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Abstract
In this paper, an efficient numerical method is presented for solving nonlinear
stochastic Itô–Volterra integral equations based on Haar wavelets. By the properties
of Haar wavelets and stochastic integration operational matrixes, the approximate
solution of nonlinear stochastic Itô–Volterra integral equations can be found. At the
same time, the error analysis is established. Finally, two numerical examples are
offered to testify the validity and precision of the presented method.
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1 Introduction
Stochastic integral equations are widely applied in engineering, biology, oceanography,
physical sciences, etc. There systems are dependent on a noise source, such as Gaussian
white noise. As we all know, many stochastic Volterra integral equations do not have ex-
act solutions, so it makes sense to find more precise approximate solutions to stochastic
Volterra integral equations. There are different numerical methods to stochastic Volterra
integral equations, for example, orthogonal basis methods [1–10], wash series methods
[11, 12], and polynomials methods [13–16].

In [1], Fakhrodin studied linear stochastic Itô–Volterra integral equations (SIVIEs)
through Haar wavelets (HWs). In [3], Maleknejad et al. also considered the same in-
tegral equations by applying block pulse functions (BPFs). In [9], Heydari et al. solved
linear SIVIEs by the generalized hat basis functions. Meanwhile, in line with the same
hat functions, Hashemi et al. also presented the numerical method of nonlinear SIVIEs
driven by fractional Brownian motion [8]. Moreover, Jiang et al. applied BPFs to solve
two-dimensional nonlinear SIVIEs [7]. In a general way, Zhang studied the existence and
uniqueness solution to stochastic Volterra integral equations with singular kernels and
constructed an Euler type approximation solution [17, 18].

Inspired by the discussion above, we use HWs to solve the following nonlinear SIVIE:

x(v) = x0(v) +
∫ v

0
k(u, v)σ

(
x(u)

)
du +

∫ v

0
r(u, v)ρ

(
x(u)

)
dB(u), v ∈ [0, 1), (1)
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where x(v) is an unknown stochastic process defined on some probability space (Ω ,F , P),
k(u, v) and r(u, v) are kernel functions for u, v ∈ [0, 1), and x0(v) is an initial value function.
B(u) is a Brownian motion and

∫ v
0 r(u, v)ρ(x(u)) dB(u) is Itô integral. σ and ρ are analytic

functions that satisfy some bounded and Lipschitz conditions.
In contrast to the above papers [1, 3, 7–9], the differences of this paper are as follows.

Firstly, we construct a preparation theorem to deal with the nonlinear analytic functions.
Secondly, the error analysis is strictly proved. Finally, compared with the reference [8], the
numerical solution is more accurate and the calculation is simpler because of the use of
HWs. Moreover, the rationality and effectiveness of this method can be further supported
by two examples.

The structure of the article is as follows.
In Sect. 2, some preliminaries of BPFs and HWs are given. In Sect. 3, the relationship

between HWs and BPFs is shown. In Sect. 4, the approximate solutions of (1) are derived.
In Sect. 5, the error analysis of the numerical method is demonstrated. In Sect. 6, the
validity and efficiency of the numerical method are verified by two examples.

2 Preliminaries
BPFs and HWs have been widely analysed by lots of scholars. For details, see references
[1, 3].

2.1 Block pulse functions
BPFs are denoted as

ψi(v) =

⎧⎨
⎩

1 ih ≤ v < (i + 1)h,

0 otherwise,

for i = 0, . . . , m – 1, m = 2L for a positive integer L and h = 1
m , v ∈ [0, 1).

The basic properties of BPFs are shown as follows:
(i) disjointness:

ψi(v)ψj(v) = δijψi(v), (2)

where v ∈ [0, 1), i, j = 0, 1, . . . , m – 1, and δij is Kronecker delta;
(ii) orthogonality:

∫ T

0
ψi(v)ψj(v) dt = hδij;

(iii) completeness property: for every g ∈ L2[0, 1), Parseval’s identity satisfies

∫ 1

0
g2(v) dv = lim

m→∞

m∑
i=0

(gi)2∥∥ψi(v)
∥∥2, (3)

where

gi =
1
h

∫ 1

0
g(v)ψi(v) dv.
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The set of BPFs can be represented by the following m-dimensional vector:

Ψm(v) =
(
ψ0(v), . . . ,ψm–1(v)

)T , v ∈ [0, 1). (4)

From the above description, it yields

Ψm(v)Ψ T
m (v) =

⎛
⎜⎜⎜⎜⎝

ψ0(v) 0 · · · 0
0 ψ1(v) · · · 0
...

...
. . .

...
0 0 · · · ψm–1(v)

⎞
⎟⎟⎟⎟⎠

m×m

,

Ψ T
m (v)Ψm(v) = 1,

Ψm(v)Ψ T
m (v)Fm = DFmΨm(v),

where Fm = (f0, f1, . . . , fm–1)T and DFm = diag(Fm).
Furthermore, for an m × m matrix M, it yields

Ψ T
m (v)MΨm(v) = M̂TΨm(v),

where M̂ is an m-dimensional vector and its entries equal the main diagonal entries of M.
In accordance with BPFs, every function x(v) which satisfies square integrable conditions

in the interval [0, 1) can be approached as follows:

x(v) � xm(v) =
m–1∑
i=0

xiψi(v) = XT
mΨm(v) = Ψ T

m (v)Xm,

where the function xm(v) is an approximation of the function x(v) and

Xm = (x0, x1, . . . , xm–1)T . (5)

Similarly, every function k(u, v) defined on [0, 1) × [0, 1) can be written as

k(u, v) = Ψ T
m1 (u)KΦm2 (v),

where K = (kij)m1×m2 with

kij � 1
h1h2

∫ 1

0

∫ 1

0
k(u, v)ψi(u)φj(v) du dv, (6)

and h1 = 1
m1

, h2 = 1
m2

.

2.2 Haar wavelets
The notation and definition of HWs are introduced in this section (also see [1]). The set
of orthogonal HWs is defined as follows:

hi(v) = 2
l
2 h

(
2lv – z

)
, i = 2l + z, 0 ≤ z < 2l, l ≥ 0, i, l, z ∈N,
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where h0(v) = 1, v ∈ [0, 1), and

h(v) =

⎧⎨
⎩

1 0 ≤ v < 1
2 ,

–1 1
2 ≤ v < 1.

For HWs hn(v) defined in [0, 1), we have

∫ 1

0
hi(v)hj(v) dv = δij, (7)

where δij is the Kronecker delta.
In accordance with HWs, every function x(v) that satisfies square integrable conditions

can be approached as follows:

x(v) = c0h0(v) +
∞∑
i=1

cihi(v), v ∈ [0, 1), i = 2l + z, 0 ≤ z < 2l, l ≥ 0, l, z ∈N, (8)

where

ci =
∫ 1

0
x(v)hi(v) dv, i = 0 or i = 2l + z, 0 ≤ z < 2l, l ≥ 0, l, z ∈N. (9)

We can see that when m = 2L, equation (8) can be rewritten as

x(v) = c0h0(v) +
m–1∑
i=1

cihi(v), i = 2l + z, 0 ≤ z < 2l, l = 0, 1, . . . , L – 1.

Obviously, the vector form is as follows:

x(v) � CT
mHm(v) = HT

m(v)Cm, (10)

where Hm = (h0(v), h1(v), . . . , hm–1(v))T and Cm = (c0, c1, . . . , cm–1)T are HWs and Haar co-
efficients, respectively.

Similarly, every function k(u, v) defined on [0, 1) × [0, 1) can be approached as follows:

k(u, v) = HT
m(u)KHm(v),

where K = (kij)m×m with

kij =
∫ 1

0

∫ 1

0
k(u, v)hi(u)hj(v) du dv, i, j = 0, 1, . . . , m – 1.

3 Haar wavelets and BPFs
Some lemmas about HWs and BPFs are introduced in this section. For a detailed descrip-
tion, see the reference [1].

Lemma 3.1 Suppose that Hm(v) and Ψm(v) are respectively given in (10) and (4), Hm(v)
can be written in accordance with BPFs as follows:

Hm(v) = QΨm(v), m = 2L, (11)
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where Q = (Qij)m×m and

Qij = 2
j
2 hi–1

(
2j – 1

2m

)
, i, j = 1, 2, . . . , m, i – 1 = 2l + z, 0 ≤ z < 2l.

Proof See [1]. �

Lemma 3.2 Suppose that Q is given in (11), then we have

QT Q = mI,

where I is an m × m identity matrix.

Proof See [1]. �

Lemma 3.3 Suppose that F is an m-dimensional vector, we have

Hm(v)HT
m(v)F = F̃Hm(v),

where F̃ is an m × m matrix and F̃ = QF̄Q–1, F̄ = diag(QT F).

Proof See [1]. �

Lemma 3.4 Suppose that M is an m × m matrix, we have

HT
m(v)MHm(v) = M̂Hm(v),

where M̂ = NT Q–1 is an m-dimensional vector and the entries of the vector N are the diag-
onal entries of matrix QT MQ.

Proof See [1]. �

Lemma 3.5 Suppose that Ψm(v) is given in (4), we have

∫ v

0
Ψm(u) du � PΨm(v),

where

P =
h
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 2 2 · · · 2
0 1 2 · · · 2
0 0 1 · · · 2
...

...
...

. . .
...

0 0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

m×m

.

Proof See [1, 3]. �
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Lemma 3.6 Suppose that Ψm(v) is given in (4), we have

∫ v

0
Ψm(u) dB(u) � PBΨm(v),

where

PB =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

B( h
2 ) B(h) B(h) · · · B(h)

0 B( 3h
2 ) – B(h) B(2h) – B(h) · · · B(2h) – B(h)

0 0 B( 5h
2 ) – B(2h) · · · B(3h) – B(2h)

...
...

...
. . .

...
0 0 0 · · · B( (2m–1)h

2 ) – B((m – 1)h)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

m×m

.

Proof See [1, 3]. �

Lemma 3.7 Suppose that Hm(v) is given in (10), we have

∫ v

0
Hm(u) du � 1

m
QPQT Hm(v) = ΛHm(v),

where Q and P are respectively given in (11) and Lemma 3.3, Λ = 1
m QPQT .

Proof See [1, 3]. �

Lemma 3.8 Suppose that Hm(v) is given in (10), we have

∫ v

0
Hm(u) dB(u) � 1

m
QPBQT Hm(v) = ΛBHm(v),

where Q and PB are respectively given in (11) and Lemma 3.3 and ΛB = 1
m QPBQT .

Proof See [1, 3]. �

4 Numerical method
For convenience, we set m1 = m2 = m and nonlinear SIVIE (1) can be solved by HWs.
Firstly, a useful result for HWs is proved.

Theorem 4.1 For the analytic functions σ (v) =
∑

ajvj, ρ(v) =
∑

bjvj and j is a positive
integer, then

σ
(
xm(v)

)
= σ T (Cm)Hm(v),

ρ
(
xm(v)

)
= ρT (Cm)Hm(v),

where Hm(v) and Cm are derived in (10),

σ T (Cm) =
(
σ (c0),σ (c1), . . . ,σ (cm–1)

)
,

ρT (Cm) =
(
ρ(c0),ρ(c1), . . . ,ρ(cm–1)

)
.
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Proof According to the disjointness property of HWs, we can deduce

σ
(
xm(v)

)
=

∑
aj

(
xm(v)

)j

=
∑

aj
(
c0h0(v) + c1h1(v) + · · · + cm–1hm–1(v)

)j

=
∑

aj
(
cj

0, cj
1, . . . , cj

m–1
)
Hm(v)

= σ T (Cm)Hm(v),

thus,

σ
(
xm(v)

)
= σ T (Cm)Hm(v) = HT

m(v)σ (Cm). (12)

Similarly,

ρ
(
xm(v)

)
= ρT (Cm)Hm(v) = HT

m(v)ρ(Cm). (13)

The proof is completed. �

Now, in order to solve (1), we approximate x(v), x0(v), k(u, v), and r(u, v) in following
forms by HWs:

x(v) � xm(v) = CT
mHm(v) = HT

m(v)Cm, (14)

x0(v) � x0m (v) = C0
T
mHm(v) = HT

m(v)C0m, (15)

k(u, v) � km(u, v) = HT
m(u)KHm(v) = HT

m(v)KT Hm(u), (16)

r(u, v) � rm(u, v) = HT
m(u)RHm(v) = HT

m(v)RT Hm(u), (17)

where Cm and C0m are HWs coefficient vectors, K and R are HWs coefficient matrices.
Substituting approximations (12)–(17) into (1), we have

CT
mHm(v) = C0

T
mHm(v) + HT

m(v)KT
∫ v

0
Hm(u)HT (u)σ (Cm) du

+ HT
m(v)RT

∫ v

0
Hm(u)HT

m(u)ρ(Cm) dB(u).

By Lemma 3.3, we get

CT
mHm(v) = C0

T
mHm(v) + HT

m(v)KT
∫ v

0
˜σ (Cm)Hm(u) du

+ HT
m(v)RT

∫ v

0
˜ρ(Cm)Hm(u) dB(u).

Applying Lemmas 3.7 and 3.8, we get

CT
mHm(v) = C0

T
mHm(v) + HT

m(v)KT ˜σ (Cm)ΛHm(v) + HT
m(v)RT ˜ρ(Cm)ΛBHm(v),
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then by Lemma 3.4, we derive

CT
mH(v) = C0

T
mH(v) + ÂT

0 H(v) + B̂T
0 H(v), (18)

where A0 = KT ˜σ (Cm)Λ and B0 = RT ˜ρ(Cm)ΛB.
For nonlinear equation (18), a series of methods, such as simple trapezoid method,

Simpson method, and Romberg method, are often introduced in the numerical analysis
courses. In this paper, the function of fsolve in MATLAB is used to solve equation (18).

5 Error analysis
In contrast to the articles [1, 3], we will give a strict and accurate error analysis in this
section. Firstly, we recall two useful lemmas.

Lemma 5.1 Suppose that function x(u), u ∈ [0, 1) satisfies the bounded condition and
e(u) = x(u) – xm(u), where xm(u) is m approximations of HWs of x(u), then

‖e‖2
L2([0,1)) =

∫ 1

0
e2(u) du ≤ O

(
h2). (19)

Proof See [1]. �

Lemma 5.2 Suppose that the function x(u, v) satisfying the bounded condition is defined
on D = [0, 1) × [0, 1) and e(u, v) = x(u, v) – xm(u, v), where xm(u, v) is m approximations of
HWs of x(u, v), then

‖e‖2
L2(D) =

∫ 1

0

∫ 1

0
e2(u, v) du dv ≤ O

(
h2). (20)

Proof See [1]. �

Secondly, let e(v) = x(v) – xm(v), where xm(v), x0m (v), km(u, v), and rm(u, v) are m approx-
imations of Haar wavelets of x(v), x0(v), k(u, v), and r(u, v), respectively.

e(v) = x(v) – xm(v)

= x0(v) – x0m (v)

+
∫ v

0

[
k(u, v)σ

(
x(u)

)
– km(u, v)σ

(
xm(u)

)]
du

+
∫ v

0

[
r(u, v)ρ

(
x(u)

)
– rm(u, v)ρ

(
xm(u)

)]
dB(u). (21)

Lastly, the main convergence theorem is proved.

Theorem 5.1 Suppose that analytic functions σ and ρ satisfy the following conditions:
(i) |σ (x) – σ (y)| ≤ l1|x – y|, |ρ(x) – ρ(y)| ≤ l3|x – y|;

(ii) |σ (x)| ≤ l2, |ρ(y)| ≤ l4;
(iii) |k(u, v)| ≤ l5, |r(u, v)| ≤ l6,
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where x, y ∈R, constant li > 0, i = 1, 2, . . . , 6. Then

∫ T

0
E

(∣∣em(v)
∣∣2)dv =

∫ T

0
E

(∣∣x(v) – xm(v)
∣∣2)dv ≤ O

(
h2), T ∈ [0, 1).

Proof For (21), we have

E
(∣∣em(v)

∣∣2) ≤ 3
[
E

(∣∣x0(v) – x0m (v)
∣∣2)

+ E

(∣∣∣∣
∫ v

0

(
k(u, v)σ

(
x(u)

)
– rm(u, v)σ

(
xm(u)

))
du

∣∣∣∣
2)

+ E

(∣∣∣∣
∫ v

0

(
r(u, v)ρ

(
x(u)

)
– rm(u, v)ρ

(
xm(u)

))
dB(u)

∣∣∣∣
2)]

.

On the basis of Lipschitz continuity, Itô isometry, and Cauchy–Schwarz inequality, it
yields

E
(∣∣em(v)

∣∣2) ≤ 3
[
E

(∣∣x0(v) – x0m (v)
∣∣2)

+ E

(∫ v

0

∣∣k(u, v)σ
(
x(u)

)
– km(u, v)σ

(
xm(u)

)∣∣2 du
)

+ E

(∫ v

0

∣∣r(u, v)ρ
(
x(u)

)
– rm(u, v)ρ

(
xm(u)

)∣∣2 du
)]

= 3
[
E

(∣∣x0(v) – x0m (v)
∣∣2)

+
∫ v

0
E

(∣∣k(u, v)
(
σ
(
x(u)

)
– σ

(
xm(u)

))

+ σ
(
xm(u)

)(
k(u, v) – km(u, v)

)∣∣2)du

+
∫ v

0
E

(∣∣r(u, v)
(
ρ
(
x(u)

)
– ρ

(
xm(u)

))

+ ρ
(
xm(u)

)(
r(u, v) – rm(u, v)

)∣∣2)du
]

≤ 3
[∣∣x0(v) – x0m (v)

∣∣2

+ 2l1
2l5

2
∫ v

0
E

(∣∣em(u)
∣∣2)du + 2l2

2
∫ v

0

∣∣k(u, v) – km(u, v)
∣∣2 du

+ 2l3
2l6

2
∫ v

0
E

(∣∣em(u)
∣∣2)du + 2l4

2
∫ v

0

∣∣r(u, v) – rm(u, v)
∣∣2 du

]
.

Then we can get

E
(∣∣em(v)

∣∣2) ≤ 3
[∣∣x0(v) – x0m (v)

∣∣2 + 2l2
2
∫ v

0

∣∣k(u, v) – km(u, v)
∣∣2 du

+ 2l4
2
∫ v

0

∣∣r(u, v) – rm(u, v)
∣∣2 du

]

+ 6
(
l1

2l5
2 + l3

2l6
2)∫ v

0
E

(∣∣em(u)
∣∣2)du,
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or

E
(∣∣em(v)

∣∣2) ≤ β(v) + α

∫ v

0
E

(∣∣em(u)
∣∣2)du,

β(v) = 3
[∣∣x0(v) – x0m (v)

∣∣2

+ 2l2
2
∫ v

0

∣∣k(u, v) – km(u, v)
∣∣2 du + 2l4

2
∫ v

0

∣∣r(u, v) – rm(u, v)
∣∣2 du

]
,

α = 6
(
l1

2l5
2 + l3

2l6
2).

Let f (v) = E(|em(v)|2), we get

f (v) ≤ β(v) + α

∫ v

0
f (τ ) dτ , τ ∈ [0, v).

By Gronwall’s inequality, it follows that

f (v) ≤ β(v) + α

∫ v

0
eα(v–τ )β(τ ) dτ , v ∈ [0, 1).

Then

∫ T

0
f (v) dv

=
∫ T

0
E

(∣∣em(v)
∣∣2)dv

≤
∫ T

0

(
β(v) + α

∫ v

0
eα(v–τ )β(τ ) dτ

)
dv

=
∫ T

0
β(v) dv + α

∫ T

0

∫ v

0
eα(v–τ )β(τ ) dτ dv

≤
∫ T

0
β(v) dv + αeαT

∫ T

0

∫ v

0
β(τ ) dτ dv

= 3
∫ T

0

∣∣x0(v) – x0m (v)
∣∣2 dv + 6l2

2
∫ T

0

∫ v

0

∣∣k(u, v) – km(u, v)
∣∣2 du dv

+ 6l4
2
∫ T

0

∫ v

0

∣∣r(u, v) – rm(u, v)
∣∣2 du dv

+ αeαT
[

3
∫ T

0

∫ v

0

∣∣x0(τ ) – x0m (τ )
∣∣2 dτ dv

+ 6l2
2
∫ T

0

∫ t

0

∫ τ

0

∣∣k(s, τ ) – km(s, τ )
∣∣2 ds dτ dt

+ 6l4
2
∫ T

0

∫ v

0

∫ τ

0

∣∣r(u, τ ) – rm(u, τ )
∣∣2 du dτ dv

]

= 3I1 + 6l2
2I2 + 6l2

4I3 + αeαT[
3I4 + 6l2

2I5 + 6l2
4I6

]
.
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By using (19) and (20), we have

Ii ≤ wih2, i = 1, 2, . . . , 6.

So we can get

∫ T

0
E

∣∣em(v)
∣∣2 dv ≤ [(

3w1 + 6l2
2w2 + 6l4

2w3
)

+ αeαT(
3w4 + 6l2

2w5 + 6l4
2w6

)]
h2

≤ O
(
h2),

where constant wi > 0, i = 1, 2, . . . , 6.
The proof is completed. �

6 Numerical examples
In this section, some examples are given to verify the validity and rationality of the above
method.

Table 1 Whenm = 24, error means Em , error standard deviations Es , and confidence intervals are
given in this table

v Em Es 95% confidence interval for error mean
Lower Upper

1
16 2.1422688× 10–5 1.0711344× 10–6 8.4307964× 10–8 4.2416924× 10–6

2
16 6.9693462× 10–5 3.4846731× 10–6 1.7016633× 10–7 1.3799305× 10–5

3
16 6.0556726× 10–5 3.0278363× 10–6 1.4766843× 10–7 1.1990231× 10–5

4
16 5.9652419× 10–5 2.9826209× 10–7 2.1384868× 10–7 1.1811179× 10–5

5
16 2.9736896× 10–5 1.4868448× 10–6 6.69011884× 10–8 5.8879054× 10–6

Table 2 Whenm = 25, error means Em , error standard deviations Es , and confidence intervals are
given in this table

v Em Es 95% confidence interval for error mean
Lower Upper

1
32 2.2590513× 10–6 1.1295256× 10–6 4.5181026× 10–8 4.4729216× 10–6

2
32 8.7823046× 10–6 4.3911523× 10–6 1.7564609× 10–7 1.7388963× 10–5

3
32 1.1192231× 10–5 5.5961158× 10–6 2.2384463× 10–7 2.2160618× 10–5

4
32 1.1983301× 10–5 5.9916507× 10–6 2.3966603× 10–7 2.3726937× 10–5

5
32 3.9319526× 10–5 1.9659763× 10–5 7.8639053× 10–7 7.7852663× 10–6

Figure 1 m = 24, simulation result of the
approximate solution and exact solution for
Example 6.1
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Figure 2 m = 25, simulation result of the
approximate solution and exact solution for
Example 6.1

Figure 3 m = 24, simulation result of the approximate
solution and mean solution for Example 6.2

Figure 4 m = 25, simulation result of the
approximate solution and mean solution for
Example 6.2

Example 6.1 Consider the nonlinear SIVIE [6, 8]

x(v) = x0(v) – a2
∫ v

0
x(u)

(
1 – x2(u)

)
du + a

∫ v

0

(
1 – x2(u)

)
dB(u), v ∈ [0, 1),

where

x(v) = tanh
(
aB(v) + arctanh(x0)

)
.

In this example, a = 1
30 and x0(v) = 1

10 . The error means Em, error standard deviations
Es, and confidence intervals of Example 6.1 for m = 24 and m = 25 are shown in Table 1
and Table 2, respectively. The error means Em and error standard deviations Es are ob-
tained by 104 trajectories. Compared with Table 2 in [8], Em is smaller and the confidence
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interval is smaller under the same confidence level. Moreover, the comparison of exact
and approximate solutions of Example 6.1 for m = 24 and m = 25 is displayed in Fig. 1 and
Fig. 2, respectively.

Example 6.2 Consider the nonlinear SIVIE [17, 18]

x(v) = 1 +
∫ v

0
e–(v–u) sin

(
x(u)

)
du +

∫ v

0
e–(v–u) cos

(
x(u)

)
dB(u), v ∈ [0, 1).

The mean and approximate solutions of Example 6.2 for m = 24 and m = 25 are respec-
tively given in Fig. 3 and Fig. 4, where the mean solution is obtained by 104 trajectories.
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