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Abstract
In our current investigation, we apply the idea of quantum calculus and the
convolution product to amend a generalized Salagean q-differential operator. By
considering the new operator and the typical version of the Janowski function, we
designate definite new classes of analytic functions in the open unit disk. Significant
properties of these modules are considered, and recurrent sharp consequences and
geometric illustrations are realized. Applications are considered to find the existence
of solutions of a new class of q-Briot–Bouquet differential equations.
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1 Introduction
The q-calculus motivates to build a new method of q-special functions, new differential
and difference operators and generalized well-known differential and difference equations.
The structure of q-calculus improves different modules of orthogonal polynomials and
functions as regards the procedure of their traditional complements. The joining between
equilibriums of differential formulas (equations, operators and inequalities) and their so-
lutions is one of the most beneficial and well-designed tools for studying properties of the
special functions in mathematical analysis and mathematical physics. The consequence
of these concerns in applications to solve physical problems need not be strained. The
q-operators usually realize q-difference equations (which may include derivatives). We
show the close connection between these operators of q-difference equations. In certain
studies, we shall present a technique for developing and understanding from a geometric
viewpoint numerous properties and characteristics of q-operators.

The theory of q-calculus mainly was recently developed. Studies of q-difference equa-
tions were widely performed essentially by Carmichael [1], Jackson [2], Mason [3], and
Trjitzinsky [4]. Investigation concerning the geometric function theory and q-theory to-
gether was first given by Ismail et al.[5]. Many differential and integral operators can be
recorded in terms of convolution, such as the Sàlàgean differential operator [6], Al-Oboudi
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differential operator [7], and the generalized differential operator [8]. It is an advantage
that the method of convolution aids investigators in extra investigation of the geometric
properties for some well-known classes of analytic univalent functions.

Newly, Naeem et al. [9] announced investigations of classes linking the Sàlàgean q-
differential operator. By joining the q-calculus and the generalized Sàlàgean differential
operator [8], we present a new generalized q-operator called the generalized Sàlàgean q-
differential operator. By using the new formula of this operator, we formulate some new
classes and investigate the geometric consequences of them.

2 Precursory
We intend to require and assume the following throughout this study. A function υ ∈ Λ

is known as univalent in U (the open unit disk) if it definitely obeys: if ξ1 �=ξ2 in U = {z ∈
C : |z| < 1} then ψ(ξ1)�=ψ(ξ2) or equivalently, if υ(ξ1) = υ(ξ2) then ξ1 = ξ2. Without loss of
generality, we suggest the letter Λ for our univalent functions as regards the construction

υ(z) = z +
∞∑

n=2

ϑnzn, z ∈U. (1)

We let S denote the class of such functions υ ∈ Λ as are univalent in U.
A function υ ∈ S is recalled starlike w.r.t. (0, 0) in U if the linear cut associating the

origin to every other point of υ(z), |z| = r < 1 is set entirely in υ(z), |z| = r < 1 (every point
of υ(z) be observable from the origin). A function υ ∈ S is called convex in U if the linear
slice fitting together any two points of υ(z), |z| = r < 1 is set entirely in υ(z), |z| = r < 1 or a
function υ ∈ S is convex in U if it is starlike. We address the class of functions υ ∈ S that
are starlike with respect to the origin by S∗ and convex in U by C .

Connected to the classes S∗ and C , we address the class P of all analytic functions υ in
U with a positive real part in U and υ(0) = 1. In fact ψ ∈ S∗ if and only if zυ ′(z)/υ(z) ∈ P
and υ ∈ C if and only if 1 + zυ ′′(z)/υ ′(z) ∈ P . Extensively, for a positive number σ ∈ [0, 1),
we address the class P(σ ) of analytic functions υ in U with υ(0) = 1 such that �(υ(z)) > σ

for all z ∈ U. Note that [10] P(σ2) ⊂ P(σ1) ⊂ P(0) ≡ P for 0 < σ1 < σ2. According to [11],
for two functions υ and ν ∈ Λ, the function υ is subordinate to ν , denoted by υ ≺ ν , if
there occurs a Schwarz function ς with ς (0) = 0 and |ς (z)| < 1 such that υ(z) = ν(ς (z)) for
all z ∈ U. Clearly, υ(z) ≺ ν(z) is analogous to υ(0) = ν(0) and υ(U) ⊂ ν(U).

It is advantageous stating that the method of convolution helps investigators in extra
investigations of the geometric properties of analytic functions. For any non-negative in-
teger n, the q-integer number n, symbolized by [n, q], is formulated as [n, q] = 1–qn

1–q , where
[0, q] = 0, [1, q] = 1 and limq→1– [n, q] = n. The q-difference operator of the analytic func-
tion υ is formulated by the construction


qυ(z) =
υ(qz) – υ(z)

qz – z
, z ∈U.

Clearly, 
qzn = [n, q]zn–1 and for υ ∈ Λ, we have


qυ(z) =
∞∑

n=1

ϑn[n, q]zn–1, z ∈U,ϑ1 = 1.
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For υ ∈ Λ, Govindaraj and Sivasubramanian presented the Sàlàgean q-differential opera-
tor [12]

S0
qυ(z) = υ(z), S1

qυ(z) = z
qυ(z), . . . , Sk
qυ(z) = z
q

(
Sk–1

q υ(z)
)
,

where k is a positive integer. A calculation dependent on the formula of 
q shows Sk
qυ(z) =

υ(z) ∗ Ωk
q (z), where ∗ is the convolution product, Ωk

q (z) = z +
∑∞

n=2[n, q]kzn and Sk
qυ(z) =

z +
∑∞

n=2[n, q]kϑnzn. It is clear that

lim
q→1–

Sk
qυ(z) = z +

∞∑

n=2

nkϑnzn,

the normalized Sàlàgean differential operator [6].
For a function υ(z) and a constant κ ∈ R, we construct the generalized q-Sàlàgean

differential-difference operator (q-SDD) employing the idea of 
q as follows:

Sκ ,0
q υ(z) = υ(z),

Sκ ,1
q υ(z) = z
qυ(z) +

κ

2
(
υ(z) – υ(–z) – 2z

)

= z +
∞∑

n=2

(
[n, q] +

κ

2
(
1 + (–1)n+1)

)
ϑnzn,

Sκ ,2
q υ(z) = Sκ ,1

q
[
Sκ ,1

q υ(z)
]

= z +
∞∑

n=2

(
[n, q] +

κ

2
(
1 + (–1)n+1)

)2

ϑnz,n

...

Sκ ,k
q υ(z) = Sκ ,1

q
[
Sκ ,k–1

q υ(z)
]

= z +
∞∑

n=2

(
[n, q] +

κ

2
(
1 + (–1)n+1)

)k

ϑnzn.

(2)

Obviously, limq→1– Sκ ,k
q υ(z) implies the generalized Sàlàgean differential–difference op-

erator [8], which is a special type of Dunkl operator with Dunkl constant κ in the open
unit disk [13]. Moreover, when κ = 0(limq→1– S0,k

q υ(z)), we have the normalized Sàlàgean
differential operator [6]. Finally, when κ = 0, we have the q-Sàlàgean differential operator
(S0,k

q υ(z)) (see [12]).
Based on the operator (2), we introduce the following classes.

Definition 2.1 A function υ ∈ Λ is in the class S∗
q(κ , k, h) if and only if

S∗
q(κ , k, h) =

{
ψ ∈ Λ :

z(Sκ ,k
q υ(z))′

Sκ ,k
q υ(z)

≺ h(z), h ∈ C
}

.

• S∗
q(κ , 0, h) = S∗(h);

• S∗
q(κ , 0, h) = S∗(h), h(z) = 1+Az

1+Bz (see [14–16]);
• S∗

q(κ , 0, h) = S∗(h), h(z) = 2
1+e–z (see [17]);

• S∗
q(κ , 0, h) = S∗(h), h(z) = 1+ε2z2

1–ε2–ε2z2 , ε = 1–
√

5
2 (see [18, 19]);

• S∗
q(κ , 0, h) = S∗(h), h(z) = 1 + β–α

π
i log(

1–exp(2π i( 1–α
β–α

))z
1–z ) (see [20]);



Ibrahim and Darus Advances in Difference Equations        (2019) 2019:515 Page 4 of 12

• S∗
q(κ , 0, h) = S∗(h), h(z) = 1 + 2

π (1–α) i log( 1–exp(π i(1–α)2z
1–z ) (see [21]);

• S∗
q(κ , 0, h) = S∗(h), h(z) =

√
1 + z (see [22]);

• S∗
q(κ , 0, h) = S∗(h), h(z) = 1 + sin(z) (see [23]);

• S∗
q(κ , 0, h) = S∗(h), h(z) = 1 + cos(z) (see [24]);

• S∗
q(κ , 0, h) = S∗(h), h(z) = ( 1+z

1+( 1–c
c )z

)
1
μ ,μ ≥ 1, c ≥ 0.5 (see [25]).

Definition 2.2 If υ ∈ Λ, then υ ∈ J
κ ,b
q (A, B, k) if and only if

1 +
1
b

( 2Sκ ,k+1
q υ(z)

Sκ ,k
q υ(z) – Sκ ,k

q υ(–z)

)
≺ 1 + Az

1 + Bz
(
z ∈U, –1 ≤ B < A ≤ 1, k = 1, 2, . . . , b ∈C \ {0},κ ∈R

)
.

• κ = 0, q → 1– �⇒ [26];
• κ = 0, B = 0, q → 1– �⇒ [27];
• κ = 0, A = 1, B = –1, b = 2, q → 1– �⇒ [28];
• q → 1– �⇒ [8].

We shall study the geometric significance of the special classes S∗
q(λ, k, h) and J

λ,b
q (A, B, k)

by using the following preliminaries, which can be found in [11].

Lemma 2.1 Suppose the following data: a ∈ C, a positive integer n and

H[ϑ , n] =
{
υ : υ(z) = ϑ + ϑnzn + ϑn+1zn+1 + · · ·}.

i. If ℘ ∈R then �(υ(z) + ℘zυ ′(z)) > 0 �⇒ �(υ(z)) > 0. Moreover, if ℘ > 0 and
υ ∈ H[1, n], then there are constants � > 0 and � > 0 with � = �(℘,�, n) so that

υ(z) + ℘zυ ′(z) ≺
[

1 + z
1 – z

]�

⇒ υ(z) ≺
[

1 + z
1 – z

]�

.

ii. If ν ∈ [0, 1) and ψ ∈H[1, n] then there is a constant � > 0 with � so that

�(
υ2(z) + 2υ(z).zυ ′(z)

)
> ν ⇒ �(

υ(z)
)

> �.

iii. If υ ∈ H[ϑ , n] with �(ϑ) > 0 then

�(
υ(z) + zυ ′(z) + z2υ ′′(z)

)
> 0

or for α : U →R with

�
(

υ(z) + α(z)
zυ ′(z)
υ(z)

)
> 0

then �(υ(z)) > 0.
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3 Outcomes
In this section, we study the geometric properties of the classes S∗

q(κ , k, h) and J
κ ,b
q (A, B, k)

and the consequences of these classes for recent investigations by researchers.

Theorem 3.1 For υ ∈ Λ if one of the following statements is given:
• Sκ ,k

q υ(z) is of bounded boundary rotation;
• υ satisfies the subordination structure

(
Sκ ,k

q υ(z)
)′ ≺

(
1 + z
1 – z

)�

, � > 0, z ∈U;

• υ fulfills the layout

�
((

Sκ ,k
q υ(z)

)′Sκ ,k
q υ(z)

z

)
>

ς

2
, ς ∈ [0, 1), z ∈U,

• υ obeys the relation

�
(

z
(
Sκ ,k

q υ(z)
)′′ –

(
Sκ ,k

q υ(z)
)′ + 2

Sκ ,k
q υ(z)

z

)
> 0,

• υ admits the relation

�
(z(Sκ ,k

q υ(z))′

Sκ ,k
q υ(z)

+ 2
Sκ ,k

q υ(z)
z

)
> 1,

then Sκ ,k
q υ(z)

z ∈P(σ ) for some σ ∈ [0, 1).

Proof Consider a function ρ as follows:

ρ(z) =
Sκ ,k

q υ(z)
z

⇒ zρ ′(z) + ρ(z) =
(
Sκ ,k

q υ(z)
)′. (3)

By the first conclusion, Sκ ,k
q υ(z) is of bounded boundary rotation, it implies that �(zρ ′(z) +

ρ(z)) > 0. Thus, by Lemma 2.1.i, we obtain �(ρ(z)) > 0 which implies the first part of the
theorem.

According to the second part, we have the subject subordination layout

(
Sκ ,k

q υ(z)
)′ = zρ ′(z) + ρ(z) ≺

[
1 + z
1 – z

]�

.

Now, according to Lemma 2.1.i, there is a constant � > 0 with � = �(�) accepting the sub-
ordination

Sκ ,k
q υ(z)

z
≺

(
1 + z
1 – z

)�

.

This implies that

�
(Sκ ,k

q υ(z)
z

)
> σ , σ ∈ [0, 1).
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Continuing, we address the third part, which implies that

�(
ρ2(z) + 2ρ(z).zρ ′(z)

)
= 2�

((
Sκ ,k

q υ(z)
)′Sκ ,k

q υ(z)
z

)
> ς . (4)

In virtue of Lemma 2.1.ii, there is a constant � > 0 such that �(ρ(z)) > � and

ρ(z) =
Sκ ,k

q υ(z)
z

∈P(σ ), σ ∈ [0, 1).

It follows from (4) that �(Sκ ,k
q υ(z))′) > 0 and thus by the Noshiro–Warschawski and Kaplan

theorems that Sκ ,k
q υ(z) is univalent and of bounded boundary rotation in U.

By differentiating (3) and taking the real part, we have

�(
ρ(z) + zρ ′(z) + z2ρ ′′(z)

)
= �

(
z
(
Sκ ,k

q υ(z)
)′′ –

(
Sκ ,k

q υ(z)
)′ + 2

Sκ ,k
q υ(z)

z

)
> 0.

Thus, in view of Lemma 2.1-ii, we attain �(S
κ ,k
q υ(z)

z ) > 0.
By logarithmic differentiation (3) and taking the real part, we obtain the following:

�
(

ρ(z) +
zρ ′(z)
ρ(z)

+ z2ρ ′′(z)
)

= �
(z(Sκ ,k

q υ(z))′

Sκ ,k
q υ(z)

+ 2
Sκ ,k

q υ(z)
z

– 1
)

> 0.

Thus, according to Lemma 2.1-iii, where α(z) = 1, we get �(S
κ ,k
q υ(z)

z ) > 0. �

Theorem 3.2 Consider υ ∈ S∗
q(κ , k, h), where h(z) is convex univalent function in U. Then

Sκ ,k
q υ(z) ≺ z exp

(∫ z

0

h(ð(w)) – 1
w

dw
)

,

where ð(z) is analytic in U, with ð(0) = 0 and |ð(z)| < 1. Moreover, for |z| = χ , Sκ ,k
q υ(z)

fulfills the formula

exp

(∫ 1

0

hð(–χ )) – 1
χ

)
dχ ≤

∣∣∣∣
Sκ ,k

q υ(z)
z

∣∣∣∣ ≤ exp

(∫ 1

0

h(ð(χ )) – 1
χ

)
dχ .

Proof Since ψ ∈ S∗
q(κ , k, h), we get

(z(Sκ ,k
q υ(z))′

Sκ ,k
q υ(z)

)
≺ h(z), z ∈U,

which leads to a Schwarz function with ð(0) = 0 and |ð(z)| < 1 satisfying the following
equality:

(z(Sκ ,k
q υ(z))′

Sκ ,k
q υ(z)

)
= h

(
ð(z)

)
, z ∈U.
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A calculation gives

( (Sκ ,k
q ψ(z))′

Sκ ,k
q ψ(z)

)
–

1
z

=
h(ð(z)) – 1

z
.

By integrating both sides, we obtain

logSκ ,k
q υ(z) – log z =

∫ z

0

h(ð(w)) – 1
w

dw.

Thus, we have

log
Sκ ,k

q υ(z)
z

=
∫ z

0

h(ð(ξ )) – 1
w

dw. (5)

By utilizing the meaning of subordination, we conclude that

Sκ ,k
q υ(z) ≺ z exp

(∫ z

0

h(ð(w)) – 1
w

dw
)

.

Besides, we find that the function h(z) maps the disk 0 < |z| < χ < 1 onto a domain which
is convex and symmetric with respect to the real axis, which means

h
(
–χ |z|) ≤ �(

h
(
ð(χz)

)) ≤ h
(
χ |z|), χ ∈ (0, 1),

then we obtain the next relations:

h(–χ ) ≤ h
(
–χ |z|), h

(
χ |z|) ≤ h(χ ),

and

∫ 1

0

h(ð(–χ |z|)) – 1
χ

dχ ≤ �
(∫ 1

0

h(ð(χ )) – 1
χ

dχ

)
≤

∫ 1

0

h(ð(χ |z|)) – 1
χ

dχ .

By employing Eq. (5), we deduce that

∫ 1

0

h(ð(–χ |z|)) – 1
χ

dχ ≤ log

∣∣∣∣
Sκ ,k

q υ(z)
z

∣∣∣∣ ≤
∫ 1

0

h(ð(χ |z|)) – 1
χ

dχ ,

which leads to

exp

(∫ 1

0

h(ð(–χ |z|)) – 1
χ

dχ

)
≤

∣∣∣∣
Sκ ,k

q υ(z)
z

∣∣∣∣ ≤ exp

(∫ 1

0

h(ð(χ |z|)) – 1
χ

dχ

)
.

Hence, we have

exp

(∫ 1

0

h(ð(–χ )) – 1
η

)
dχ ≤

∣∣∣∣
Sκ ,k

q υ(z)
z

∣∣∣∣ ≤ exp

(∫ 1

0

h(ð(χ )) – 1
χ

)
dχ . �
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Corollary 3.1 ([8]) Let q −→ 1 in Theorem 3.2. Then

Sκ ,k
1 υ(z) ≺ z exp

(∫ z

0

h(ð(w)) – 1
w

dw
)

.

Note that all the special cases of the class S∗
q(κ , k, h) can be considered as consequences

of Theorem 3.2.

Theorem 3.3 If υ ∈ J
κ ,b
q (A, B, k) then the odd function

B(z) =
1
2
[
υ(z) – υ(–z)

]
, z ∈ U,

attains the subordination inequalities

1 +
1
b

(Sκ ,k+1
q B(z)

Sκ ,k
q B(z)

– 1
)

≺ 1 + Az
1 + Bz

and

�
(

zB(z)′

B(z)

)
≥ 1 – �2

1 + �2 , |z| = � < 1,

(
z ∈U, –1 ≤ B < A ≤ 1, k = 1, 2, . . . , b ∈C \ {0},κ ∈R

)
.

Proof Let υ ∈ J
κ ,b
q (A, B, k). Then there exists a function P ∈ J(A, B) with the layout

b
(
P(z) – 1

)
=

( 2Sκ ,k+1
q υ(z)

Sκ ,k
q υ(z) – Sκ ,k

q υ(–z)

)

and

b
(
P(–z) – 1

)
=

( –2Sκ ,k+1
q υ(–z)

Sκ ,k
q υ(z) – Sκ ,k

q υ(–z)

)
.

This yields

1 +
1
b

(Sκ ,k+1
q B(z)

Sκ ,k
q B(z)

– 1
)

=
P(z) + P(–z)

2
.

In addition, since P fulfills the inequality

P(z) ≺ 1 + Az
1 + Bz

,

where 1+Az
1+Bz is univalent, by the idea of subordination, we obtain

1 +
1
b

(Sκ ,k+1
q B(z)

Sκ ,k
q B(z)

– 1
)

≺ 1 + Az
1 + Bz

.
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Also, the odd function B(z) is starlike in U, which produces the subordination inequality

zB(z)′

B(z)
≺ 1 – z2

1 + z2 ,

that is, there exists a Schwarz function γ ∈U, |γ (z)| ≤ |z| < 1,γ (0) = 0 with the property

Ξ (z) :=
zB(z)′

B(z)
≺ 1 – γ (z)2

1 + γ (z)2 ,

which leads to

γ 2(ζ ) =
1 – Ξ (ζ )
1 + Ξ (ζ )

, ζ ∈U, ζ , |ζ | = r < 1.

A computation implies that

∣∣∣∣
1 – Ξ (ζ )
1 + Ξ (ζ )

∣∣∣∣ =
∣∣γ (ζ )

∣∣2 ≤ |ζ |2.

Therefore, we get the following inequality:

∣∣∣∣Ξ (ζ ) –
1 + |ζ |4
1 – |ζ |4

∣∣∣∣
2

≤ 4|ζ |4
(1 – |ζ |4)2

or
∣∣∣∣Ξ (z) –

1 + |ζ |4
1 – |ζ |4

∣∣∣∣ ≤ 2ζ |2
(1 – |ζ |4)

.

Consequently, we obtain the result

�(
Ξ (z)

) ≥ 1 – �2

1 + �2 , |ζ | = � < 1. �

The following consequences of Theorem 3.3 can be found in [26, 27] and [8], respec-
tively.

Corollary 3.2 Let λ = 1 in Theorem 3.3. Then

1 +
1
b

(S0,k+1
q B(z)

S0,k
q B(z)

– 1
)

≺ 1 + Az
1 + Bz

.

Corollary 3.3 Let κ = 0, k = 1 and q −→ 1 in Theorem 3.3. Then

1 +
1
b

(S0,2
q B(z)

S0,1
q B(z)

– 1
)

≺ 1 + Az
1 + Bz

.

Corollary 3.4 Let q −→ 1 in Theorem 3.3. Then

1 +
1
b

(Sκ ,k+1
q B(z)

Sκ ,k
q B(z)

– 1
)

≺ 1 + Az
1 + Bz

.



Ibrahim and Darus Advances in Difference Equations        (2019) 2019:515 Page 10 of 12

4 Applications
We produce a presentation of our results established by the solution of the complex Briot–
Bouquet (BB) differential equation [11]. The class of complex Briot–Bouquet differential
equations is a link of differential equations whose consequences are visible in the com-
plex plane. Accruing integrals shade special paths to follow, which have singularities and
branch points of the equation we must study. Existence and uniqueness theorems con-
tain the efficacy of upper and lower (subordination and superordination relations) (see
[29–32]). The study of the rational first ODEs in the complex domain indicates new tran-
scendental special functions as follows:

βυ(z) + (1 – β)
z(υ(z))′

υ(z)
= h(z), h(0) = υ(0), β ∈ [0, 1].

Many applications of these equations in geometric function theory have newly been re-
searched in [11]. Our goal is to propagate this class of equations by applying the suggested
operator and establishing its solutions using the subordination relations. The q-SDD in
(2) propagates the complex Briot–Bouquet differential equation as follows:

βυ(z) + (1 – β)
(z(Sκ ,k

q υ(z))′

Sκ ,k
q υ(z)

)
= h(z), h(0) = υ(0), z ∈U. (6)

The subordination conditions and distortion bounds for a class of complex conformable
fractional derivative are given in the next theorem. A trivial solution of (6) is given when
β = 1. Therefore, our study concerns the case with υ ∈ Λ and β = 0.

Theorem 4.1 Consider Eq. (6) with β = 0 and ψ ∈ Λ with non-negative coefficients. If
h(z), z ∈U is univalent convex in U then there exists a solution satisfying the subordination
(major solution)

Sκ ,k
q υ(z) ≺ z exp

(∫ z

0

h(ð(w)) – 1
w

dw
)

, (7)

where ð(z) is analytic in U, with ð(0) = 0 and |ð(z)| < 1.

Proof Collect all the assumptions of Eq. (6), and υ(z) ∈ Λ. Then we get the following con-
clusion:

�
(z(Sκ ,k

q υ(z))′

Sκ ,k
q υ(z)

)
> 0

⇔ �
(z +

∑∞
n=2 n([n, q] + κ

2 (1 + (–1)n+1))kϑnzn

z +
∑∞

n=2([n, q] + κ
2 (1 + (–1)n+1))kϑnzn

)
> 0

⇔ �
(1 +

∑∞
n=2 n([n, q] + κ

2 (1 + (–1)n+1))kϑnzn–1

1 +
∑∞

n=2([n, q] + κ
2 (1 + (–1)n+1))kϑnzn–1

)
> 0

⇔
(1 +

∑∞
n=2 n([n, q] + κ

2 (1 + (–1)n+1))kϑn

1 +
∑∞

n=2([n, q] + κ
2 (1 + (–1)n+1))kϑn

)
> 0, z → 1+

⇔
(

1 +
∞∑

n=2

n
(

[n, q] +
κ

2
(
1 + (–1)n+1)

)k

ϑn

)
> 0.
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Moreover, by the definition of Sκ ,k
q υ(z), we indicate that (Sκ ,k

q υ)(0) = 0. Consequently,

z(Sκ ,k
q υ(z))′

Sκ ,k
q υ(z)

∈P ⇒ υ(z) ∈ S∗
q(κ , k, h).

Hence, in view of Theorem 3.2, we have the desired result (7). �

5 Conclusion
By our method, we have revealed new classes of univalent functions, which assign a q-SDD
operator in the open unit disk. We obtained appropriate essential conditions of these sub-
classes. Applications involved the BB equation and investigated its solution in the open
unit disk. For further study, we encourage researchers to introduce some certain new
classes related to other kinds of analytic functions such as harmonic, symmetric, p-valent
and meromorphic functions with respect to symmetric points associated by (2).
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