Beverton–Holt form survival functions, the
stability seems global.

Next, we analyze numerically the global dynamics of system (1.2) for γ1 = γ2 = γ3 = 1.
Figure 1(b) shows that if the inherent net reproductive number �0(1, 1, 1) = 1.8 > 1,

the trivial fixed point becomes unstable, and there exists an interior steady state, E1 =
(30, 70, 82, 210), which is globally asymptotically stable. It means that the mosquito popu-
lation exists despite the low birth rates of adults in this case.

Figure 2 indicates that for model (3.1), when the breeding of the mosquito population is
seasonal with 2-cycle, i.e., b(2t) = b̂, b(2t + 1) = 0. As b̂ = 2.5, the inherent net reproductive
number �̂0 = 0.8333 < 1, Ê0 is globally asymptotically stable and the mosquito population
can be eliminated. As b̂ = 4, �̂0 = 1.3333 > 1, a stable 2-cycle appears which is globally
asymptotically stable and the mosquito population can be established. Comparing the re-
sults with those above, we know that period 2 birth rates are not advantageous for low
birth rates of the mosquito population. Furthermore, we remark that model (3.1) admits
a periodic solution which illustrates our mathematical result of Theorem 3.1.



Xing et al. Advances in Difference Equations        (2019) 2019:518 Page 19 of 22

Figure 2 The function forms and some parameters are given in Fig. 1. When the breeding of the mosquito
population is seasonal with 2-cycle, b(2t) = b̂, b(2t + 1) = 0. As b̂ = 2.5, the inherent net reproductive number
�̂0 = 0.8333 < 1, Ê0 is globally asymptotically stable. Solutions approach Ê0 as t → ∞, shown in the left figure.
As b̂ = 4, �̂0 = 1.3333 > 1, and a stable 2-cycle appears, which is globally asymptotically stable, shown in the
right figure

Figure 3 The functions s1(E) and s4(A) still have the Beverton–Holt form such that si(x) = aiki/(ki + aix), i = 1, 4,
but s2(L) has the Ricker-type nonlinearity such that s2(L) = a2e–L/k2 and E(0) = L(0) = P(0) = A(0) = 10, other
parameters are given in Fig. 1. As b = 8, the inherent net reproductive number �0 = 0.8329 < 1, trivial fixed
point E0 is globally asymptotically stable. Solutions approach E0 as t → ∞, shown in the left figure. As b = 13,
�0 = 1.3534 > 1, E0 becomes unstable and E1 = (4.29, 5.71, 20, 114.2), which is globally asymptotically stable,
shown in the right figure

With all parameter values given in Fig. 1, s2(L) has the Ricker-type nonlinearity such that
s2(L) = a2e–L/k2 and E(0) = L(0) = P(0) = A(0) = 10. Figure 3 shows that for model (1.2), the
breeding of the mosquito population is a constant. As b = 8, the inherent net reproductive
number �0 = 0.8329 < 1, mosquito-free equilibrium Ẽ0 is globally asymptotically stable.
As b = 13, �0 = 1.3534 > 1, Ẽ0 becomes unstable and Ẽ1 = (4.29, 5.71, 20, 114.2), the system
is globally asymptotically stable. We find that the solution curve is the same as in Fig. 1. It
means that the changing larval survival rate has little effect on the stability of equilibrium
state.

To conclude, our numerical simulations demonstrate when the function si(x) has the
Ricker-type form such that si(x) = aie–x/ki , i = 1, 2, 4, complex behavior emerges on the
dynamic of the mosquito population. Here, we use the following set of parameters for
the model of (1.2): a1 = 0.7, a2 = 0.4, s3 = 0.68, a4 = 0.2, k1 = 300, k2 = 350, k4 = 500, γ1 =
0.8, γ2 = 0.8, γ3 = 0.8, and let b vary, but keep all �0 > 1 and �0 increasing. The periodic
oscillations appear as expected. The larger the �0, the larger the amplitude of solution, for
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different values of �0, the dynamical behavior of solutions changes. As b = 12, �0 = 2.1391.
The positive fixed point is globally asymptotically stable. As b = 70, �0 = 12.4780. The
solution appears to oscillate. As b = 100, �0 = 17.8257, and a cycle with period exists. As
b = 200, �0 = 35.6514, and the system exhibits chaotic behavior. All populations shown in
the figures are only eggs for clearer views.

Mosquito-borne diseases are a major public health concern because they cause sub-
stantial mortality and morbidity worldwide. An effective way to prevent these dis-
eases is to control mosquitoes. Hence, it is crucial to study the population dynamics
of mosquitoes and to devise effective and realistic methods for controlling mosquito
population in communities. To build a theoretical framework, we developed and anal-
ysed discrete-time models for mosquitoes, including the four distinct stages with time-
dependent(independent) birth rates and nonlinear survivorship rates.

For model (1.2), we show that for continuous or seasonal breeding, extinction or co-
existence depends on the inherent net reproductive number. First, continuous breeding
is assumed and the asymptotic behavior of the resulting autonomous model is fully ana-
lyzed. It is shown that the unique interior equilibrium is uniformly persistent when the
inherent net reproductive number is greater than one. Furthermore, if we assume the
transition rate from the previous to the next state, i.e., γ1 = γ2 = γ3 = 1, the unique in-
terior equilibrium is globally asymptotically stable. However, when the inherent net re-
productive is less than one, the mosquito population becomes extinct. In addition, we
also show that the system is uniformly persistent in the parameters with a perturbation
around γ1 = γ2 = γ3 = 1. Then, we fully analyze the model with a seasonal breeding birth
rate for the above special case. That is to say, all survived individuals move into the fol-
lowing stage within one time step, respectively, a seasonal breeding birth rate with pe-
riod two is assumed. It is proved that for this non-autonomous model a period two so-
lution is globally asymptotically stable when the inherent net reproductive number is
greater than one, and when the inherent net reproductive number is less than one, the
population becomes extinct. The outcomes rely on reducing the model to a higher-order
scalar difference equation and applying the result on monotone scalar difference equations
from [22].

Finally, numerical simulations are also provided to demonstrate these theoretical re-
sults. Moreover, in order to study the effects of survivorship functions which are strong
non-linearities as opposed to weak non-linearities, we consider the dynamical proper-
ties for a case with the Ricker-type form survival functions in our model. In this case,
the dynamics are complicated and the behaviour of the solutions is captured primar-
ily through simulations. In Fig. 4, we consider Ricker-type survivorship functions with
a constant birth, we use the following Ricker-type survivorship functions: si(x) = aie–x/ki

for i = 1, 2, 4. The parameter values and initial conditions are set in Fig. 4. We see that
the Ricker-type survivorship functions result in much richer dynamics than those with
the Beverton–Holt functions, including chaotic dynamics. We also plan to incorporate
this investigation into the mosquito-borne disease. Mathematical analysis will be more
challenging, but this is exactly what we need. Our objective is to find the best strate-
gies for the releases of sterile mosquitoes to prevent and control the mosquito-borne dis-
eases.
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Figure 4 The function si(x) has the Ricker-type form such that si(x) = aie–x/ki , i = 1, 2, 4, with the parameters
a1 = 0.7, a2 = 0.4, s3 = 0.68, a4 = 0.2, k1 = 300, k2 = 350, k4 = 500, r1 = 0.8, r2 = 0.8, r3 = 0.8, As b = 12,
�0 = 2.1391. The positive fixed point is globally asymptotically stable, as shown in the upper left figure. As
b = 70, �0 = 12.4780. The solution appears to oscillate, as shown in the upper right figure. As b = 100,
�0 = 17.8257, and a cycle with period exists, as shown in the lower left figure. As b = 200, �0 = 35.6514, and
the system exhibits chaotic behavior, as shown in the lower right figure. All populations shown in the figures
are only eggs for clearer views
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