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Abstract
In this work, we investigate the stability of an SIR epidemic model with a generalized
nonlinear incidence rate and distributed delay. The model also includes vaccination
term and general treatment function, which are the two principal control
measurements to reduce the disease burden. Using the Lyapunov functions, we show
that the disease-free equilibrium state is globally asymptotically stable ifR0 ≤ 1,
whereR0 is the basic reproduction number. On the other hand, the disease-endemic
equilibrium is globally asymptotically stable whenR0 > 1. For a specific type of
treatment and incidence functions, our analysis shows the success of the vaccination
strategy, as well as the treatment depends on the initial size of the susceptible
population. Moreover, we discuss, numerically, the behavior of the basic reproduction
number with respect to vaccination and treatment parameters.
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1 Introduction
Mathematical modeling has become a powerful and important tool to understand infec-
tious disease dynamic behavior and to improve control of the disease in a population.
These models are often described by many forms such as: SI , SIS, SIR, or SIRS models,
where S stands for susceptible subpopulation, I is infected subpopulation, and R is recov-
ered subpopulation. The progress of a disease in a population is dictated by the nature
and the mode of transmission between infected and susceptible individuals. The mode
of transmission is the method of transfer by which the infection moves or carries from
one place to another to reach the new host (for example airborne, saliva, vector-borne,
and bodily fluids). Hence, it is natural to adapt these models to the concerned disease by
choosing the right incidence function. It is known that the function forms of the incidence
rate of the infection have a crucial role in the modeling of the infection dynamics, many
forms of incidence function have been considered by the researchers in mathematical epi-
demiology, for example, the bilinear incidence rate βSI , where β is the transmission rate
of infection, the saturated incidence rate βSI

1+αI , with α defined as the inhibitory coefficient,

© The Author(s) 2019. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-019-2447-z
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-019-2447-z&domain=pdf
http://orcid.org/0000-0001-8471-7807
mailto:a-tridane@uaeu.ac.ae


Elazzouzi et al. Advances in Difference Equations        (2019) 2019:532 Page 2 of 19

and many other forms (see [1–7]). To make a model more realistic, the introduction of the
time delay is more interesting, and considerable attention has been paid by several authors
to studying the dynamics of epidemic models with discrete or distributed time delay (see
[3, 4, 8–11]).

Vaccination and treatment are the two main public health control strategies that help
to minimize the burden of an infectious disease spread and to delay a possible outbreak.
Vaccination has the role of preventing healthy people from getting infected by a disease,
while treatment cures a disease and can also be used as a prophylactic. These control
strategies are usually used together to contain the disease spread (see [12] in the context
of influenza). Tulu et al., in [13], developed a mathematical model to study the effect of
both vaccination and quarantine on the spread of Ebola virus, they applied the vaccination
strategy to the susceptible individuals. However, in [14], the authors studied the global dy-
namics of an SEIRS epidemic model with preventive vaccination applied to the newborns.
Various vaccination policies were studied in different mathematical models (see [8, 15–
18]). It is well known in classical epidemic models that the recovery rate due to treatment
is proportional to the number of the infected individuals. However, this proportionality
is not satisfied in the reality because of limited medical facilities (see [19]). In order to
include the limited capacity of medical resources, Chauhan et al., in [20], considered the
piecewise linear treatment function of the form

T(I) =

⎧
⎨

⎩

kI if 0 ≤ I ≤ I0,

kI0 if I > I0,
(1)

where I0 is the capacity of treatment. Recently, Li introduced the following saturated treat-
ment function [21]:

T(I) =
aI

1 + εI
, (2)

where a represents the maximal medical resources supplied per united time and ε is
half-saturation constant, which measures the effect of being delayed for treatment. Other
works have investigated the effects of the treatment on an epidemic (see [19–25]) and also
its optimal control (see [26]).

The motivation of this work comes from [10, 11], where the authors studied an SIR
epidemic model with nonlinear incidence function, and from [19–21], where the authors
considered a special type of treatment function. The present work would be a contin-
uation and generalization of the above cited works. It is concerned with a generalized
SIR epidemic model with distributed delay, vaccination, and treatment. This model incor-
porates distributed delay, general incidence function, vaccination, and general function
treatment. In fact, we apply the vaccination to both susceptible and newborn individuals.
On the newborn individuals, we apply the mechanism of “all-or-nothing” vaccine. Recall
that an “all-or-nothing” vaccine offers complete protection to a subset of the vaccinated
individuals, but the remainder of them stays susceptible to catching the disease. Second,
we consider a class of treatment functions satisfying suitable conditions, and it is more
general than the one given by (1) or (2). Moreover, it is necessary to point out that the de-
lay in this model represents the incubation time taken to become infectious. This model
can be applied to investigate the impact of the vaccination and the treatment in containing
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the spread of infections which have an incubation time to become infectious, for exam-
ple, SARS-CoV(see [27, 28]). Our purpose in this work is to investigate the impact of the
combined vaccination and treatment strategies on the dynamic behavior of the consid-
ered model. We prove that the basic reproduction number R0 depends explicitly on the
vaccination parameters and the general treatment function T(I). Moreover, we discuss
the global stability of the model near equilibria (the disease-free equilibrium E0 and the
disease-endemic equilibrium E∗) by means of R0 and Lyapunov’s method. Furthermore,
to verify the theoretical results, numerical simulations are performed for special treatment
and incidence functions. For illustration, we give some numerical results on the behavior
of the basic reproduction number R0 with respect to vaccination and treatment parame-
ters.

The paper is organized as follows. We give a mathematical model formulation in Sect. 2.
In Sect. 3, we propose a mathematical analysis of the considered model. More precisely,
we calculate the basic reproduction number R0, and we determine the disease-free equi-
librium E0 and the endemic equilibrium E∗. Moreover, we prove the local stability of the
disease-free equilibrium and the global stability of E0 and E∗. In Sect. 4, we give some
numerical examples with an incidence and treatment functions satisfying assumptions
presented in the previous sections. We finish the paper, in the last section, by providing
some concluding remarks.

2 Mathematical model and preliminaries
In this work, we are interested in a general SIR epidemic model with distributed delay,
vaccination, and treatment. The dynamics are governed by the diagram in Fig. 1.

From Fig. 1, we have the following SIR model:

⎧
⎪⎪⎨

⎪⎪⎩

dS(t)
dt = (1 – (1 – ε)p)b – (μ + d)S(t) – β

∫ h
0 g(τ )f (S(t), I(t – τ )) dτ ,

dI(t)
dt = β

∫ h
0 g(τ )f (S(t), I(t – τ )) dτ – (μ + c + γ )I(t) – T(I),

dR(t)
dt = T(I) + (1 – ε)pb + γ I(t) + dS(t) – μR(t),

(3)

where S(t), I(t), and R(t) denote the numbers of susceptible, infective, and recovered in-
dividuals at time t respectively. The susceptibles are augmented by the birth of newborns.
Here, we assume that the birth rate b and death rate μ are not the same. The parameter p

Figure 1 Flow diagram of the disease transmission
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is the fraction of the vaccinated newborns. A fraction ε ∈ [0.1) (the all-or-nothing param-
eter) of the vaccinated newborns exhibits an unsuccessful vaccination and passes directly
to the susceptible class. Our vaccine has an efficacy of 1 – ε (see [27–33]). For simplicity,
we assume that the recovered class stands also for the vaccinated state. Hence, susceptible
individuals get vaccinated with rate d.

The nonlinear incidence rate and distributed delay are considered to represent wide
class epidemic model similarly as in [10, 11]. More precisely, by taking β the disease trans-
mission coefficient, individuals leave the susceptible class at a rate

∫ h
0 g(τ )f (s(t), i(t –τ )) dτ ,

where h represents the maximum time taken to become infectious. The function g that
satisfies

∫ h
0 g(τ ) dτ = 1 is assumed to be nonnegative.

The function f : R2
+ →R

2
+ is assumed to be continuously differentiable in the interior of

R
2
+ such that

f (0, I) = f (S, 0) = 0 for S, I ≥ 0,

and the following hypotheses hold:
(H1) f (S, I) is a strictly monotone increasing function of S ≥ 0 for any fixed I > 0 and a

monotone increasing function of I > 0 for any fixed S ≥ 0.
(H2) φ(S, I) = f (S,I)

I is a bounded and monotone decreasing function of I > 0 for any fixed
S ≥ 0 and k(S) = limI→0+ φ(S, I) is a continuous and monotone increasing function
on S ≥ 0.

We also assume that the disease causes death with rate c and γ is the natural recovery
rate of the infected individuals.

The function T : R+ → R+ represents the treatment function which we assume to be
continuously differentiable and concave down satisfying the following hypotheses:

(T1) T(0) = 0.
(T2) The treatment rate T(I)

I is monotone increasing.
The assumption of the concavity of the treatment function refers to the fact that the

supply of the treatment drugs increases as the disease kicks off in the population until
it reaches a maximum level, then the treatment drug stocks start going down due to the
exhaustive consumption.

Hypothesis (T1) means that there is no treatment if there is no infection, while hypothe-
sis (T2) reflects the increasing effort needed from the public health authorities to provide
treatment during the time of the infections.

The initial condition for the above system is given for θ ∈ [–h, 0] by

S(θ ) = 	1(θ ), I(θ ) = 	2(θ ) and R(θ ) = 	3(θ ), (4)

with 	 = (	1,	2,	3) ∈ C+. The space of continuous functions from [–h, 0] to R
2 pro-

vided with the uniform topology is C := C([–h, 0],R3), and C+ = C([–h, 0], (R3)+) is the
nonnegative cone of C. Let 	i(θ ) ≥ 0, i = 1, 2, 3, for θ ∈ [–h, 0].

Following the standard approach (see [34, 35]), model (3) has a unique local solution,
i.e., for all t ∈ [0, δ], δ ≥ 0. Moreover, we have the following preliminary results.

Proposition 2.1 The solution of (3), with initial condition (4), is positive and bounded.
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Proof We prove, by contradiction, that the solution (S(t), I(t), R(t)) is positive. Let t1 =
min{t ≥ 0 : S(t)I(t) = 0}, and we assume that S(t1) = 0, which implies that, for all 0 ≤ t ≤ t1,
I(t) ≥ 0. Let

ζ = min
0≤t≤t1

{
(1 – (1 – ε)p)b

S(t)
– (μ + d) – β

∫ h

0
g(τ )

f (S(t), I(t – τ ))
S(t)

dτ

}

.

It follows that

dS(t)
dt

≥ ζS(t),

then

S(t1) ≥ S(0) exp(ζ t1) > 0.

This contradicts S(t1) = 0. Using a similar argument, we can prove that S(t) > 0 and I(t) >
0 for all t ≥ 0. The positivity of R follows from the inequality

dR(t)
dt

≥ –μR(t),

which implies that

R(t) ≥ R(0) exp(–μt) > 0.

For the boundedness, we note that

dn(t)
dt

= μ

(
b
μ

– n(t)
)

.

It follows that limt→+∞ n(t) = b
μ

, which completes the proof. �

The local existence and boundedness of the solution of (3) imply the global existence of
the solution.

As the variable R does not appear in the first two equations for system (3), we focus our
analysis on the reduced system

⎧
⎨

⎩

dS(t)
dt = (1 – (1 – ε)p)b – (μ + d)S(t) – β

∫ h
0 g(τ )f (S(t), I(t – τ )) dτ ,

dI(t)
dt = β

∫ h
0 g(τ )f (S(t), I(t – τ )) dτ – (μ + c + γ )I(t) – T(I).

(5)

3 Analysis of the model
3.1 Existence of equilibria points
System (5) has a disease-free equilibrium

E0 = (S0, 0), with S0 =
(1 – (1 – ε)p)b

μ + d
. (6)

On the other hand, using the next generation method [36], the basic reproduction num-
ber should be as follows.
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Lemma 3.1 The basic reproduction number is

R0 =
βk( (1–(1–ε)p)b

(μ+d) )
(μ + γ + c) + T ′(0)

=
βk(S0)

(μ + γ + c) + T ′(0)
.

Note that S0 depends on the vaccination of susceptible population and the treatment
terms.

Proof Let X = (I, S)T , then it follows from system (5) that

dX
dt

=

(
β

∫ h
0 g(τ )f (S(t), I(t – τ )) dτ

0

)

–

(
(μ + c + γ )I(t) + T(I)

β
∫ h

0 g(τ )f (S(t), I(t – τ )) dτ – (1 – (1 – ε)p)b + (μ + d)S(t)

)

,

= F – ν.

The Jacobian of matrices F and ν at the disease-free equilibrium E0 is given by

F =

(
βf2(E0) 0

0 0

)

and V =

(
(μ + c + γ ) + T ′(0) 0

βf2(E0) μ + d

)

,

where f2(E0) is the derivative of f with respect to I at E0. The inverse of V is given by

V –1 =

( 1
(μ+c+γ )+T ′(0) 0

–βf2(E0)
((μ+c+γ )+T ′(0))(μ+d)

1
μ+d

)

.

Thus, the next generation matrix for system (5) is

FV –1 =

(
βf2(E0)

(μ+c+γ )+T ′(0) 0
0 0

)

.

Since R0 is the spectral radius of the matrix FV –1, it follows that the basic reproduction
number is

R0 =
βf2(E0)

(μ + γ + c) + T ′(0)
=

βk(S0)
(μ + γ + c) + T ′(0)

. �

To prove the existence of an endemic equilibrium, we need the following lemma.

Lemma 3.2 Assume that assumptions (T1) and (T2) are satisfied. Then the equation

b – au – T(u) = 0,

for a > 0 and b > 0, has a unique positive solution.

Proof Let K be the function defined on R+ by

K(u) = b – au – T(u).
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We have

K(0) = b > 0 and K
(

b
a

)

= –T
(

b
a

)

< 0.

Since K is continuous, the equation K(u) = 0 has a unique positive solution in the inter-
val (0, b

a ). �

Next result shows the existence of the endemic equilibrium.

Theorem 3.1 Assume that assumptions (H1), (H2), (T1), and (T2) hold. If R0 > 1, then
system (5) admits a unique endemic equilibrium E∗ = (S∗, I∗).

Proof At the equilibrium point, we have

(
1 – (1 – ε)p

)
b – (μ + d)S∗ – (μ + c + γ )I∗ – T

(
I∗) = 0,

and so

S∗ =
(1 – (1 – ε)p)b – (μ + c + γ )I∗ – T(I∗)

μ + d
.

Let K be the function defined for R+ \ {0} to R by

K(I) = β
f (S∗, I)

I
– (μ + c + γ ) –

T(I)
I

.

By hypotheses (H2) and (T2), K is strictly monotone decreasing on R
+ \ {0} satisfying

lim
I→0+

K(I) = βk
(

(1 – (1 – ε)p)b
μ + d

)

– (μ + c + γ ) – T ′(0) =
(
μ + c + γ + T ′(0)

)
(R0 – 1) > 0.

Moreover, by Lemma 3.2, there exists a unique solution I0 of the following equation:

(1 – (1 – ε)p)b
μ + d

–
1

μ + d
(
(μ + c + γ )I + T(I)

)
= 0,

and then

K
(
I0) = –

(

(μ + c + γ ) +
T(I0)

I0

)

< 0.

Hence, there exists a unique positive real I∗ such that

0 < I∗ < I0 and K
(
I∗) = 0,

which allows us to conclude that E∗ = (S∗, I∗) is the unique endemic equilibrium of system
(5). �
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3.2 Local stability analysis
In this section, we discuss the local stability of the disease-free equilibrium of system (5).
We have the following result.

Theorem 3.2 If R0 < 1, then the disease-free equilibrium E0 = (S0, 0) is locally asymptoti-
cally stable.

Proof We consider the following linearization equation of system (5) at E0:

⎧
⎨

⎩

dS(t)
dt = –(μ + d)S(t) – β

∫ h
0 g(τ )f2(E0)I(t – τ ) dτ ,

dI(t)
dt = β

∫ h
0 g(τ )f2(E0)I(t – τ ) dτ – (μ + c + γ )I(t) – T ′(0)I(t).

(7)

Substituting (S(t), I(t)) = exp(λt)(S0, I0) into (7), we have

⎧
⎨

⎩

λS0 exp(λt) = –(μ + d)S0 exp(λt) – β
∫ h

0 g(τ )f2(E0)I0 expλ(t – τ ) dτ ,

λI0 exp(λt) = β
∫ h

0 g(τ )f2(E0)I0 expλ(t – τ ) dτ – (μ + c + γ + T ′(0))I0 exp(λt),

hence
⎧
⎨

⎩

–(μ + d + λ)S0 – β
∫ h

0 g(τ )f2(E0)I0 exp(–λτ ) dτ = 0,

β
∫ h

0 g(τ )f2(E0)I0 exp(–λτ ) dτ – (μ + c + γ + T ′(0) + λ)I0 = 0.
(8)

We can write (8) in the following abstract form:

BX = 0,

where X =
( S0

I0

)
and

B =

(
–(μ + d + λ) –βf2(E0)

∫ h
0 g(τ ) exp(–λτ ) dτ

0 βf2(E0)
∫ h

0 g(τ ) exp(–λτ ) dτ – (μ + c + γ + T ′(0) + λ)

)

.

Then the characteristic equation of system (8) at E0 is of the form

(μ + d + λ)
(

–βf2(E0)
∫ h

0
g(τ ) exp(–λτ ) dτ +

(
λ + μ + c + γ + T ′(0)

)
)

= 0. (9)

It is clear that λ = –(μ + d) is a root of (9). All other roots λ of (9) are determined by the
following equation:

–βf2(E0)
∫ h

0
g(τ ) exp(–λτ ) dτ +

(
λ + μ + c + T ′(0) + γ

)
= 0.

Then by separating real (	) and imaginary (
) parts, we derive

⎧
⎨

⎩

–βf2(E0)
∫ h

0 g(τ ) exp(–	(λ)τ ) cos(
(λ)τ ) dτ + (	(λ) + μ + c + γ + T ′(0)) = 0,

–βf2(E0)
∫ h

0 g(τ ) exp(–	(λ)τ ) sin(
(λ)τ ) dτ + (
(λ) + μ + c + γ + T ′(0)) = 0.
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Using the first equation of the above system, we obtain

	(λ) = βf2(E0)
∫ h

0
g(τ ) exp

(
–	(λ)τ

)
cos

(
(λ)τ
)

dτ –
(
μ + c + γ + T ′(0)

)
. (10)

We suppose, by contradiction, that there exists λ ∈C such that 	(λ) ≥ 0, and it satisfies
equality (10). Then

βf2(E0)
∫ h

0
g(τ ) exp

(
–	(λ)τ

)
cos

(
(λ)τ
)

dτ ≥ μ + c + γ + T ′(0). (11)

Since the function T is concave down, it follows that T ′(0) ≥ 0.
Moreover, we know that f2(E0) > 0, which implies

0 ≤
∫ h

0
g(τ ) exp

(
–	(λ)τ

)
cos

(
(λ)τ
)

dτ ≤ 1.

If R0 < 1, then βf2(E0) < μ + c + γ + T ′(0) and

βf2(E0)
∫ h

0
g(τ ) exp

(
–	(λ)τ

)
cos

(
(λ)τ
)

dτ < μ + c + γ + T ′(0),

which gives a contradiction with inequality (11). Then the real parts of all the eigenvalues
of (9) are negative. Therefore, if R0 < 1, the disease-free equilibrium E0 of system (5) is
locally asymptotically stable. Now, let

P(λ) = –βf2(E0)
∫ h

0
g(τ ) exp(–λτ ) dτ +

(
λ + μ + c + γ + T ′(0)

)
.

From the fact that P(0) = (μ+c+γ +T ′(0))(1–R0) < 0 ifR0 > 1 and limλ−→+∞ P(λ) = +∞,
we conclude that there is at least one positive root of (9). Hence, if R0 > 1, E0 is unstable. �

3.3 Global stability of the disease-free equilibrium
The next result gives the condition of the global asymptotic stability of the disease-free
equilibrium E0 of system (5).

Theorem 3.3 If hypotheses (H1), (H2), (T1), and (T2) hold and R0 ≤ 1, then the disease-
free equilibrium E0 of system (5) is globally asymptotically stable.

Proof To prove this result, we consider the following Lyapunov function:

V (t) = V1(t) + I(t) + V2(t) + V3(t),

where

V1(t) =
∫ S(t)

(1–(1–ε)p)b
μ+d

(

1 –
k( (1–(1–ε)p)b

μ+d )
k(σ )

)

dσ ,

V2(t) = σ

∫ h

0
g(τ )

∫ t

t–τ

I(u) du dτ ,



Elazzouzi et al. Advances in Difference Equations        (2019) 2019:532 Page 10 of 19

where σ = μ + c + γ , and

V3(t) =
∫ h

0
g(τ )

∫ t

t–τ

T
(
I(u)

)
du dτ .

Then

d
dt

V (t) =
(

1 –
k( (1–(1–ε)p)b

μ+d )
k(S(t))

)(
(
1 – (1 – ε)p

)
b – (μ + d)S(t)

– β

∫ h

0
g(τ )f

(
S(t), I(t – τ )

)
dτ

)

+ β

∫ h

0
g(τ )f

(
S(t), I(t – τ )

)
dτ – (μ + c + γ )I(t) – T(I)

+ σ

∫ h

0
g(τ )

(
i(t) – i(t – τ )

)
dτ +

∫ h

0
g(τ )

(
T

(
i(t)

)
– T

(
i(t – τ )

))
dτ

= – μ

(

1 –
k( (1–(1–ε)p)b

μ+d )
k(S(t))

)(

S(t) –
(1 – (1 – ε)p)b

μ + d

)

+
∫ h

0
g(τ )

(

β
k( (1–(1–ε)p)b

μ+d )
k(S(t))

f (S(t), I(t – τ ))
I(t – τ )

– σ –
T(I(t – τ ))

I(t – τ )

)

I(t – τ ) dτ .

From hypothesis (T2), it follows that

T ′(0) ≤ T(I(t – τ ))
I(t – τ )

.

Then

d
dt

V (t) ≤ – μ

(

1 –
k( (1–(1–ε)p)b

μ+d )
k(S(t))

)(

S(t) –
(1 – (1 – ε)p)b

μ + d

)

+
∫ h

0
g(τ )

(
φ(S(t), I(t – τ ))

σ + T ′(0)
k( (1–(1–ε)p)b

μ+d )
k(S(t))

– 1
)

(
σ + T ′(0)

)
I(t – τ ) dτ .

Hypothesis (H1) implies that

–μ

(

1 –
k( (1–(1–ε)p)b

μ+d )
k(S(t))

)(

S(t) –
(1 – (1 – ε)p)b

μ + d

)

≤ 0,

and hypothesis (H2) gives that

β
φ(S(t), I(t – τ ))

σ + T ′(0)
k( (1–(1–ε)p)b

μ+d )
k(S(t))

≤ β
k(S(t))

σ + T ′(0)
k( (1–(1–ε)p)b

μ+d )
k(S(t))

= R0.

Hence,

d
dt

V (t) ≤ – μ

(

1 –
k( (1–(1–ε)p)b

μ+d )
k(S(t))

)(

S(t) –
(1 – (1 – ε)p)b

μ + d

)

+ (R0 – 1)
(
σ + T ′(0)

)
∫ h

0
g(τ )I(t – τ ) dτ .
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Then the condition R0 ≤ 1 implies that

d
dt

V (t) ≤ 0 for all t ≥ 0.

Moreover, we have

d
dt

V (t) = 0 holds if (S, I) = (S0, 0).

Hence, it follows from system (5) that the set {E0} is the largest invariant set in {(S, I) :
d
dt V (t) = 0}. By the Lyapunov–LaSalle principle, we conclude that the disease-free equi-
librium E0 of system (5) is globally asymptotically stable. �

3.4 Global stability of the endemic equilibrium
In this section, we aim to show the global asymptotic stability of the endemic equilibrium
E∗ of system (5) via a Lyapunov stability approach.

Theorem 3.4 If hypotheses (H1), (H2), (T1), and (T2) hold and R0 > 1, then the endemic
equilibrium of system (5) is the only equilibrium and is globally asymptotically stable.

Proof Let G be the function defined from R
+ to R by

G(x) = x – 1 – ln(x).

It is clear that G(x) ≥ 0 if x > 0 and G(x) = 0 if x = 1. Let us consider the following Lya-
punov function:

U(t) = U1(t) + U2(t),

where

U1(t) = S(t) – S∗ –
∫ S(t)

S∗

f (S∗, I∗)
f (σ , I∗)

dσ + I(t) – I∗ – I∗ ln

(
I(t)
I∗

)

and

U2(t) = βf
(
S∗, I∗)

∫ h

0
g(τ )

∫ t

t–τ

G
(

I(U)
I∗

)

du dτ .

Then

d
dt

U1(t) =
(

1 –
f (S∗, I∗)

f (S(t), I∗)

)(
(
1 – (1 – ε)p

)
b – (μ + d)S(t)

– β

∫ h

0
g(τ )f

(
S(t), I(t – τ )

)
dτ

)

+
(

1 –
I∗

I(t)

)(

β

∫ h

0
g(τ )f

(
S(t), I(t – τ )

)
dτ – (μ + c + γ )I(t) – T(I)

)

.
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Moreover, we have

d
dt

U2(t) = βf
(
S∗, I∗)

∫ h

0
g(τ )

(

G
(

I(t)
I∗

)

– G
(

I(t – τ )
I∗

))

dτ

and

G
(

I(t)
I∗

)

– G
(

I(t – τ )
I∗

)

=
I
I∗ –

I(t – τ )
I∗ + ln

(
I(t – τ )

I∗

)

.

Since
⎧
⎨

⎩

(1 – (1 – ε)p)b = (μ + d)S∗ + βf (S∗, I∗),

βf (S∗, I∗) = (μ + c + γ )I∗ + T(I∗),

then

d
dt

U(t) =
(

1 –
f (S∗, I∗)

f (S(t), I∗)

)(

(μ + d)S∗ + βf
(
S∗, I∗) – (μ + d)S(t)

– β

∫ h

0
g(τ )f

(
S(t), I(t – τ )

)
dτ

)

+
(

1 –
I∗

I(t)

)(

β

∫ h

0
g(τ )f

(
S(t), I(t – τ )

)
dτ

– β
f (S∗, I∗)

I∗ I(t) – T(I) +
I(t)T(I∗)

I∗

)

+ βf
(
S∗, I∗)

∫ h

0
g(τ )

(
I
I∗ –

I(t – τ )
I∗ + ln

(
I(t – τ )

I∗

))

dτ

= (μ + d)
(

1 –
f (S∗, I∗)

f (S(t), I∗)

)
(
S∗ – S(t)

)

+ βf
(
S∗, I∗)

∫ h

0
g(τ )

(

1 –
f (S∗, I∗)

f (S(t), I∗)

)(

1 –
f (S(t), I(t – τ ))

f (S∗, I∗)

)

dτ

+ βf
(
S∗, I∗)

∫ h

0
g(τ )

(

1 –
I∗

I(t)

)(
f (S(t), I(t – τ ))

f (S∗, I∗)
–

I(t)
I∗

)

dτ

+ βf
(
S∗, I∗)

∫ h

0
g(τ )

(
I
I∗ –

I(t – τ )
I∗ + ln

(
I(t – τ )

I∗

))

dτ

+
(

1 –
I∗

I(t)

)(
I(t)T(I∗)

I∗ – T(I)
)

.

It follows that

d
dt

U(t) = (μ + d)
(

1 –
f (S∗, I∗)

f (S(t), I∗)

)
(
S∗ – S(t)

)

+ βf
(
S∗, I∗)

∫ h

0
g(τ )

(

2 –
f (S∗, I∗)

f (S(t), I∗)
+

f (S(t), I(t – τ ))
f (S(t), I∗)

–
I∗

I(t)
f (S(t), I(t – τ )

f (S∗, I∗)

)

dτ
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+ βf
(
S∗, I∗)

∫ h

0
g(τ )

(

–
I(t – τ )

I∗ + ln

(
I(t – τ )

I∗

))

dτ

+
(

1 –
I∗

I(t)

)(
I(t)T(I∗)

I∗ – T(I)
)

.

Using

ln

(
I(t – τ )

I∗

)

= ln
f (S∗, I∗)

f (S(t), I∗)
+ ln

(
I∗

I(t)
f (S(t), I(t – τ ))

f (S∗, I∗)

)

+ ln

(
I(t – τ )

I∗
f (S(t), I∗)

f (S(t), I(t – τ ))

)

,

it follows that

d
dt

U(t) = (μ + d)
(

1 –
f (S∗, I∗)

f (S(t), I∗)

)
(
S∗ – S(t)

)

+ βf
(
S∗, I∗)

∫ h

0
g(τ )

(

1 –
f (S∗, I∗)

f (S(t), I∗)
+ ln

f (S∗, I∗)
f (S(t), I∗)

)

dτ

+ βf
(
S∗, I∗)

∫ h

0
g(τ )

(

1 –
I∗

I(t)
f (S(t), I(t – τ ))

f (S∗, I∗)

+ ln

(
I∗

I(t)
f (S(t), I(t – τ ))

f (S∗, I∗)

))

dτ

+ βf
(
S∗, I∗)

∫ h

0
g(τ )

(

1 –
i(t – τ )

I∗
f (S(t), I∗)

f (S(t), I(t – τ ))

+ ln

(
I(t – τ )

I∗
f (S(t), I∗)

f (S(t), I(t – τ ))

))

dτ

+ βf
(
S∗, I∗)

∫ h

0
g(τ )

(
I(t – τ )

I∗
f (S(t), I∗)

f (S(t), I(t – τ ))
– 1

–
I(t – τ )

I∗ +
f (S(t), I(t – τ ))

f (S(t), I∗)

)

dτ

+
(
I(t) – I∗)

(
T(I∗)

I∗ –
T(I)
I(t)

)

.

By hypotheses (H1) and (H2) we have

I(t – τ )
I∗

f (S(t), I∗)
f (S(t), I(t – τ ))

– 1 –
I(t – τ )

I∗ +
f (S(t), I(t – τ ))

f (S(t), I∗)

=
(

I(t – τ )
I∗ –

f (S(t), I(t – τ ))
f (S(t), I∗)

)(
f (S(t), I∗)

f (S(t), I(t – τ ))
– 1

)

=
I(t – τ )

I∗φ(S(t), I∗)f (S(t), I(t – τ ))
(
φ
(
S(t), I∗) – φ

(
S(t), I(t – τ )

))

× (
f
(
S(t), I∗) – f

(
S(t), I(t – τ )

))
,

and then

I(t – τ )
I∗

f (S(t), I∗)
f (S(t), I(t – τ ))

– 1 –
I(t – τ )

I∗ +
f (S(t), I(t – τ ))

f (S(t), I∗)
≤ 0.
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Moreover, hypothesis (H1) implies that

(μ + d)
(

1 –
f (S∗, I∗)

f (S(t), I∗)

)
(
S∗ – S(t)

) ≤ 0,

and hypothesis (T2) gives

(
I(t) – I∗)

(
T(I∗)

I∗ –
T(I)
I(t)

)

≤ 0.

Hence, d
dt U(t) ≤ 0. We conclude that the endemic equilibrium of system (5) is globally

asymptotically stable. �

4 Numerical results
In this section, we present the numerical simulation of the model by considering the fol-
lowing delayed SIR epidemic model with vaccination, treatment, and distributed time de-
lay:

⎧
⎪⎪⎨

⎪⎪⎩

dS(t)
dt = (1 – (1 – ε)p)b – (μ + d)S(t) – β

∫ h
0

e–τ

1–e–h S(t)I(t – τ ) dτ ,
dI(t)

dt = β
∫ h

0
e–τ

1–e–h S(t)I(t – τ ) dτ – (μ + c + γ )I(t) – aI(t)
1+ξ I(t) ,

dR(t)
dt = (1 – ε)pb + γ I(t) + aI(t)

1+ξ I(t) + dS(t) – μR(t).

(12)

The function g is chosen, as in [37], in the following form:

g(τ ) =
e–τ

1 – e–h .

On the other hand, the treatment function T , similarly to [23], is defined by

T(I) =
aI

1 + ξ I
.

The reproduction number R0 is given by

R0 =
β(1 – (1 – ε)p)b

(μ + d)(μ + c + γ + a)
. (13)

For our system (12) without vaccination and treatment, the reproduction number is
given by

R0 =
βb

μ(μ + c + γ )
.

Hence R0 can be rewritten as

R0 =
μ(μ + c + γ )(1 – (1 – ε)p)

(μ + d)(μ + c + γ + a)
R0.

IfR0 ≤ 1, then the disease will die out (the disease-free equilibrium E0 is globally asymp-
totically stable) without any control measures.
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However, if R0 > 1, then

R0 ≤ 1 is equivalent to S0 ≤ S̄ =
μ + c + γ + a

β
,

where S0 is given in (6). Similarly,

R0 ≥ 1 is equivalent to S0 ≥ S̄.

This shows that, during the epidemic R0 > 1, if the number of susceptible population is
below the threshold S̄, then the disease can be controlled by vaccination and treatment.
However, if the number of susceptible population is above the threshold S̄, then the disease
will persist in the population.

To make sense of our simulation, we will focus on the case of R0 > 1, and we choose the
parameters p and a to guarantee the clearance of the disease from the population by these
two public health control measures.

We consider the following initial conditions:

	1(θ ) = sin(0.5θ ) + 100, 	2(θ ) = sin(10θ ) + 20,

	3(θ ) = 0 for – h ≤ θ ≤ 0,

	1(θ ) = cos(5θ ) + 200, 	2(θ ) = 10 cos(θ ) + 30,

	3(θ ) = 0 for – h ≤ θ ≤ 0,

	1(θ ) = cos(5θ ) + 260, 	2(θ ) = 30 + 20 sin(10θ ),

	3(θ ) = 80 for – h ≤ θ ≤ 0,

	1(θ ) = cos(5θ ) + 280, 	2(θ ) = 30 + 40 sin(10θ ),

	3(θ ) = 30 for – h ≤ θ ≤ 0,

	1(θ ) = cos(5θ ) + 300, 	2(θ ) = 30 + 70 sin(10θ ),

	3(θ ) = 50 for – h ≤ θ ≤ 0.

All the numerical simulations are performed using the explicit Runge–Kutta-like
method (dde45) [38].

First, we start with the case of no vaccination and no treatment (p = 0 and a = 0). In
this situation our model is similar to that of Enatsu et al. [10], in which the authors claim
that when the basic reproduction number, denoted by R0, is greater than one (R0 > 1),
the disease persists. However, our numerical simulation (Fig. 3 and Fig. 4) shows that the
disease will die out even if R0 > 1.

Next, we consider the case with vaccination and no treatment, with R0 > 1 and R0 < 1.
As shown in Fig. 3, the disease dies out, which corresponds to our theoretical result.

Finally, we give the simulation of the case with vaccination and treatment, with R0 > 1
and R0 < 1. As shown in Fig. 4, the treatment with vaccination helps the eradication of the
infection from the population.

For more illustration, it is very interesting to discuss the behavior of the basic repro-
duction number R0 with respect to vaccination and treatment parameters. Namely, the
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Figure 2 The time series of model (3) in the special case (12), with Figures (a), (b), and (c) representing
(respectively) S(t), I(t), and R(t). The parameters of the model are b = 10, μ = 0.65, β = 0.2, c = 0.77, γ = 0.75,
h = 1.5, d = 0, p = 0, ε = 0, ξ = 10, and a = 0. In this caseR0 = 1.4179 > 1

Figure 3 The time series of model (3) in the special case (12), with Figures (d), (e), and (f) representing
(respectively) S(t), I(t), and R(t). The parameters of the model are b = 10, μ = 0.65, β = 0.2, c = 0.77, γ = 0.75,
h = 1.5, d = 0.4, p = 0.4, ε = 0.2, ξ = 10, and a = 0. In this caseR0 = 0.5969 < 1

Figure 4 The time series of model (3) in the special case (12), with Figures (g), (h), and (i) representing
(respectively) S(t), I(t), and R(t). With the same parameters as in Fig. 3 except p = 0.3, ε = 0.2 and d = 0.3 and
a = 0.5. In this case,R0 = 0.5993 < 1

parameters p, d, and a. From the expression of R0, formula (13), it is clear that R0 is a
decreasing function with respect to p, d, and a respectively on [0, 1], [0, 1], and [0, +∞[.
Moreover, R0 is an equation of a straight line with respect to p and

lim
a−→+∞ R0(a) = 0.

In Fig. 5 we show the effect of vaccination and treatment parameters on the dynamic of
R0. We notice that the critical values p̄ = 0.875, d̄ = 1.02, and ā = 1.157 represent separated
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Figure 5 The behavior of R0 in the special case (12) with the parameters: b = 10, μ = 0.04, β = 0.15, c = 0.5,
γ = 0.003, d = 0.5, p = 0.8, ε = 0.2, and a = 0.3 for (j) and the same parameters except b = 20 for (k) and (l)

values between the endemic state and the disease-free state for (j), (k), and (l) respectively
(it means the cases R0 < 1 and R0 > 1).

5 Conclusion
In this work, we analyzed a delayed SIR model with generalized incidence function and
distributed delay as the contact between infected individuals and healthy ones does not
result in an immediate infection. The delay, presented in this work, reflects the time that it
takes to have an infection after the contact. The model also included the two main types of
disease control measures: vaccine and treatment. The question that arises in using these
two measures is how each vaccination should depend on the treatment. In fact, as the
treatment is the first control measure to be taken either as a prophylactic or antiviral, the
vaccination implementation should take into consideration the effect of the treatment on
the disease infectiousness. Moreover, the function treatment was chosen to reflect the
reality of drug stock supply during the time of the infections. Our analysis showed that
whenR0 ≤ 1, the disease-free equilibrium is globally asymptotically stable, and whenR0 >
1, then there is a unique disease-endemic equilibrium, which is globally asymptotically
stable. To put this result in context, we chose the treatment function T(I) = aI(t)

1+ξ I(t) (see
[23]).

In our analysis we showed that when the disease is endemic, in the absence of the vacci-
nation and treatment, then there are two possible scenarios: (a) if the number of suscepti-
ble population is below the threshold S̄, then the disease can be controlled by vaccination
and treatment; (b) if the susceptible population is above the threshold S̄, then the disease
will persist in the population. This finding reflects the limited capability of the control
measure to eradicate the disease if the population is too large.
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