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Abstract
This paper studies the global dynamics of a general diffusive hepatitis B virus (HBV)
infection model. The model includes both enveloped viruses and DNA containing
capsids. Two immune responses are recruited to attack the virus and infected
hepatocytes. These are the cytotoxic T-lymphocytes (CTL) which kill the infected liver
cells, and B cells which send antibodies to attack the virus. The non-negativity and
boundedness of the solutions are discussed. The existence of spatially homogeneous
equilibrium points is examined. The global stability of all possible equilibrium points
is proved by choosing suitable Lyapunov functionals. Some numerical simulations are
performed to enhance the theoretical results and present the behavior of solutions in
space and time.
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1 Introduction
Liver plays a central role in many functions of the body. Hepatitis B virus (HBV) is a hep-
adnavirus that infects hepatocytes (liver cells) and leads to acute or chronic infections [1].
The chronic hepatitis B can develop into cirrhosis and hepatocellular carcinoma, which
may lead to death [2, 3]. According to the global hepatitis report from the World Health
Organization [2], chronic HBV caused about 884,400 deaths in 2015 and approximately
257 million people are infected with the virus. During the life cycle of the virus, HBV DNA
containing capsid has important functions in virus formation and replication [3–5]. The
capsid can be enveloped and released from the infected cell as virus particles. The adaptive
immune system has a crucial role in fighting the virus. It sends cytotoxic T cells (known
as cytotoxic T-lymphocytes (CTL)) to kill the infected liver cells, and B cells that generate
antibodies to attack the virus [1, 6].

Mathematical models have been used to understand the HBV dynamics and test the
hypotheses that are difficult to apply in laboratory. The basic virus dynamics model was
proposed by Nowak and Bangham in 1996 [7]. However, in this model and many other ex-
tended models (see, for example, [8–19]) it was assumed that cells and viruses are equally
distributed in the domain. Also, their ability to move was ignored despite the fact that
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their motion may have a critical role in biological systems [20]. After that, many works
have started to incorporate spatial diffusion into the biological models in order to make
them more realistic. For example, Wang and Wang [21] assumed that the movement of
the HBV follows the Fickian diffusion [22] and studied the following model:

⎧
⎪⎪⎨

⎪⎪⎩

∂U(x,t)
∂t = λ – dU(x, t) – γ U(x, t)V (x, t),

∂I(x,t)
∂t = γ U(x, t)V (x, t) – αI(x, t),

∂V (x,t)
∂t = dV �V (x, t) + kI(x, t) – mV (x, t),

(1)

where U(x, t), I(x, t), and V (x, t) represent the densities of uninfected hepatocytes, infected
hepatocytes, and free HBV at position x and time t, respectively. The target cells are pro-
duced at rate λ, die at rate dU , and are converted into infected cells at rate γ UV . The
infected cells die at rate αI , while the viruses die at rate mV . The viruses diffuse with a dif-
fusion coefficient dV and are generated from infected cells at rate kI . In the diffusion term,
�V = ∂2V

∂x2 is the Laplacian operator. Xu and Ma [23] studied a diffusive HBV model with
time delay and saturation infection rate. Shaoli et al. [24] investigated an HBV infection
model with virus diffusion and nonlinear infection rate. Zhang and Xu [25] considered
a delayed HBV model with Beddington–DeAngelis infection rate and diffusion. Miao et
al. [6] developed an infection model consisting of five partial differential equations, time
delays, and adaptive immunity. In a very recent work, Bellomo and Tao [26] studied a vi-
ral infection model with diffusion induced by chemotaxis dynamics. More recently, many
works have added an explicit equation for HBV nucleocapsids to some HBV infection
models. For example, Geng et al. [27] considered the mobility of capsids and viruses and
applied the nonstandard finite difference (NSFD) scheme to discretize a continuous HBV
infection model with capsids. Their work was an extension to the work of Manna and
Chakrabarty [28]. Guo et al. [29] studied an HBV infection model which contains three
time delays, capsids, general incidence rate, and allows the movement of viruses by diffu-
sion. Manna [30] investigated the role of the CTL immune response in a reaction-diffusion
model of HBV with capsids. Notably, none of the aforementioned models considered both
capsids and adaptive immune response.

In a very recent work, Danane and Allali [31] explored an HBV infection model with
capsids and adaptive immunity. However, the spatial mobility of viruses was ignored and
the global stability of the equilibria was not analyzed. The production and death rates were
given by linear functions which may not describe the real situation during the infection
process [32]. The stimulation rates of immune cells and the removal rates were given by
bilinear functions. Also, the interaction between healthy cells and viruses was given by a
bilinear incidence function. In fact, the bilinear incidence rate is not adequate to reflect
the actual interaction between uninfected cells and viruses [8, 32]. In addition, it indicates
that the person with a larger liver is more sensitive to HBV than a person with a smaller
liver size, which seems unrealistic [29, 33]. In this paper, we study the basic and global
properties of a diffusive hepatitis B virus infection model with viral capsids and two types
of immune responses. The production, stimulation, infection, removal, and death rates are
given by general functions. The paper is organized as follows. In Sect. 2, we explain the
model and its requirements. In Sect. 3, we show some basic properties like boundedness
and existence of equilibrium points. In Sect. 4, we analyze the global stability of all possible
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equilibrium points. In Sect. 5, we perform some numerical simulations to support the
obtained theoretical results. The conclusion is stated in Sect. 6.

2 A diffusive HBV dynamics model with capsids and adaptive immune
response

Motivated by the work of [6, 13, 30, 31], we study the following general HBV infection
model with capsids and two forms of adaptive immune response:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂U(x,t)
∂t = Θ(U(x, t)) – Π (U(x, t), V (x, t)),

∂I(x,t)
∂t = Π (U(x, t), V (x, t)) – αΦ1(I(x, t)) – δΦ1(I(x, t))Φ4(Z(x, t)),

∂C(x,t)
∂t = dC�C(x, t) + bΦ1(I(x, t)) – (α + β)Φ2(C(x, t)),

∂V (x,t)
∂t = dV �V (x, t) + βΦ2(C(x, t)) – mΦ3(V (x, t)) – rΦ3(V (x, t))Φ5(W (x, t)),

∂Z(x,t)
∂t = pΦ1(I(x, t))Φ4(Z(x, t)) – σΦ4(Z(x, t)),

∂W (x,t)
∂t = qΦ3(V (x, t))Φ5(W (x, t)) – μΦ5(W (x, t)),

(2)

where U(x, t), I(x, t), C(x, t), V (x, t), Z(x, t), and W (x, t) stand for the densities of unin-
fected hepatocytes, infected hepatocytes, HBV nucleocapsids, HBV particles, CTLs, and
B cells at location x and time t, respectively. The function Θ(U) is the intrinsic growth
rate including both the production and death rates of hepatocytes. The function Π (U , V )
gives the rate at which the uninfected hepatocytes become infected. The infected cells are
killed by CTLs at rate δΦ1(I)Φ4(Z) and die at rate αΦ1(I). The coefficient dC is the diffu-
sion coefficient of capsids. The virus capsids are produced from infected liver cells at rate
bΦ1(I) and used to form enveloped virus particles at rate βΦ2(C). The capsids and viruses
die at rates αΦ2(C) and mΦ3(V ), respectively. Viruses are neutralized by antibodies at rate
rΦ3(V )Φ5(W ). CTLs are stimulated in response to antigens at rate pΦ1(I)Φ4(Z), while B
cells are stimulated to produce antibodies at rate qΦ3(V )Φ5(W ). The CTL and B immune
cells die at rates σΦ4(Z) and μΦ5(W ), respectively.

For model (2), we consider the following initial conditions:

U(x, 0) = ψ1(x) ≥ 0, I(x, 0) = ψ2(x) ≥ 0, C(x, 0) = ψ3(x) ≥ 0,

V (x, 0) = ψ4(x) ≥ 0, Z(x, 0) = ψ5(x) ≥ 0, W (x, 0) = ψ6(x) ≥ 0, x ∈ Ω̄ ,
(3)

and homogeneous Neumann boundary conditions

∂C
∂�n = 0,

∂V
∂�n = 0, for t > 0, x ∈ ∂Ω . (4)

The functions ψi (i = 1, . . . , 6) are Hölder continuous in Ω̄ . The domain Ω is connected
and bounded with a smooth boundary ∂Ω . In addition, ∂

∂�n represents differentiation in the
direction of the outward normal to the boundary ∂Ω . The Neumann boundary conditions
imply that no virus particles or capsids pass through or exit the boundary.

The general functions Θ , Π , and Φi (i = 1, . . . , 5) are continuous, differentiable and meet
the following requirements:

[Q1] (i) Θ ′(U) < 0 for all U > 0,
(ii) there exists U0 > 0 such that Θ(U0) = 0, and Θ(U) > 0 for all U ∈ [0, U0),
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(iii) there are two parameters κ1 > 0 and κ2 > 0 such that Θ(U) ≤ κ1 – κ2U for all
U ≥ 0.

[Q2] (i) Π (0, V ) = Π (U , 0) = 0 and Π (U , V ) > 0 for all U > 0, V > 0,
(ii) ∂Π (U ,V )

∂U > 0, ∂Π (U ,V )
∂V > 0, and ∂Π (U ,0)

∂V > 0 for all U > 0, V > 0,
(iii) ( ∂Π (U ,0)

∂V )′ > 0 for all U > 0.
[Q3] (i) Φi(�) > 0 for � > 0, and Φi(0) = 0 for i = 1, . . . , 5,

(ii) Φ ′
i (�) > 0 for � > 0 (i = 1, 2, 4, 5), and Φ ′

3(�) > 0 for � ≥ 0,
(iii) parameters ρi > 0 (i = 1, . . . , 5) exist such that Φi(�) ≥ ρi� for � ≥ 0.

[Q4] Π (U ,V )
Φ3(V ) is a decreasing function of V for all U > 0, V > 0.

3 Fundamental properties
This section discusses some fundamental properties of the solutions of model (2)–(4) to
be biologically valid. These properties include the existence, positivity, and boundedness
of the solutions. Also, we show that model (2) has five equilibrium points under some
threshold conditions.

Theorem 1 Assume that requirements [Q1]–[Q3] are met, then there exists a unique so-
lution of model (2) defined on [0, +∞) for any initial data satisfying (3). Moreover, this
solution is nonnegative and bounded for t ≥ 0.

Proof Let X = BUC(Ω̄ ,R6) be the set of all bounded and uniformly continuous functions
from Ω̄ to R

6, and let X+ = BUC(Ω̄ ,R6
+) ⊂X. The positive cone X+ induces a partial order

on X. Let | · | be the Euclidean norm on R
6, and let ‖ω‖X = supx∈Ω̄ |ω(x)|. This implies that

(X,‖ · ‖X) is a Banach lattice [25, 34].
For any initial data ψ = (ψ1,ψ2,ψ3,ψ4,ψ5,ψ6) ∈ X+, we define F = (F1, F2, F3, F4, F5, F6) :

X+ → X by

F1(ψ)(x) = Θ
(
ψ1(x)

)
– Π

(
ψ1(x),ψ4(x)

)
,

F2(ψ)(x) = Π
(
ψ1(x),ψ4(x)

)
– αΦ1

(
ψ2(x)

)
– δΦ1

(
ψ2(x)

)
Φ4

(
ψ5(x)

)
,

F3(ψ)(x) = bΦ1
(
ψ2(x)

)
– (α + β)Φ2

(
ψ3(x)

)
,

F4(ψ)(x) = βΦ2
(
ψ3(x)

)
– mΦ3

(
ψ4(x)

)
– rΦ3

(
ψ4(x)

)
Φ5

(
ψ6(x)

)
,

F5(ψ)(x) = pΦ1
(
ψ2(x)

)
Φ4

(
ψ5(x)

)
– σΦ4

(
ψ5(x)

)
,

F6(ψ)(x) = qΦ3
(
ψ4(x)

)
Φ5

(
ψ6(x)

)
– μΦ5

(
ψ6(x)

)
.

It is clear that F is locally Lipschitz on X+. We can rewrite system (2)–(4) as the following
abstract functional differential equation:

⎧
⎨

⎩

dH
dt = AH + F(H), t > 0,

H0 = ψ ∈X+,

where H = (U , I, C, V , Z, W ), AH = (0, 0, dC�C, dV �V , 0, 0)T , and ψ = (ψ1,ψ2,ψ3,ψ4,
ψ5,ψ6). One can show that

lim
k→0+

1
k

dist
(
ψ(0) + kF(ψ),X+

)
= 0, ∀ψ ∈X+.
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It follows from [25, 34, 35] that, for any ψ ∈X+, system (2)–(4) has a unique non-negative
mild solution on [0, Tl), where [0, Tl) is the maximal existence time interval.

Now, we show the boundedness of the solutions. Take

B1(x, t) = U(x, t) + I(x, t) +
δ

p
Z(x, t).

Using requirements [Q1] and [Q3] with model (2) leads to

∂B1(x, t)
∂t

= Θ
(
U(x, t)

)
– αΦ1

(
I(x, t)

)
–

σδ

p
Φ4

(
Z(x, t)

)

≤ κ1 – κ2U(x, t) – αρ1I(x, t) –
σδρ4

p
Z(x, t)

≤ κ1 – s1B1(x, t),

where s1= min{κ2,αρ1,σρ4}. Thus,

B1(x, t) ≤ max

{
κ1

s1
, max

x∈Ω̄

{

ψ1(x) + ψ2(x) +
δ

p
ψ5(x)

}}

:= ζ1,

which implies that U(x, t), I(x, t), and Z(x, t) are bounded. Moreover, from the bounded-
ness of I(x, t), the third equation of (2) and [Q3], we get

⎧
⎪⎪⎨

⎪⎪⎩

∂C
∂t – dC�C(x, t) ≤ bΦ1(ζ1) – (α + β)ρ2C(x, t),
∂C
∂�n = 0,

C(x, 0) = ψ3(x) ≥ 0.

Let C̃(t) be a solution to the following ordinary differential equation:

⎧
⎨

⎩

dC̃
dt = bΦ1(ζ1) – (α + β)ρ2C̃,

C̃(0) = maxx∈Ω̄ ψ3(x).

Hence, it follows that C̃(t) ≤ max{ bΦ1(ζ1)
(α+β)ρ2

, maxx∈Ω̄ ψ3(x)}. According to the comparison
principle [36], C(x, t) ≤ C̃(t). So,

C(x, t) ≤ max

{
bΦ1(ζ1)

(α + β)ρ2
, max

x∈Ω̄

ψ3(x)
}

:= ζ2.

Finally, we prove the boundedness of V (x, t) and W (x, t). Using the boundedness of C(x, t)
and from model (2)–(4), we find that V (x, t) satisfies the following system:

⎧
⎪⎪⎨

⎪⎪⎩

∂V
∂t – dV �V (x, t) ≤ βΦ2(ζ2) – mΦ3(V (x, t)) – rΦ3(V (x, t))Φ5(W (x, t)),
∂V
∂�n = 0,

V (x, 0) = ψ4(x) ≥ 0.
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Let Ṽ (t) be a solution to the following system:

⎧
⎨

⎩

dṼ
dt = βΦ2(ζ2) – mΦ3(Ṽ ) – rΦ3(Ṽ )Φ5(W (x, t)),

Ṽ (0) = maxx∈Ω̄ ψ4(x).

The comparison principle gives V (x, t) ≤ Ṽ (t). Denote

B2(x, t) = Ṽ (t) +
r
q

W (x, t),

then using [Q3], we obtain

∂B2(x, t)
∂t

= βΦ2(ζ2) – mΦ3(Ṽ ) –
μr
q

Φ5
(
W (x, t)

)

≤ βΦ2(ζ2) – mρ3Ṽ –
μρ5r

q
W (x, t)

≤ βΦ2(ζ2) – s2B2(x, t),

where s2= min{mρ3,μρ5}. This implies that Ṽ (t) ≤ max{ βΦ2(ζ2)
s2

, maxx∈Ω̄{ψ4(x) + r
q ψ6(x)}}.

Then we get

V (x, t) ≤ max

{
βΦ2(ζ2)

s2
, max

x∈Ω̄

{

ψ4(x) +
r
q
ψ6(x)

}}

:= ζ3,

W (x, t) ≤ q
r
ζ3.

Thus, the above discussion assures the boundedness of U(x, t), I(x, t), C(x, t), V (x, t),
Z(x, t), and W (x, t) on Ω̄ × [0, Tl). Then the boundedness of the solutions on Ω̄ × [0, +∞)
follows from the standard theory for semi-linear parabolic systems [37] where Tl = +∞. �

Theorem 2 Suppose that all requirements [Q1]–[Q4] are met, then there are five threshold
parameters which determine the existence of five possible equilibrium points of model (2)
as follows:

(i) the model has an infection-free equilibrium M0 if R0 ≤ 1,
(ii) the model has an immune-free equilibrium M1 if R1 ≤ 1 < R0 and R2 ≤ 1 < R0,

(iii) the model has an infection equilibrium M2 with only antibody immune response if
R1 > 1 and R3 ≤ 1,

(iv) the model has an infection equilibrium M3 with only CTL immune response if R2 > 1
and R1

R3
≤ 1,

(v) the model has an infection equilibrium M4 with both antibody and CTL immune
responses if R1 > R3 > 1.

Proof Any equilibrium point M = (U , I, C, V , Z, W ) of system (2) satisfies the following
equilibrium conditions:

Θ(U) – Π (U , V ) = 0, (5)

Π (U , V ) – αΦ1(I) – δΦ1(I)Φ4(Z) = 0, (6)
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bΦ1(I) – (α + β)Φ2(C) = 0, (7)

βΦ2(C) – mΦ3(V ) – rΦ3(V )Φ5(W ) = 0, (8)

pΦ1(I)Φ4(Z) – σΦ4(Z) = 0, (9)

qΦ3(V )Φ5(W ) – μΦ5(W ) = 0. (10)

From Eq. (9) we get (pΦ1(I) – σ )Φ4(Z) = 0, which gives two possible options

Φ1(I) =
σ

p
or Φ4(Z) = 0. (11)

Also, from Eq. (10) we have (qΦ3(V ) – μ)Φ5(W ) = 0, which gives two possible options

Φ3(V ) =
μ

q
or Φ5(W ) = 0. (12)

Then, according to (11) and (12), there are four cases:
Case 1. If Φ4(Z) = 0 and Φ5(W ) = 0, then by [Q3] we get Z = 0 and W = 0.
Thus, equilibrium conditions (5)–(10) are reduced to

Θ(U) – Π (U , V ) = 0, (13)

Π (U , V ) – αΦ1(I) = 0, (14)

bΦ1(I) – (α + β)Φ2(C) = 0, (15)

βΦ2(C) – mΦ3(V ) = 0. (16)

From Eqs. (13)–(16) we obtain the following relations:

Π (U , V ) = Θ(U), (17)

and

Φ1(I) =
1
α

Θ(U), Φ2(C) =
b

α(α + β)
Θ(U), Φ3(V ) =

bβ

mα(α + β)
Θ(U). (18)

We can conclude from [Q3] that Φ–1
i (i = 1, . . . , 5) exist, strictly increasing and Φ–1

i (0) = 0.
Then we define

Γ1(U) = Φ–1
1

(
1
α

Θ(U)
)

, Γ2(U) = Φ–1
2

(
b

α(α + β)
Θ(U)

)

,

Γ3(U) = Φ–1
3

(
bβ

mα(α + β)
Θ(U)

)

.
(19)

Hence, it follows from (18) and (19) that

I = Γ1(U), C = Γ2(U), V = Γ3(U). (20)

We note from [Q1] that Γ1(U0) = Γ2(U0) = Γ3(U0) = 0. Equations (17)–(20) give

Π
(
U ,Γ3(U)

)
–

mα(α + β)
bβ

Φ3
(
Γ3(U)

)
= 0. (21)
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Using Eq. (20) along with requirements [Q1]–[Q3], we can see that Eq. (21) admits a so-
lution U = U0, and this gives the disease-free equilibrium M0 = (U0, 0, 0, 0, 0, 0).

Denote

χ1(U) = Π
(
U ,Γ3(U)

)
–

mα(α + β)
bβ

Φ3
(
Γ3(U)

)
= 0. (22)

Based on [Q1]–[Q3], we find

χ1(0) = –
mα(α + β)

bβ
Φ3

(
Γ3(0)

)
< 0,

χ1(U0) = 0.

Now, in order to have a root in the interval (0, U0), we need to show that χ ′
1(U0) < 0.

χ ′
1(U0) =

∂Π (U0, 0)
∂U

+
∂Π (U0, 0)

∂V
Γ ′

3(U0) –
mα(α + β)

bβ
Φ ′

3(0)Γ ′
3(U0).

Since ∂Π (U0,0)
∂U = 0 by [Q2], then from (18) and (20) we get

χ ′
1(U0) =

mα(α + β)
bβ

Φ ′
3(0)Γ ′

3(U0)
(

bβ

mα(α + β)Φ ′
3(0)

∂Π (U0, 0)
∂V

– 1
)

= Θ ′(U0)
(

bβ

mα(α + β)Φ ′
3(0)

∂Π (U0, 0)
∂V

– 1
)

= Θ ′(U0)(R0 – 1),

where R0 is the basic reproduction number and is given by

R0 =
bβ

mα(α + β)Φ ′
3(0)

∂Π (U0, 0)
∂V

.

As Θ ′(U0) < 0 by [Q1], then χ ′
1(U0) < 0 if R0 > 1. Therefore, when R0 > 1, there exists a

root U1 ∈ (0, U0) such that χ1(U1) = 0. From Eq. (20) and requirements [Q1]–[Q3], the
corresponding components are

I1 = Γ1(U1) > 0, C1 = Γ2(U1) > 0, V1 = Γ3(U1) > 0.

Thus, the immune-free equilibrium M1 = (U1, I1, C1, V1, 0, 0) exists if R0 > 1. In other
words, the threshold condition R0 > 1 is needed for the infection point M1 to exist in the
absence of immune responses.

Case 2. If Φ3(V ) = μ

q and Φ4(Z) = 0, then the third requirement [Q3] implies that

V2 = Φ–1
3

(
μ

q

)

> 0 and Z2 = 0.

Substituting V = V2 in (5) gives Θ(U) – Π (U , V2) = 0.
Let

χ2(U) = Θ(U) – Π (U , V2) = 0. (23)
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Then, with the aid of [Q1] and [Q2] we get

χ2(0) = Θ(0) > 0,

χ2(U0) = –Π (U0, V2) < 0,

χ ′
2(U) = Θ ′(U) –

∂Π (U , V2)
∂U

< 0.

Accordingly, there exists a unique root U2 ∈ (0, U0) of (23) such that χ2(U2) = 0. From
Eq. (20) and [Q1]–[Q3], we get

I2 = Γ1(U2) > 0, C2 = Γ2(U2) > 0.

Finally, from Eqs. (5)–(8) we obtain

W2 = Φ–1
5

[
bβ

rα(α + β)
Π (U2, V2)
Φ3(V2)

–
m
r

]

= Φ–1
5

[
m
r

(
bβ

mα(α + β)
Π (U2, V2)
Φ3(V2)

– 1
)]

= Φ–1
5

[
m
r

(R1 – 1)
]

> 0 if R1 > 1,

where R1 is defined as

R1 =
bβ

mα(α + β)
Π (U2, V2)
Φ3(V2)

.

R1 is the threshold number needed for activating the antibody immune response against
viruses. Hence, the infection equilibrium with only antibody immune defense M2 =
(U2, I2, C2, V2, 0, W2) exists if R1 > 1.

Using [Q2]–[Q4], we can note that

R1 ≤ bβ

mα(α + β)
lim

V→0+

Π (U2, V )
Φ3(V )

=
bβ

mα(α + β)Φ ′
3(0)

∂Π (U2, 0)
∂V

<
bβ

mα(α + β)Φ ′
3(0)

∂Π (U0, 0)
∂V

= R0.

Case 3. If Φ1(I) = σ
p and Φ5(W ) = 0, we get

I3 = Φ–1
1

(
σ

p

)

> 0 and W3 = 0.

Then Eqs. (7) and (8) give

C3 = Φ–1
2

(
bσ

p(α + β)

)

> 0 and V3 = Φ–1
3

(
bβσ

mp(α + β)

)

> 0.

Substituting V = V3 in (5) gives Θ(U) – Π (U , V3) = 0.
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Denote

χ3(U) = Θ(U) – Π (U , V3) = 0.

According to requirements [Q1] and [Q2], χ3(U) is strictly decreasing and

χ3(0) = Θ(0) > 0,

χ3(U0) = –Π (U0, V3) < 0.

Thus, χ3(U) has a unique root U3 ∈ (0, U0) such that χ3(U3) = 0. From Eqs. (5)–(8), we
have

Z3 = Φ–1
4

[
bβ

mδ(α + β)
Π (U3, V3)
Φ3(V3)

–
α

δ

]

= Φ–1
4

[
α

δ

(
bβ

mα(α + β)
Π (U3, V3)
Φ3(V3)

– 1
)]

= Φ–1
4

[
α

δ
(R2 – 1)

]

> 0 if R2 > 1,

where R2 is given by

R2 =
bβ

mα(α + β)
Π (U3, V3)
Φ3(V3)

.

Here, R2 represents the activation number for CTL immune defense. Thus, the infection
equilibrium without antibody immune response M3 = (U3, I3, C3, V3, Z3, 0) exists if R2 > 1.
According to [Q2]–[Q4], it is easy to note that

R2 ≤ bβ

mα(α + β)
lim

V→0+

Π (U3, V )
Φ3(V )

=
bβ

mα(α + β)Φ ′
3(0)

∂Π (U3, 0)
∂V

<
bβ

mα(α + β)Φ ′
3(0)

∂Π (U0, 0)
∂V

= R0.

Case 4. If Φ1(I) = σ
p and Φ3(V ) = μ

q , then we get

I4 = Φ–1
1

(
σ

p

)

> 0 and V4 = Φ–1
3

(
μ

q

)

> 0.

Then Eq. (7) gives

C4 = Φ–1
2

(
bσ

p(α + β)

)

> 0.

Replace V by V4 in Eq. (5) and define

χ4(U) = Θ(U) – Π (U , V4) = 0.
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Using [Q1] and [Q2], we can see that χ4(U) is strictly decreasing, χ4(0) > 0 and χ4(U0) < 0.
Thus, there exists a unique root U4 ∈ (0, U0) such that χ4(U4) = 0.

Eq. (6) is used to obtain

Z4 = Φ–1
4

[
α

δ

(
Π (U4, V4)
αΦ1(I4)

– 1
)]

= Φ–1
4

[
α

δ

(
pμ

ασq
Π (U4, V4)
Φ3(V4)

– 1
)]

= Φ–1
4

[
α

δ
(R3 – 1)

]

> 0 if R3 > 1,

where R3 is a threshold parameter defined by

R3 =
pμ

ασq
Π (U4, V4)
Φ3(V4)

.

Finally, Eq. (8) is used to get

W4 = Φ–1
5

[
bβσq

pμr(α + β)
–

m
r

]

.

Since V2 = V4, then U2 = U4. Hence, we have

W4 = Φ–1
5

[
m
r

(
R1

R3
– 1

)]

> 0 if R1 > R3,

where R1
R3

is given by

R1

R3
=

bβσq
mpμ(α + β)

.

Thus, the infection equilibrium with CTL and antibody immune defense M4 = (U4, I4, C4,
V4, Z4, W4) exists if R1 > R3 > 1. That is, the two immune responses work together to fight
the virus when R1 > R3 > 1. �

4 Global stability
In this section we study the global stability of the five equilibrium points M0, M1, M2, M3,
and M4 of system (2) by using the Lyapunov method.

Theorem 3 Let requirements [Q1]–[Q4] be satisfied, then the disease-free equilibrium
M0 = (U0, 0, 0, 0, 0, 0) is globally asymptotically stable if R0 ≤ 1.

Proof Define

Λ0(t) =
∫

Ω

Λ0x(x, t) dx,

where

Λ0x(x, t) = U –U0 –
∫ U

U0

lim
V→0+

Π (U0, V )
Π (ϕ, V )

dϕ + I +
α

b
C +

α(α + β)
bβ

V +
δ

p
Z +

rα(α + β)
bβq

W .
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Then we get

∂Λ0x

∂t
=

(

1 – lim
V→0+

Π (U0, V )
Π (U , V )

)
(
Θ(U) – Π (U , V )

)

+
(
Π (U , V ) – αΦ1(I) – δΦ1(I)Φ4(Z)

)

+
α

b
(
dC�C + bΦ1(I) – (α + β)Φ2(C)

)

+
α(α + β)

bβ

(
dV �V + βΦ2(C) – mΦ3(V ) – rΦ3(V )Φ5(W )

)

+
δ

p
(
pΦ1(I)Φ4(Z) – σΦ4(Z)

)
+

rα(α + β)
bβq

(
qΦ3(V )Φ5(W ) – μΦ5(W )

)
.

By using Θ(U0) = 0, [Q1] and [Q4], we get

∂Λ0x

∂t
=

(

1 – lim
V→0+

Π (U0, V )
Π (U , V )

)
(
Θ(U) – Θ(U0)

)

+
mα(α + β)

bβ

(
bβ

mα(α + β)
Π (U , V )
Φ3(V )

lim
V→0+

Π (U0, V )
Π (U , V )

– 1
)

Φ3(V )

–
δσ

p
Φ4(Z) –

rμα(α + β)
bβq

Φ5(W ) +
α

b
dC�C +

α(α + β)
bβ

dV �V

≤
(

1 – lim
V→0+

Π (U0, V )
Π (U , V )

)
(
Θ(U) – Θ(U0)

)

+
mα(α + β)

bβ

(
bβ

mα(α + β)
lim

V→0+

Π (U , V )
Φ3(V )

lim
V→0+

Π (U0, V )
Π (U , V )

– 1
)

Φ3(V )

–
δσ

p
Φ4(Z) –

rμα(α + β)
bβq

Φ5(W ) +
α

b
dC�C +

α(α + β)
bβ

dV �V

=
(

1 –
∂Π (U0, 0)/∂V
∂Π (U , 0)/∂V

)
(
Θ(U) – Θ(U0)

)

+
mα(α + β)

bβ

(
bβ

mα(α + β)Φ ′
3(0)

∂Π (U0, 0)
∂V

– 1
)

Φ3(V )

–
δσ

p
Φ4(Z) –

rμα(α + β)
bβq

Φ5(W ) +
α

b
dC�C +

α(α + β)
bβ

dV �V

=
(

1 –
∂Π (U0, 0)/∂V
∂Π (U , 0)/∂V

)
(
Θ(U) – Θ(U0)

)

+
mα(α + β)

bβ
(R0 – 1)Φ3(V ) –

δσ

p
Φ4(Z)

–
rμα(α + β)

bβq
Φ5(W ) +

α

b
dC�C +

α(α + β)
bβ

dV �V .

The time derivative of Λ0(t) along the positive solutions of (2) is given by

dΛ0

dt
=

∫

Ω

(

1 –
∂Π (U0, 0)/∂V
∂Π (U , 0)/∂V

)
(
Θ(U) – Θ(U0)

)
dx

+
mα(α + β)

bβ
(R0 – 1)

∫

Ω

Φ3(V ) dx
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–
δσ

p

∫

Ω

Φ4(Z) dx –
rμα(α + β)

bβq

∫

Ω

Φ5(W ) dx

+
αdC

b

∫

Ω

�C dx +
α(α + β)dV

bβ

∫

Ω

�V dx. (24)

From the divergence theorem and (4), we have

∫

Ω

�C dx =
∫

∂Ω

∂C
∂�n dx = 0,

∫

Ω

�V dx =
∫

∂Ω

∂V
∂�n dx = 0. (25)

In addition, we deduce from [Q1] and [Q2] that

(

1 –
∂Π (U0, 0)/∂V
∂Π (U , 0)/∂V

)
(
Θ(U) – Θ(U0)

) ≤ 0.

Accordingly, Eq. (24) is reduced to

dΛ0

dt
=

∫

Ω

(

1 –
∂Π (U0, 0)/∂V
∂Π (U , 0)/∂V

)
(
Θ(U) – Θ(U0)

)
dx

+
mα(α + β)

bβ
(R0 – 1)

∫

Ω

Φ3(V ) dx

–
δσ

p

∫

Ω

Φ4(Z) dx –
rμα(α + β)

bβq

∫

Ω

Φ5(W ) dx.

Hence, dΛ0
dt ≤ 0 if R0 ≤ 1. Moreover, dΛ0

dt = 0 when U = U0, V = 0, Z = 0, and W = 0.
It follows from system (2) that I = 0 and C = 0. Accordingly, the largest invariant set in
{(U , I, C, V , Z, W ) : dΛ0

dt = 0} is the singleton {M0}. Thus, by LaSalle’s invariance principle
[38], the infection-free equilibrium M0 is globally asymptotically stable when R0 ≤ 1. �

Lemma 1 Suppose that R0 > 1 and [Q1]–[Q4] are valid, then

sgn(U2 – U1) = sgn(V1 – V2) = sgn(R1 – 1).

Proof From [Q1], [Q2], and [Q4], we can conclude the following relations:

(U1 – U2)
(
Θ(U2) – Θ(U1)

)
> 0, (26)

(U2 – U1)
(
Π (U2, V2) – Π (U1, V2)

)
> 0, (27)

(V2 – V1)
(
Π (U1, V2) – Π (U1, V1)

)
> 0, (28)

(V1 – V2)
(

Π (U1, V2)
Φ3(V2)

–
Π (U1, V1)
Φ3(V1)

)

> 0 (29)

for U1, U2, V1, V2 > 0. Assume by contradiction that sgn(U2 – U1) = sgn(V2 – V1). By using
Eq. (5), we get

Θ(U2) – Θ(U1) = Π (U2, V2) – Π (U1, V1)

=
[
Π (U2, V2) – Π (U1, V2)

]
+

[
Π (U1, V2) – Π (U1, V1)

]
.



Elaiw and Al Agha Advances in Difference Equations        (2019) 2019:519 Page 14 of 31

Consequently, from (26)–(28) we have sgn(U1 – U2) = sgn(U2 – U1), which is a contradic-
tion. This implies that

sgn(U2 – U1) = sgn(V1 – V2).

Moreover, using (17) and (18) with the definition of R1 gives

R1 – 1 =
bβ

mα(α + β)
Π (U2, V2)
Φ3(V2)

–
bβ

mα(α + β)
Π (U1, V1)
Φ3(V1)

=
bβ

mα(α + β)

[
Π (U2, V2)
Φ3(V2)

–
Π (U1, V1)
Φ3(V1)

]

=
bβ

mα(α + β)

[
1

Φ3(V2)
(
Π (U2, V2) – Π (U1, V2)

)
+

Π (U1, V2)
Φ3(V2)

–
Π (U1, V1)
Φ3(V1)

]

.

Thus, from (27)–(29) we have

sgn(V1 – V2) = sgn(R1 – 1). �

Lemma 2 If R0 > 1 and [Q1]–[Q4] hold, then

sgn(U3 – U1) = sgn(V1 – V3) = sgn(I1 – I3) = sgn(R2 – 1).

Proof From [Q1], [Q2], and [Q4], we have

(U1 – U3)
(
Θ(U3) – Θ(U1)

)
> 0, (30)

(U3 – U1)
(
Π (U3, V3) – Π (U1, V3)

)
> 0, (31)

(V3 – V1)
(
Π (U1, V3) – Π (U1, V1)

)
> 0, (32)

(V1 – V3)
(

Π (U1, V3)
Φ3(V3)

–
Π (U1, V1)
Φ3(V1)

)

> 0 (33)

for U1, U3, V1, V3 > 0. From the equilibrium conditions of M1 and M3, we get

Φ1(I1) =
m(α + β)

bβ
Φ3(V1),

Φ1(I3) =
m(α + β)

bβ
Φ3(V3),

which implies that sgn(V1 – V3) = sgn(I1 – I3). Using (30)–(33) and following the same
strategies used for proving Lemma 1, we can show that

sgn(U3 – U1) = sgn(V1 – V3)

and

sgn(V1 – V3) = sgn(R2 – 1). �
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Theorem 4 Assume that requirements [Q1]–[Q4] are met, then the infection equilibrium
without immune responses M1 = (U1, I1, C1, V1, 0, 0) is globally asymptotically stable if R1 ≤
1 < R0 and R2 ≤ 1 < R0.

Proof Introduce a Lyapunov functional

Λ1(t) =
∫

Ω

Λ1x(x, t) dx,

where

Λ1x(x, t) = U – U1 –
∫ U

U1

Π (U1, V1)
Π (ϕ, V1)

dϕ +
(

I – I1 –
∫ I

I1

Φ1(I1)
Φ1(ϕ)

dϕ

)

+
α

b

(

C – C1 –
∫ C

C1

Φ2(C1)
Φ2(ϕ)

dϕ

)

+
α(α + β)

bβ

(

V – V1 –
∫ V

V1

Φ3(V1)
Φ3(ϕ)

dϕ

)

+
δ

p
Z +

rα(α + β)
bβq

W .

Then we get

∂Λ1x

∂t
=

(

1 –
Π (U1, V1)
Π (U , V1)

)
(
Θ(U) – Π (U , V )

)

+
(

1 –
Φ1(I1)
Φ1(I)

)
(
Π (U , V ) – αΦ1(I) – δΦ1(I)Φ4(Z)

)

+
α

b

(

1 –
Φ2(C1)
Φ2(C)

)
(
dC�C + bΦ1(I) – (α + β)Φ2(C)

)

+
α(α + β)

bβ

(

1 –
Φ3(V1)
Φ3(V )

)
(
dV �V + βΦ2(C) – mΦ3(V ) – rΦ3(V )Φ5(W )

)

+
δ

p
(
pΦ1(I)Φ4(Z) – σΦ4(Z)

)
+

rα(α + β)
bβq

(
qΦ3(V )Φ5(W ) – μΦ5(W )

)

=
(

1 –
Π (U1, V1)
Π (U , V1)

)

Θ(U) + Π (U1, V1)
Π (U , V )
Π (U , V1)

– Π (U , V )
Φ1(I1)
Φ1(I)

+ αΦ1(I1) + δΦ1(I1)Φ4(Z)

+
α

b

(

1 –
Φ2(C1)
Φ2(C)

)

dC�C – αΦ1(I)
Φ2(C1)
Φ2(C)

+
α(α + β)

b
Φ2(C1)

+
α(α + β)

bβ

(

1 –
Φ3(V1)
Φ3(V )

)

dV �V

–
mα(α + β)

bβ
Φ3(V ) –

α(α + β)
b

Φ2(C)
Φ3(V1)
Φ3(V )

+
mα(α + β)

bβ
Φ3(V1)

+
rα(α + β)

bβ
Φ3(V1)Φ5(W )

–
δσ

p
Φ4(Z) –

rμα(α + β)
bβq

Φ5(W ). (34)
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At the equilibrium point M1, we have

Θ(U1) = Π (U1, V1),

Π (U1, V1) = αΦ1(I1) =
α(α + β)

b
Φ2(C1) =

mα(α + β)
bβ

Φ3(V1).

Thus, (34) can be rewritten as follows:

∂Λ1x

∂t
=

(

1 –
Π (U1, V1)
Π (U , V1)

)
(
Θ(U) – Θ(U1)

)
+ Π (U1, V1) – Π (U1, V1)

Π (U1, V1)
Π (U , V1)

+ Π (U1, V1)
Π (U , V )
Π (U , V1)

– Π (U1, V1)
Π (U , V )Φ1(I1)
Π (U1, V1)Φ1(I)

+ Π (U1, V1) – Π (U1, V1)
Φ1(I)Φ2(C1)
Φ1(I1)Φ2(C)

+ Π (U1, V1) – Π (U1, V1)
Φ3(V )
Φ3(V1)

– Π (U1, V1)
Φ2(C)Φ3(V1)
Φ2(C1)Φ3(V )

+ Π (U1, V1) + δ

(

Φ1(I1) –
σ

p

)

Φ4(Z)

+
rα(α + β)

bβ

(

Φ3(V1) –
μ

q

)

Φ5(W )

+
α

b

(

1 –
Φ2(C1)
Φ2(C)

)

dC�C +
α(α + β)

bβ

(

1 –
Φ3(V1)
Φ3(V )

)

dV �V

=
(

1 –
Π (U1, V1)
Π (U , V1)

)
(
Θ(U) – Θ(U1)

)

+ Π (U1, V1)
[

5 –
Π (U1, V1)
Π (U , V1)

–
Π (U , V )Φ1(I1)
Π (U1, V1)Φ1(I)

–
Φ1(I)Φ2(C1)
Φ1(I1)Φ2(C)

–
Φ2(C)Φ3(V1)
Φ2(C1)Φ3(V )

–
Π (U , V1)Φ3(V )
Π (U , V )Φ3(V1)

]

+ Π (U1, V1)
[

–1 +
Π (U , V )
Π (U , V1)

–
Φ3(V )
Φ3(V1)

+
Π (U , V1)Φ3(V )
Π (U , V )Φ3(V1)

]

+ δ
(
Φ1(I1) – Φ1(I3)

)
Φ4(Z)

+
rα(α + β)

bβ

(
Φ3(V1) – Φ3(V2)

)
Φ5(W ) +

α

b

(

1 –
Φ2(C1)
Φ2(C)

)

dC�C

+
α(α + β)

bβ

(

1 –
Φ3(V1)
Φ3(V )

)

dV �V .

Thus, the derivative of Λ1(t) with respect to t is given by

dΛ1

dt
=

∫

Ω

(

1 –
Π (U1, V1)
Π (U , V1)

)
(
Θ(U) – Θ(U1)

)
dx

+ Π (U1, V1)
∫

Ω

[

5 –
Π (U1, V1)
Π (U , V1)

–
Π (U , V )Φ1(I1)
Π (U1, V1)Φ1(I)

–
Φ1(I)Φ2(C1)
Φ1(I1)Φ2(C)

–
Φ2(C)Φ3(V1)
Φ2(C1)Φ3(V )

–
Π (U , V1)Φ3(V )
Π (U , V )Φ3(V1)

]

dx
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+
∫

Ω

Π (U1, V1)Φ3(V )
Π (U , V )Π (U , V1)

(
Π (U , V ) – Π (U , V1)

)
(

Π (U , V )
Φ3(V )

–
Π (U , V1)
Φ3(V1)

)

dx

+ δ
(
Φ1(I1) – Φ1(I3)

)
∫

Ω

Φ4(Z) dx +
rα(α + β)

bβ

(
Φ3(V1) – Φ3(V2)

)
∫

Ω

Φ5(W ) dx

+
αdC

b

∫

Ω

(

1 –
Φ2(C1)
Φ2(C)

)

�C dx +
α(α + β)dV

bβ

∫

Ω

(

1 –
Φ3(V1)
Φ3(V )

)

�V dx. (35)

We can deduce from the divergence theorem and Neumann boundary conditions that

0 =
∫

∂Ω

1
Φ2(C)

�C · �n dx

=
∫

Ω

div
(

1
Φ2(C)

�C
)

dx

=
∫

Ω

[
1

Φ2(C)
�C –

‖�C‖2Φ ′
2(C)

(Φ2(C))2

]

dx.

Rearranging and using [Q3], we get

∫

Ω

1
Φ2(C)

�C dx =
∫

Ω

‖�C‖2Φ ′
2(C)

(Φ2(C))2 dx ≥ 0. (36)

Similarly, we get

∫

Ω

1
Φ3(V )

�V dx =
∫

Ω

‖�V‖2Φ ′
3(V )

(Φ3(V ))2 dx ≥ 0. (37)

Using (25), (36), and (37), we get

dΛ1

dt
=

∫

Ω

(

1 –
Π (U1, V1)
Π (U , V1)

)
(
Θ(U) – Θ(U1)

)
dx

+ Π (U1, V1)
∫

Ω

[

5 –
Π (U1, V1)
Π (U , V1)

–
Π (U , V )Φ1(I1)
Π (U1, V1)Φ1(I)

–
Φ1(I)Φ2(C1)
Φ1(I1)Φ2(C)

–
Φ2(C)Φ3(V1)
Φ2(C1)Φ3(V )

–
Π (U , V1)Φ3(V )
Π (U , V )Φ3(V1)

]

dx

+
∫

Ω

Π (U1, V1)Φ3(V )
Π (U , V )Π (U , V1)

(
Π (U , V ) – Π (U , V1)

)
(

Π (U , V )
Φ3(V )

–
Π (U , V1)
Φ3(V1)

)

dx

+ δ
(
Φ1(I1) – Φ1(I3)

)
∫

Ω

Φ4(Z) dx

+
rα(α + β)

bβ

(
Φ3(V1) – Φ3(V2)

)
∫

Ω

Φ5(W ) dx

–
αdCΦ2(C1)

b

∫

Ω

‖�C‖2Φ ′
2(C)

(Φ2(C))2 dx –
α(α + β)dV Φ3(V1)

bβ

∫

Ω

‖�V‖2Φ ′
3(V )

(Φ3(V ))2 dx.

From the model requirements [Q1]–[Q4], we obtain

(

1 –
Π (U1, V1)
Π (U , V1)

)
(
Θ(U) – Θ(U1)

) ≤ 0,

(
Π (U , V ) – Π (U , V1)

)
(

Π (U , V )
Φ3(V )

–
Π (U , V1)
Φ3(V1)

)

≤ 0.
(38)
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Using Lemma 1 and 2 and [Q3], we have

Φ1(I1) – Φ1(I3) ≤ 0 if R2 ≤ 1,

Φ3(V1) – Φ3(V2) ≤ 0 if R1 ≤ 1.

Using the relation between geometrical and arithmetical means, we have

5 ≤ Π (U1, V1)
Π (U , V1)

+
Π (U , V )Φ1(I1)
Π (U1, V1)Φ1(I)

+
Φ1(I)Φ2(C1)
Φ1(I1)Φ2(C)

+
Φ2(C)Φ3(V1)
Φ2(C1)Φ3(V )

+
Π (U , V1)Φ3(V )
Π (U , V )Φ3(V1)

. (39)

The above arguments imply that dΛ1
dt ≤ 0 if R1 ≤ 1 and R2 ≤ 1. It is easy to check that dΛ1

dt =
0 at M1 = (U1, I1, C1, V1, 0, 0), so {M1} is the largest invariant subset of {(U , I, C, V , Z, W ) :
dΛ1

dt = 0}. Hence, when R1 ≤ 1 < R0 and R2 ≤ 1 < R0, M1 exists and LaSalle’s invariance
principle [38] assures its global asymptotic stability. �

Theorem 5 The infection equilibrium with only antibody immune response M2 = (U2, I2,
C2, V2, 0, W2) is globally asymptotically stable if R1 > 1, R3 ≤ 1 and whenever [Q1]–[Q4]
are satisfied.

Proof Consider a Lyapunov functional

Λ2(t) =
∫

Ω

Λ2x(x, t) dx,

where

Λ2x(x, t) = U – U2 –
∫ U

U2

Π (U2, V2)
Π (ϕ, V2)

dϕ +
(

I – I2 –
∫ I

I2

Φ1(I2)
Φ1(ϕ)

dϕ

)

+
α

b

(

C – C2 –
∫ C

C2

Φ2(C2)
Φ2(ϕ)

dϕ

)

+
α(α + β)

bβ

(

V – V2 –
∫ V

V2

Φ3(V2)
Φ3(ϕ)

dϕ

)

+
δ

p
Z

+
rα(α + β)

bβq

(

W – W2 –
∫ W

W2

Φ5(W2)
Φ5(ϕ)

dϕ

)

.

This leads to

∂Λ2x

∂t
=

(

1 –
Π (U2, V2)
Π (U , V2)

)
(
Θ(U) – Π (U , V )

)

+
(

1 –
Φ1(I2)
Φ1(I)

)
(
Π (U , V ) – αΦ1(I) – δΦ1(I)Φ4(Z)

)

+
α

b

(

1 –
Φ2(C2)
Φ2(C)

)
(
dC�C + bΦ1(I) – (α + β)Φ2(C)

)

+
α(α + β)

bβ

(

1 –
Φ3(V2)
Φ3(V )

)
(
dV �V + βΦ2(C) – mΦ3(V ) – rΦ3(V )Φ5(W )

)
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+
δ

p
(
pΦ1(I)Φ4(Z) – σΦ4(Z)

)

+
rα(α + β)

bβq

(

1 –
Φ5(W2)
Φ5(W )

)
(
qΦ3(V )Φ5(W ) – μΦ5(W )

)
. (40)

From the equilibrium conditions of M2, we observe

Θ(U2) = Π (U2, V2),

Π (U2, V2) = αΦ1(I2)

=
α(α + β)

b
Φ2(C2) =

mα(α + β)
bβ

Φ3(V2) +
rα(α + β)

bβ
Φ3(V2)Φ5(W2).

(41)

After collecting terms of (40) and using (41), we get

∂Λ2x

∂t
=

(

1 –
Π (U2, V2)
Π (U , V2)

)
(
Θ(U) – Θ(U2)

)

+ Π (U2, V2)
[

5 –
Π (U2, V2)
Π (U , V2)

–
Π (U , V )Φ1(I2)
Π (U2, V2)Φ1(I)

–
Φ1(I)Φ2(C2)
Φ1(I2)Φ2(C)

–
Φ2(C)Φ3(V2)
Φ2(C2)Φ3(V )

–
Π (U , V2)Φ3(V )
Π (U , V )Φ3(V2)

]

+ Π (U2, V2)
[

–1 +
Π (U , V )
Π (U , V2)

–
Φ3(V )
Φ3(V2)

+
Π (U , V2)Φ3(V )
Π (U , V )Φ3(V2)

]

+ δ
(
Φ1(I2) – Φ1(I4)

)
Φ4(Z)

+
α

b

(

1 –
Φ2(C2)
Φ2(C)

)

dC�C +
α(α + β)

bβ

(

1 –
Φ3(V2)
Φ3(V )

)

dV �V .

Now, taking the time derivative of Λ2(t) and applying (25) and (36) with (37) give

dΛ2

dt
=

∫

Ω

(

1 –
Π (U2, V2)
Π (U , V2)

)
(
Θ(U) – Θ(U2)

)
dx

+ Π (U2, V2)
∫

Ω

[

5 –
Π (U2, V2)
Π (U , V2)

–
Π (U , V )Φ1(I2)
Π (U2, V2)Φ1(I)

–
Φ1(I)Φ2(C2)
Φ1(I2)Φ2(C)

–
Φ2(C)Φ3(V2)
Φ2(C2)Φ3(V )

–
Π (U , V2)Φ3(V )
Π (U , V )Φ3(V2)

]

dx

+
∫

Ω

Π (U2, V2)Φ3(V )
Π (U , V )Π (U , V2)

(
Π (U , V ) – Π (U , V2)

)
(

Π (U , V )
Φ3(V )

–
Π (U , V2)
Φ3(V2)

)

dx

+ δ
(
Φ1(I2) – Φ1(I4)

)
∫

Ω

Φ4(Z) dx

–
αdCΦ2(C2)

b

∫

Ω

‖�C‖2Φ ′
2(C)

(Φ2(C))2 dx –
α(α + β)dV Φ3(V2)

bβ

∫

Ω

‖�V‖2Φ ′
3(V )

(Φ3(V ))2 dx.

Using the equilibrium points M2 and M4, we have

Φ1(I2) =
1
α

Π (U2, V2),

Φ1(I4) =
σ

p
.
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Since V2 = V4, then by Theorem 2 we have U2 = U4. This implies that

Φ1(I2) =
1
α

Π (U4, V4).

Hence, we obtain

Φ1(I2) – Φ1(I4) =
1
α

Π (U4, V4) –
σ

p

=
σ

p

[
p

σα
Π (U4, V4) – 1

]

=
σ

p
(R3 – 1) ≤ 0 if R3 ≤ 1.

Then, using similar justifications to those given in (38) and (39), we find that dΛ2
dt ≤ 0 if

R3 ≤ 1. Also, dΛ2
dt = 0 whenever U = U2, I = I2, C = C2, V = V2, and Z = 0. Let S be the

largest invariant subset of {(U , I, C, V , Z, W ) : dΛ2
dt = 0}. For each element in S, we have C =

C2 and V = V2, then ∂V (x,t)
∂t = 0. From system (2) we have 0 = ∂V (x,t)

∂t = βΦ2(C2) – mΦ3(V2) –
rΦ3(V2)Φ5(W ) which gives W = W2. It follows from LaSalle’s invariance principle [38] that
M2 is defined and globally asymptotically stable if R1 > 1 and R3 ≤ 1. �

Theorem 6 Suppose that [Q1]–[Q4] are valid, then the infection equilibrium with only
CTL immune response M3 = (U3, I3, C3, V3, Z3, 0) is globally asymptotically stable when
R2 > 1 and R1

R3
≤ 1.

Proof Take a Lyapunov functional as

Λ3(t) =
∫

Ω

Λ3x(x, t) dx,

where

Λ3x(x, t) = U – U3 –
∫ U

U3

Π (U3, V3)
Π (ϕ, V3)

dϕ +
(

I – I3 –
∫ I

I3

Φ1(I3)
Φ1(ϕ)

dϕ

)

+
1
b
(
α + δΦ4(Z3)

)
(

C – C3 –
∫ C

C3

Φ2(C3)
Φ2(ϕ)

dϕ

)

+
(α + β)

bβ

(
α + δΦ4(Z3)

)
(

V – V3 –
∫ V

V3

Φ3(V3)
Φ3(ϕ)

dϕ

)

+
δ

p

(

Z – Z3 –
∫ Z

Z3

Φ4(Z3)
Φ4(ϕ)

dϕ

)

+
r(α + β)

bβq
(
α + δΦ4(Z3)

)
W .

Then we have

∂Λ3x

∂t
=

(

1 –
Π (U3, V3)
Π (U , V3)

)
(
Θ(U) – Π (U , V )

)

+
(

1 –
Φ1(I3)
Φ1(I)

)
(
Π (U , V ) – αΦ1(I) – δΦ1(I)Φ4(Z)

)
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+
1
b
(
α + δΦ4(Z3)

)
(

1 –
Φ2(C3)
Φ2(C)

)
(
dC�C + bΦ1(I) – (α + β)Φ2(C)

)

+
(α + β)

bβ

(
α + δΦ4(Z3)

)

×
(

1 –
Φ3(V3)
Φ3(V )

)
(
dV �V + βΦ2(C) – mΦ3(V ) – rΦ3(V )Φ5(W )

)

+
δ

p

(

1 –
Φ4(Z3)
Φ4(Z)

)
(
pΦ1(I)Φ4(Z) – σΦ4(Z)

)

+
r(α + β)

bβq
(
α + δΦ4(Z3)

)(
qΦ3(V )Φ5(W ) – μΦ5(W )

)
. (42)

By using the equilibrium conditions at M3

Θ(U3) = Π (U3, V3),

Π (U3, V3) =
(
α + δΦ4(Z3)

)
Φ1(I3)

=
(α + β)

b
(
α + δΦ4(Z3)

)
Φ2(C3) =

m(α + β)
bβ

(
α + δΦ4(Z3)

)
Φ3(V3),

and collecting terms of (42), we have

∂Λ3x

∂t
=

(

1 –
Π (U3, V3)
Π (U , V3)

)
(
Θ(U) – Θ(U3)

)

+ Π (U3, V3)
[

5 –
Π (U3, V3)
Π (U , V3)

–
Π (U , V )Φ1(I3)
Π (U3, V3)Φ1(I)

–
Φ1(I)Φ2(C3)
Φ1(I3)Φ2(C)

–
Φ2(C)Φ3(V3)
Φ2(C3)Φ3(V )

–
Π (U , V3)Φ3(V )
Π (U , V )Φ3(V3)

]

+ Π (U3, V3)
[

–1 +
Π (U , V )
Π (U , V3)

–
Φ3(V )
Φ3(V3)

+
Π (U , V3)Φ3(V )
Π (U , V )Φ3(V3)

]

+
r(α + β)

bβ

(
α + δΦ4(Z3)

)(
Φ3(V3) – Φ3(V4)

)
Φ5(W )

+
1
b
(
α + δΦ4(Z3)

)
(

1 –
Φ2(C3)
Φ2(C)

)

dC�C

+
(α + β)

bβ

(
α + δΦ4(Z3)

)
(

1 –
Φ3(V3)
Φ3(V )

)

dV �V .

Then, by using (25), (36), and (37), the derivative of Λ3(t) with respect to time is given by

dΛ3

dt
=

∫

Ω

(

1 –
Π (U3, V3)
Π (U , V3)

)
(
Θ(U) – Θ(U3)

)
dx

+ Π (U3, V3)
∫

Ω

[

5 –
Π (U3, V3)
Π (U , V3)

–
Π (U , V )Φ1(I3)
Π (U3, V3)Φ1(I)

–
Φ1(I)Φ2(C3)
Φ1(I3)Φ2(C)

–
Φ2(C)Φ3(V3)
Φ2(C3)Φ3(V )

–
Π (U , V3)Φ3(V )
Π (U , V )Φ3(V3)

]

dx

+
∫

Ω

Π (U3, V3)Φ3(V )
Π (U , V )Π (U , V3)

(
Π (U , V ) – Π (U , V3)

)
(

Π (U , V )
Φ3(V )

–
Π (U , V3)
Φ3(V3)

)

dx
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+
r(α + β)(α + δΦ4(Z3))

bβ

(
Φ3(V3) – Φ3(V4)

)
∫

Ω

Φ5(W ) dx

–
(α + δΦ4(Z3))dCΦ2(C3)

b

∫

Ω

‖�C‖2Φ ′
2(C)

(Φ2(C))2 dx

–
(α + β)(α + δΦ4(Z3))dV Φ3(V3)

bβ

∫

Ω

‖�V‖2Φ ′
3(V )

(Φ3(V ))2 dx.

Using the equilibrium points M3 and M4, we have

Φ3(V3) =
bβσ

mp(α + β)
,

Φ3(V4) =
μ

q
.

Hence, we obtain

Φ3(V3) – Φ3(V4) =
bβσ

mp(α + β)
–

μ

q

=
μ

q

[
bβσq

mpμ(α + β)
– 1

]

=
μ

q

(
R1

R3
– 1

)

≤ 0 if
R1

R3
≤ 1.

The other terms are less than or equal to zero for the same reasons given in (38) and
(39), therefore dΛ3

dt ≤ 0 if R1
R3

≤ 1. Following the proof of Theorem 5, one can prove
that dΛ3

dt = 0 at M3 = (U3, I3, C3, V3, Z3, 0) and thus {M3} is the largest invariant subset of
{(U , I, C, V , Z, W ) : dΛ3

dt = 0}. By LaSalle’s invariance principle [38], the equilibrium point
M3 is defined and globally asymptotically stable if R2 > 1 and R1

R3
≤ 1. �

Theorem 7 Assume that requirements [Q1]–[Q4] are met, then the infection equilibrium
with CTL and antibody immune responses M4 = (U4, I4, C4, V4, Z4, W4) is globally asymp-
totically stable when R1 > R3 > 1.

Proof Define a Lyapunov functional

Λ4(t) =
∫

Ω

Λ4x(x, t) dx,

where

Λ4x(x, t) = U – U4 –
∫ U

U4

Π (U4, V4)
Π (ϕ, V4)

dϕ +
(

I – I4 –
∫ I

I4

Φ1(I4)
Φ1(ϕ)

dϕ

)

+
1
b
(
α + δΦ4(Z4)

)
(

C – C4 –
∫ C

C4

Φ2(C4)
Φ2(ϕ)

dϕ

)

+
(α + β)

bβ

(
α + δΦ4(Z4)

)
(

V – V4 –
∫ V

V4

Φ3(V4)
Φ3(ϕ)

dϕ

)

+
δ

p

(

Z – Z4 –
∫ Z

Z4

Φ4(Z4)
Φ4(ϕ)

dϕ

)

+
r(α + β)

bβq
(
α + δΦ4(Z4)

)
(

W – W4 –
∫ W

W4

Φ5(W4)
Φ5(ϕ)

dϕ

)

.
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Then we obtain

∂Λ4x

∂t
=

(

1 –
Π (U4, V4)
Π (U , V4)

)
(
Θ(U) – Π (U , V )

)

+
(

1 –
Φ1(I4)
Φ1(I)

)
(
Π (U , V ) – αΦ1(I) – δΦ1(I)Φ4(Z)

)

+
1
b
(
α + δΦ4(Z4)

)
(

1 –
Φ2(C4)
Φ2(C)

)
(
dC�C + bΦ1(I) – (α + β)Φ2(C)

)

+
(α + β)

bβ

(
α + δΦ4(Z4)

)

×
(

1 –
Φ3(V4)
Φ3(V )

)
(
dV �V + βΦ2(C) – mΦ3(V ) – rΦ3(V )Φ5(W )

)

+
δ

p

(

1 –
Φ4(Z4)
Φ4(Z)

)
(
pΦ1(I)Φ4(Z) – σΦ4(Z)

)

+
r(α + β)

bβq
(
α + δΦ4(Z4)

)
(

1 –
Φ5(W4)
Φ5(W )

)
(
qΦ3(V )Φ5(W ) – μΦ5(W )

)
. (43)

By using the equilibrium conditions at M4

Θ(U4) = Π (U4, V4),

Π (U4, V4) =
(
α + δΦ4(Z4)

)
Φ1(I4) =

(α + β)
b

(
α + δΦ4(Z4)

)
Φ2(C4)

=
m(α + β)

bβ

(
α + δΦ4(Z4)

)
Φ3(V4) +

r(α + β)
bβ

(
α + δΦ4(Z4)

)
Φ3(V4)Φ5(W4),

and collecting terms of (43), we have

∂Λ4x

∂t
=

(

1 –
Π (U4, V4)
Π (U , V4)

)
(
Θ(U) – Θ(U4)

)

+ Π (U4, V4)
[

5 –
Π (U4, V4)
Π (U , V4)

–
Π (U , V )Φ1(I4)
Π (U4, V4)Φ1(I)

–
Φ1(I)Φ2(C4)
Φ1(I4)Φ2(C)

–
Φ2(C)Φ3(V4)
Φ2(C4)Φ3(V )

–
Π (U , V4)Φ3(V )
Π (U , V )Φ3(V4)

]

+ Π (U4, V4)
[

–1 +
Π (U , V )
Π (U , V4)

–
Φ3(V )
Φ3(V4)

+
Π (U , V4)Φ3(V )
Π (U , V )Φ3(V4)

]

+
1
b
(
α + δΦ4(Z4)

)
(

1 –
Φ2(C4)
Φ2(C)

)

dC�C

+
(α + β)

bβ

(
α + δΦ4(Z4)

)
(

1 –
Φ3(V4)
Φ3(V )

)

dV �V .

Then, by using (25), (36), and (37), the time derivative of Λ4(t) is given by

dΛ4

dt
=

∫

Ω

(

1 –
Π (U4, V4)
Π (U , V4)

)
(
Θ(U) – Θ(U4)

)
dx

+ Π (U4, V4)
∫

Ω

[

5 –
Π (U4, V4)
Π (U , V4)

–
Π (U , V )Φ1(I4)
Π (U4, V4)Φ1(I)

–
Φ1(I)Φ2(C4)
Φ1(I4)Φ2(C)
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Table 1 List of parameters of model (44)

Parameter Value Source Parameter Value Source

λ 10 cells mm–3 day–1 References [39, 40] r 0.9 mm3 cell–1 day–1 Assumed
d 0.01 day–1 Reference [40] σ 0.2 day–1 Reference [6]
α 0.6 day–1 Assumed q 1.5 mm3 virus–1 day–1 Reference [6]
δ 1 mm3 cell–1 day–1 Reference [41] ς2 1 mm3 virus–1 Assumed
dC 0.1 mm2 day–1 Reference [30] b 0.4 capsids cell–1 day–1 Assumed
dV 0.1 mm2 day–1 Reference [30] γ Varied Assumed
β 1.4 day–1 Assumed p, μ Varied Assumed
m 8 day–1 Assumed ς1 Varied Assumed

–
Φ2(C)Φ3(V4)
Φ2(C4)Φ3(V )

–
Π (U , V4)Φ3(V )
Π (U , V )Φ3(V4)

]

dx

+
∫

Ω

Π (U4, V4)Φ3(V )
Π (U , V )Π (U , V4)

(
Π (U , V ) – Π (U , V4)

)
(

Π (U , V )
Φ3(V )

–
Π (U , V4)
Φ3(V4)

)

dx

–
(α + δΦ4(Z4))dCΦ2(C4)

b

∫

Ω

‖�C‖2Φ ′
2(C)

(Φ2(C))2 dx

–
(α + β)(α + δΦ4(Z4))dV Φ3(V4)

bβ

∫

Ω

‖�V‖2Φ ′
3(V )

(Φ3(V ))2 dx.

From (38) and (39), we can deduce that dΛ4
dt ≤ 0. Note that dΛ4

dt = 0 at M4 = (U4, I4, C4, V4,
Z4, W4), and thus {M4} is the largest invariant subset of {(U , I, C, V , Z, W ) : dΛ4

dt = 0}. Then
M4 is globally asymptotically stable by LaSalle’s invariance principle [38], where the point
exists if R1 > R3 > 1. �

5 Numerical simulations
Our goal in this section is to carry out some numerical simulations which exhibit the global
stability of all equilibrium points of the model. We consider the following special case of
model (2):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂U(x,t)
∂t = λ – dU(x, t) – γ U(x,t)V (x,t)

1+ς1U(x,t)+ς2V (x,t) ,
∂I(x,t)

∂t = γ U(x,t)V (x,t)
1+ς1U(x,t)+ς2V (x,t) – αI(x, t) – δI(x, t)Z(x, t),

∂C(x,t)
∂t = dC�C(x, t) + bI(x, t) – (α + β)C(x, t),

∂V (x,t)
∂t = dV �V (x, t) + βC(x, t) – mV (x, t) – rV (x, t)W (x, t),

∂Z(x,t)
∂t = pI(x, t)Z(x, t) – σZ(x, t),

∂W (x,t)
∂t = qV (x, t)W (x, t) – μW (x, t).

(44)

In model (44), the functions Θ , Π , and Φi (for i = 1, . . . , 5) are taken to be

Θ(U) = λ – dU , Π (U , V ) =
γ UV

1 + ς1U + ς2V
, Φi(�) = �,

where the infection rate Π (U , V ) is the Beddington–DeAngelis functional response [25,
42, 43]. It is straightforward to check that all requirements [Q1]–[Q4] are satisfied. We
assume the following initial conditions:

U(x, 0) = 500 cells mm–3, I(x, 0) = 1.5 cells mm–3,
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Figure 1 The numerical simulations of system (44)–(46) when R0 ≤ 1. The infection-free equilibrium M0 is
globally asymptotically stable. The sub-figures show the spatiotemporal behaviors of (a) uninfected
hepatocytes, (b) infected hepatocytes, (c) capsids, (d) viruses, (e) CTLs, and (f) B cells

C(x, 0) = 10 capsids mm–3, V (x, 0) = 2 virions mm–3, (45)

Z(x, 0) = 1.5 cells mm–3, W (x, 0) = 1 cells mm–3, x ∈ [0, 1],

and homogeneous Neumann boundary conditions

∂C
∂�n = 0,

∂V
∂�n = 0, for t ∈ [0, 500], x = 0, 1. (46)

The initial values are arbitrarily chosen as the global stability of the equilibrium points
guarantees the convergence regardless of the selected initial conditions. The threshold
parameters R0, R1, R2, and R3 are given by

R0 =
bβγλ

mα(α + β)(d + ς1λ)
,

R1 =
bβqγ U2

mα(α + β)(q + qς1U2 + ς2μ)
,

R2 =
bβpγ U3

mpα(α + β)(1 + ς1U3) + ας2bβσ
,

R3 =
pμγ U4

ασ (q + qς1U4 + ς2μ)
,
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Figure 2 The numerical simulations of system (44)–(46) when R1 ≤ 1 < R0 and R2 ≤ 1 < R0. The immune-free
equilibrium M1 is globally asymptotically stable. The sub-figures show the spatiotemporal behaviors of
(a) uninfected hepatocytes, (b) infected hepatocytes, (c) capsids, (d) viruses, (e) CTLs, and (f) B cells

where

U2 = U4 =
1

2ς1dq
(
ς1λq – ς2dμ – γμ – dq +

√
(ς1λq – ς2dμ – γμ – dq)2 + 4ς1dq(ς2λμ + λq)

)
,

U3 =
mp(α + β)(ς1λ – d) – bβσ (ς2d + γ )

2ς1dmp(α + β)

+
√

(mp(α + β)(ς1λ – d) – bβσ (ς2d + γ ))2 + 4ς1dmp(α + β)(αλmp + βλmp + bβς2λσ )
2ς1dmp(α + β)

.

For the numerical simulations of system (44)–(46), the values of γ , p, μ, and ς1 are changed
as they have the most important effects on the global stability of equilibrium points. The
values of all other parameters are fixed in Table 1. We have chosen the parameters of the
model to perform the numerical simulations. This is because of the difficulty of getting
real data from HBV infected patients; however, if one has real data, then the parameters
of the model can be estimated and the validity of the model can be established.

The results can be divided into the following categories:
(i) When γ = 0.9 mm3 virus–1 day–1, p = 0.2 mm3 cell–1 day–1, μ = 0.1 day–1 and

ς1 = 1 mm3 cell–1, then we get R0 = 0.0524 < 1. In this case, the solutions of system
(44) asymptotically approach M0 = (1000, 0, 0, 0, 0, 0) as can be seen in Fig. 1.
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Figure 3 The numerical simulations of system (44)–(46) when R1 > 1 and R3 ≤ 1. The infection equilibrium
M2 is globally asymptotically stable. The sub-figures show the spatiotemporal behaviors of (a) uninfected
hepatocytes, (b) infected hepatocytes, (c) capsids, (d) viruses, (e) CTLs, and (f) B cells

Actually, this result supports Theorem 3 and represents the case when the liver
cells are completely uninfected and the infection is finished out.

(ii) When γ = 0.5 mm3 virus–1 day–1, p = 0.01 mm3 cell–1 day–1, μ = 1.5 day–1 and
ς1 = 0.02 mm3 cell–1, then we find 0.5482 = R1 < 1 < R0 = 1.3889 and
0.7569 = R2 < 1 < R0 = 1.3889. For this set of parameters and according to
Theorem 4, the solutions of system (44) converge to the immune-free equilibrium
M1 = (162.3944, 13.9603, 2.7921, 0.4886, 0, 0) as shown in Fig. 2. The number of
uninfected hepatocytes drops sharply when the HBV infection is chronic and the
immune responses are not active.

(iii) We take γ = 0.5 mm3 virus–1 day–1, p = 0.01 mm3 cell–1 day–1, μ = 0.5 day–1 and
ς1 = 0.02 mm3 cell–1. These values give R0 = 1.3889 > 1, R1 = 1.2023 > 1, and
R3 = 0.5725 < 1. In agreement with the result of Theorem 5, the infection
equilibrium M2 = (313.1212, 11.4516, 2.2903, 0.3334, 0, 1.7987) is globally
asymptotically stable as can be observed from Fig. 3. Biologically, this case indicates
that only B immune cells fight against HBV; as a result, the density of target cells
has started to rise again after the sharp decline in the previous case. Moreover, the
density of HBV is lower than its density in the previous case.
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Figure 4 The numerical simulations of system (44)–(46) when R2 > 1 and R1
R3

≤ 1. The infection equilibrium

M3 is globally asymptotically stable. The sub-figures show the spatiotemporal behaviors of (a) uninfected
hepatocytes, (b) infected hepatocytes, (c) capsids, (d) viruses, (e) CTLs, and (f) B cells

(iv) If γ = 0.5 mm3 virus–1 day–1, p = 0.07 mm3 cell–1 day–1, μ = 0.5 day–1 and
ς1 = 0.01 mm3 cell–1, then we obtain R0 = 2.6515 > 1, R2 = 2.4515 > 1, and
R1
R3

= 0.3 < 1. For this choice of parameter values, the solutions of system (44)
converge to the infection equilibrium
M3 = (579.4083, 2.775, 0.5546, 0.097, 0.8672, 0), which supports Theorem 6. The
results are shown in Fig. 4. In this situation, CTL immune response works alone to
kill the infected cells which are the source of the virus.

(v) When γ = 0.7 mm3 virus–1 day–1, p = 0.15 mm3 cell–1 day–1, μ = 0.06 day–1 and
ς1 = 0.01 mm3 cell–1, then we get R0 = 3.7121 > 1, R3 = 3.0757 > 1, R1

R3
= 1.1667 > 1.

In agreement with Theorem 7, we can see from Fig. 5 that the equilibrium
M4 = (753.4535, 1.3449, 0.2708, 0.0406, 1.2688, 1.5117) is globally asymptotically
stable. Here, CTL and antibody immune responses work in parallel to kill the
infected hepatocytes and attack the HBV, respectively. As a result, the number of
healthy liver cells increases while the numbers of infected cells, capsids, and viruses
decrease.

6 Conclusion
In this paper, we have studied a diffusive HBV infection model with capsids and two forms
of immune responses, the CTL and antibody immune responses. We have shown that the
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Figure 5 The numerical simulations of system (44)–(46) when R3 > 1 and R1 > R3 > 1. The equilibrium with
two immune responses M4 is globally asymptotically stable. The sub-figures show the spatiotemporal
behaviors of (a) uninfected hepatocytes, (b) infected hepatocytes, (c) capsids, (d) viruses, (e) CTLs, and
(f) B cells

model has five equilibrium points which are given by the disease-free equilibrium M0,
the immune-free equilibrium M1, the infection equilibrium with only antibody immune
response M2, the infection point with only CTL immune response M3, and the equilib-
rium with both types of adaptive immunity M4. The conditions for existence and global
stability of these equilibrium points have produced four threshold parameters R0, R1, R2,
and R3. The equilibrium point M0 is globally asymptotically stable if R0 ≤ 1, which indi-
cates that the liver cells are totally healthy and there is no infection. The equilibrium M1

exists and is globally asymptotically stable if R1 ≤ 1 < R0 and R2 ≤ 1 < R0, and it reflects
the situation when the immune responses have not been activated yet to counter the in-
fection. The infection equilibrium M2 exists and is globally asymptotically stable if R1 > 1
and R3 ≤ 1, where only B lymphocytes work to defeat the virus. On the other hand, M3

exists and is globally asymptotically stable equilibrium point if R2 > 1 and R1
R3

≤ 1. In this
case, only CTLs try to clear the infection by killing the infected hepatocytes. Finally, B
and T immune cells work together to eliminate HBV infection at the equilibrium M4 that
exists and is globally asymptotically stable if R1 > R3 > 1. The provided numerical simu-
lations have supported the theoretical results and showed the spatiotemporal behavior of
the solutions.
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It is commonly observed that in viral infection processes, time delay is inevitable (see,
e.g., [8–11, 44–47]). Extending model (2) to include the effect of treatments and time de-
lays will give a deeper insight into HBV infection. Another extension of model (2) is to
incorporate stochastic interactions (see [48]). We leave these points as future works.
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