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1 Introduction

Stochastic integral equations are widely applied in engineering, biology, oceanography,
physical sciences, etc. There systems are dependent on a noise source, such as Gaussian
white noise. As we all know, many stochastic Volterra integral equations do not have ex-
act solutions, so it makes sense to find more precise approximate solutions to stochastic
Volterra integral equations. There are different numerical methods to stochastic Volterra
integral equations, for example, orthogonal basis methods [1-10], wash series methods
[11, 12], and polynomials methods [13-16].

In [1], Fakhrodin studied linear stochastic It6—Volterra integral equations (SIVIEs)
through Haar wavelets (HWs). In [3], Maleknejad et al. also considered the same in-
tegral equations by applying block pulse functions (BPFs). In [9], Heydari et al. solved
linear SIVIEs by the generalized hat basis functions. Meanwhile, in line with the same
hat functions, Hashemi et al. also presented the numerical method of nonlinear SIVIEs
driven by fractional Brownian motion [8]. Moreover, Jiang et al. applied BPFs to solve
two-dimensional nonlinear SIVIEs [7]. In a general way, Zhang studied the existence and
uniqueness solution to stochastic Volterra integral equations with singular kernels and
constructed an Euler type approximation solution [17, 18].

Inspired by the discussion above, we use HWs to solve the following nonlinear SIVIE:

x(v) = xo(v) + /OV k(u,v)o (x(u)) du + /OV r(u, v),o(x(u)) dB(u), vel0,1), (1)
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where x(v) is an unknown stochastic process defined on some probability space (§2, F, P),
k(u,v) and r(u, v) are kernel functions for u, v € [0, 1), and xo(v) is an initial value function.
B(u) is a Brownian motion and fov r(u,v)p(x(u)) dB(u) is Ito integral. o and p are analytic
functions that satisfy some bounded and Lipschitz conditions.

In contrast to the above papers [1, 3, 7-9], the differences of this paper are as follows.
Firstly, we construct a preparation theorem to deal with the nonlinear analytic functions.
Secondly, the error analysis is strictly proved. Finally, compared with the reference [8], the
numerical solution is more accurate and the calculation is simpler because of the use of
HWs. Moreover, the rationality and effectiveness of this method can be further supported
by two examples.

The structure of the article is as follows.

In Sect. 2, some preliminaries of BPFs and HWs are given. In Sect. 3, the relationship
between HWs and BPFs is shown. In Sect. 4, the approximate solutions of (1) are derived.
In Sect. 5, the error analysis of the numerical method is demonstrated. In Sect. 6, the

validity and efficiency of the numerical method are verified by two examples.

2 Preliminaries

BPFs and HWs have been widely analysed by lots of scholars. For details, see references
(1, 3].

2.1 Block pulse functions
BPFs are denoted as

1 ih<v<(i+1)h,
Yi(v) =
0 otherwise,

fori=0,...,m—1,m=2fora positive integer L and 4 = %, velo,1).
The basic properties of BPFs are shown as follows:

(i) disjointness:

Yi(WM;(v) = 8¢ (v), (2)

where v € [0,1),4,j=0,1,...,m — 1, and §; is Kronecker delta;
(i) orthogonality:

T
| oot -ns;
0
(iii) completeness property: for every g € L2[0, 1), Parseval’s identity satisfies

2

, 3)

1 m
[ #war= tim Y@
i=0
where

1 1
G /0 2Oy dv.
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The set of BPFs can be represented by the following m-dimensional vector:

@, (1) = (Vo). Yma )", veE[0,1). )

From the above description, it yields

Yo 0 0
. 0 Y 0
wowio= :
0 0 Yl

mxm

v, =1,

¥, (WL (V)F,, = Dg, ¥,(v),

where F,, = (fo,fi,- -, fn_1)T and Dg,, = diag(E,,).
Furthermore, for an m x m matrix M, it yields

WL (M, (v) = MW, (v),

where M is an m-dimensional vector and its entries equal the main diagonal entries of M.
In accordance with BPFs, every function x(v) which satisfies square integrable conditions
in the interval [0, 1) can be approached as follows:

m-1
X(v) 2 x,(v) = Y xiv) = XL W,(v) = U, (X,

i=0

where the function x,,(v) is an approximation of the function x(v) and
Xpw = (%0, %15y Xm1) L. (5)
Similarly, every function k(u, v) defined on [0,1) x [0, 1) can be written as
k(u,v) = .} (1)K, (v),
where K = (kjj)m, xm, With

1

kl” ~
" by

1 1
f / K1ty ) (0) gy (v) s v, 6)
0 0

1 1
andh1: m—l,]’l2= m—2

2.2 Haar wavelets
The notation and definition of HWs are introduced in this section (also see [1]). The set
of orthogonal HWs is defined as follows:

hi(V)=2%h(2lV—Z), i=2'+2,0<z<2,1>0,i,l,z€eN,

Page 3 of 14
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where /y(v) =1, v € [0,1), and

1
-1

o
IA
<
N

h(v) =

[ N

NI
IA
<
A

For HWs /,,(v) defined in [0, 1), we have

1
/0 hi(V)h]‘(V) dv = Sij: (7)

where §; is the Kronecker delta.
In accordance with HWs, every function x(v) that satisfies square integrable conditions
can be approached as follows:

x(v) = coho(v) + Y _cihi(v), vel01),i=2'+20<z<2,1>0,Lz€N, ®)
i=1
where
1
¢i= / xWh()dv, i=0 or i=2'+z0<z<2,1>0zeN. ©)
0

We can see that when m = 2%, equation (8) can be rewritten as

m-1
x(v) = coho(v) + Y eihi(v), i=2'+20<z<2,1=0,1,...,L~1.
i=1
Obviously, the vector form is as follows:

*(v) ~ CTH,,(v) = HE (v)C,p, (10)

where H,, = (ho(v), i(v), ..., Hpu_1(v))T and C,, = (co,c1y ..., ¢mo1)! are HWs and Haar co-
efficients, respectively.

Similarly, every function k(u,v) defined on [0,1) x [0, 1) can be approached as follows:
k(u,v) = H;(M)I(Hm(v),

where K = (ki) xm with

1 p1
kij = / / k(u, v)hj(w)hj(v)dudv, i,j=0,1,...,m—1.
0o Jo

3 Haar wavelets and BPFs
Some lemmas about HWs and BPFs are introduced in this section. For a detailed descrip-
tion, see the reference [1].

Lemma 3.1 Suppose that H,,(v) and W,,(v) are respectively given in (10) and (4), H,,(v)
can be written in accordance with BPFs as follows:

H,(v) = QW (v), m=2%, (11)

Page 4 of 14
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where Q = (Qij)mxm and

: 2%-1
Qljzzéhi_l(é—), ij=1,2,...,mi-1=2120<z<2.
m

Proof See [1]. O
Lemma 3.2 Suppose that Q is given in (11), then we have

Q'Q=ml,
where 1 is an m x m identity matrix.
Proof See [1]. (I
Lemma 3.3 Suppose that F is an m-dimensional vector, we have

H,,(v)H},(v)F = FH,,(v),
where F is an m x m matrix and F = QFQ 1, F= diag(QTF).
Proof See [1]. O
Lemma 3.4 Suppose that M is an m x m matrix, we have

HI()MH,,(v) = MH,,(v),

where M = NTQ™ is an m-dimensional vector and the entries of the vector N are the diag-
onal entries of matrix Q' MQ.

Proof See [1]. O

Lemma 3.5 Suppose that ¥,,(v) is given in (4), we have

v
/lllm(u)du:PlI/m(v),
0
where
2 2 2
01 2
P=-]0 0
0 0 O 1

mxXm

Proof See [1, 3]. O
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Lemma 3.6 Suppose that ¥,,(v) is given in (4), we have

/ () dB() = P,
0

where
B(3) B B(h) - B(h)
0 B(%)-B(h) B(2h)-B(h) - B(2h) - B(h)
py=| O 0 B(3})-B(2h) - B(3h) - B(2h)
0 0 0 o B _B(m-1h) )
Proof See [1, 3]. O

Lemma 3.7 Suppose that H,,(v) is given in (10), we have
14 1 T
H,,(u) du ~ —QPQ" H,,(v) = AH,,(v),
0 m

where Q and P are respectively given in (11) and Lemma 3.3, A = %QPQT.
Proof See [1, 3]. O

Lemma 3.8 Suppose that H,,(v) is given in (10), we have
v 1 T
H,(u) dB(u) ~ ZQPBQ Hyu(v) = AgHpy(v),
0

where Q and Pg are respectively given in (11) and Lemma 3.3 and Ag = iQPBQT.
Proof See [1, 3]. O

4 Numerical method
For convenience, we set m; = m, = m and nonlinear SIVIE (1) can be solved by HWs.
Firstly, a useful result for HWs is proved.

Theorem 4.1 For the analytic functions o (v) = Zajvj, p(v) = Zbﬂ/ and j is a positive
integer, then

o (xm(v)) = T(C,)H,,(v),

p(En(¥) = P (Co) Hn (V)

where H,,,(v) and C,, are derived in (10),

GT(Cm) = (U(CO)»U(CI)’ .. ~»G(Cm—1));

P (Cw) = (p(co), plc1)s..s plCm-))-
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Proof According to the disjointness property of HWs, we can deduce

o (6m®) = Y a(xm(v))
= Zﬂj(Coho(V) o)+ + Cm—lhm—l(V))j
= Zaj(c{),cji,...,cj;”_l)Hm(V)

= o (C)Hu(v),
thus,
o (xm(¥) = 0T (C)Hu(v) = HE (V)5 (Cp). (12)
Similarly,
p(xm() = pT(C)Hn(v) = Hy () p(Cp).- (13)
The proof is completed. O

Now, in order to solve (1), we approximate x(v), xo(v), k(«,v), and r(x,v) in following

forms by HWs:
x(v) ~x,,(v) = CZHW,(V) = HZ;(V)Cm, (14)
x0(V) 2 x0,,(v) = Cor, Hyn(v) = HE (V) Copy (15)
k(u,v) ~ k,,(u,v) = HZ;(M)KHm(V) = Han(v)KTHm(u), (16)
r(u,v) >~ ry,(u,v) = H,i(u)RHm(V) = HZ(V)RTHm(u), 17)

where C,, and Cy,, are HWs coefficient vectors, K and R are HWSs coefficient matrices.
Substituting approximations (12)—(17) into (1), we have

ChHyu(v) = CopHou(v) + H L (VKT /0 VHm(u)HT(u)o(Cm)du
+ H},;(V)RT /OVHm(u)Hi(u)p(Cm) dB(u).
By Lemma 3.3, we get
CTH,,(v) = CoL H,y(v) + HE (VKT /O Vo(”cm)Hm(u) du
+HI(»)RT /0 Vp(é’m)Hm(u) dB(u).
Applying Lemmas 3.7 and 3.8, we get

CLH,y(v) = Col Hy(v) + HE (WK 6 (Crp) AHy(v) + HL(WRT p(C,) ApHy(v),
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then by Lemma 3.4, we derive
CTH(v) = CoLH(v) + ALH(v) + BLH(v), (18)
where Ag = K76(C,,)A and By = R p(C,,) A 5.
For nonlinear equation (18), a series of methods, such as simple trapezoid method,

Simpson method, and Romberg method, are often introduced in the numerical analysis

courses. In this paper, the function of fsolve in MATLAB is used to solve equation (18).

5 Error analysis
In contrast to the articles [1, 3], we will give a strict and accurate error analysis in this

section. Firstly, we recall two useful lemmas.

Lemma 5.1 Suppose that function x(u), u € [0,1) satisfies the bounded condition and

e(u) = x(u) — x,,(u), where x,,(u) is m approximations of HWs of x(u), then

1
lelsgqn = | < 001, (19)

Proof See [1]. O
Lemma 5.2 Suppose that the function x(u,v) satisfying the bounded condition is defined

on D =[0,1) x [0,1) and e(u,v) = x(u,v) — x,,,(ts, V), where x,,(u,v) is m approximations of
HWs of x(u,v), then

1,1
||e||%2(D) = /(; /0 e*(u,v)dudv < O(h?). (20)
Proof See [1]. O

Secondly, let e(v) = x(v) — x,,,(v), where x,,(v), %o, (V), k(4 v), and r,,, (1, v) are m approx-
imations of Haar wavelets of x(v), xo(v), k(, v), and r(u, v), respectively.

e(v) = x(v) = xn(v)

= x0(v) — %0,,(v)

+ / [k, v)o (x(10)) = Ko (11, V)& (%0 (10)) | s
0

+ / [r(u, v)p (x(u)) — (1, v),o(xm(u))] dB(u). (21)
0

Lastly, the main convergence theorem is proved.
Theorem 5.1 Suppose that analytic functions o and p satisfy the following conditions:
(©) lo(x) oWl <hlx-yl, o) - pO)I < Lslx - yl;

(i) lo@)| <b, o) <l

(iii) kG, )| <15, |r(u,v)| <1,
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where x,y € R, constant [; >0,i=1,2,...,6. Then
T 2 T 2
/ E(’em(v)‘ )dv = / E(‘x(v) —xm(v)| )dv < O(hz), T €[0,1).
0 0
Proof For (21), we have

E(|en()]’) < s[E(wv) —x0,)[")

On the basis of Lipschitz continuity, It6 isometry, and Cauchy—Schwarz inequality, it

)

/0 (r(u, v)o (2(10)) = 1 (11, V) p (2, (11)) ) dB()

/Ov(k(u, v)o (x(u)) — 1y, v)o (xm(u))) du

yields
B(len)]") =3 E(300) - 50, 0)])
+IE< / |11, V)0 ((18)) = Ko (11, V)0 (36 (1)) | du>
+IE< f 11(0,9)p (5(0)) = 10, 9) () du)}
_ 3[E(|x0(v)_xom<v)| )

+ /0 ]E(‘k(u, V) (cr (x(u)) -0 (xm(u)))
+ 0 (% (1)) (K (1, V) = (11, ) [*) s

+ /0 E(|r(u,v) (o (x(1)) = p(%m(w)))
+ ,o(xm(u)) (r(u, V) — 1 (1, v)) |2) du]

< B[Ixo(‘/) — %0, )|

+2112152/ E(|em(u)|2)du+2122/ |k (24, v) = ko, )| s
0 0

}

+205°1g? / E(|en(w)|*) du + 21, / P, v) = Py, v) | s
0 0

Then we can get
E(|en(v)]?) < 3[|xo(v) — %0, ()| + 2122/V|/<(u, V) = ko (14, V)| da
0
TRl o Zd]
+ 4/0|r(uv) r(uv)| u

+6(112152 + 132162)/ II":(|“3m(”‘)|2) du,
0

Page 9 of 14
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or
2((en]’) = 50+ [ B(len(w)]')
0
BW) = 3[\xo(v> %, )|

+ 2y /V|k(u, V) = kot v) | s + 2, /V|r(u, V) = (i, v)|2du],
0 0

o= 6(112152 + 132162)'

Let f(v) = E(le,n(v)[?), we get

F0) < B0) + /0 faydr, telow)

By Gronwall’s inequality, it follows that

f(V)Sﬂ(v)+a/0ve°‘("’t)ﬁ(r)dr, vel0,1).

Then

T
[ rora
0
T
=/0 E(|em(v)|2)dv
T v
o(v-T)
S/O (ﬁ(v)ﬂx/0 e ﬂ(r)dt)dv
T T v
— d a(v-1) dr d
[ v [ [ e pwanan

s[OTﬁ(v)dv+ae“T/OT/OVﬂ(r)drdv

T T prv
zgf |x0(v)—x0m(v)|2dv+6122/ / | (24, v) = Ko (a1, V)| ddlv
0 0 0
T prv )
+6l42/ / |I’(M, V) — r(u, V)| dudv
0 0

T v
+ae°‘T[3/ / |x0(t)—xom(r)|2dr dv
o Jo

T pt T
+6122/ //|k(s,1:)—km(s,r)|2dsdtdt
0 0 JO

T pv T
+6l42/ //|r(u,f)—rm(u,t)|2dudrdv]
0 0 Jo

=311 +6l5L + 61315 + ae® [31, + 61515 + 61315
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By using (19) and (20), we have
L<wh? i=1,2,...,6.

So we can get

T
/ IE‘l|e,,,(v)’2 dv < [(3w1 + 62wy + 6[42W3) + oze“T(3w4 + 602 ws + 6142w6)]h2
0
<O(K*),

where constant w; >0,i=1,2,...,6.
The proof is completed. O

6 Numerical examples
In this section, some examples are given to verify the validity and rationality of the above
method.

Table 1 When m =24, error means En, error standard deviations £, and confidence intervals are
given in this table

v

Em

Es

95% confidence interval for error mean

Lower

Upper

o > Sl sl &l

o

21422688 x 107
6.9693462 x 107
6.0556726 x 10™
59652419 x 10™
29736896 x 107

10711344 x 107°
34846731 x 107°
30278363 x 107°
29826209 x 107/
14868448 x 107°

84307964 x 1078
17016633 x 1077
14766843 x 107/
2.1384868 x 107/
669011884 x 1078

42416924 x 107°
13799305 x 107
1.1990231 x 107
11811179 x 10™
5.8879054 x 1076

Table 2 When m = 23, error means E,, error standard deviations £, and confidence intervals are
given in this table

1% Em Es 95% confidence interval for error mean
Lower Upper

> 22590513 x 10°7° 1.1295256 x 107 4.5181026 x 1078 44729216 x 10
2 8.7823046 x 107° 43911523 x 1070 17564609 x 1077 17388963 x 107
2 1.1192231 x 107 55961158 x 107 2.2384463 x 1077 22160618 x 107
& 11983301 x 10™ 59916507 x 107° 2.3966603 x 1077 23726937 x 107
5

32

3.9319526 x 107°

19659763 x 107

78639053 x 107/

7.7852663 x 107°

Figure 1 m = 2% simulation result of the
approximate solution and exact solution for
Example 6.1

0.08

0.22

T T T
—6— Approximation solution
—*— Exact solution

0.1

02 03 04 05

0.6

07 08 09 1
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Figure 2 m = 2°, simulation result of the 0.105 : . , .
approximate solution and exact solution for
Example 6.1 0.1

0.095 7

0.085 [

0.075 L L L L L L L L L
0

Figure 3 m = 2% simulation result of the approximate 17

. . —&— Approximation solution
solution and mean solution for Example 6.2 1.6 | Mean solution -t

o *
15 e/8 K
/*/¥
1.4 - e 1
A
13 /K/* ]
1.2 - 1
g o

0 01 02 03 04 05 06 07 08 09 1

Figure 4 m = 2>, simulation result of the
approximate solution and mean solution for
Example 6.2

Example 6.1 Consider the nonlinear SIVIE [6, 8]
x(v) = xo(v) — a? /va(u)(l — xz(u)) du+a /Ov(l —xz(u)) dB(u), vel0,1),
where
x(v) = tanh(aB(v) + arctanh(xo)).
In this example, a = % and xo(v) = %. The error means E,,, error standard deviations
E,, and confidence intervals of Example 6.1 for m = 2* and m = 25 are shown in Table 1

and Table 2, respectively. The error means E,, and error standard deviations E; are ob-
tained by 10* trajectories. Compared with Table 2 in [8], E,, is smaller and the confidence

Page 12 of 14
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interval is smaller under the same confidence level. Moreover, the comparison of exact
and approximate solutions of Example 6.1 for m = 2* and m = 2° is displayed in Fig. 1 and
Fig. 2, respectively.

Example 6.2 Consider the nonlinear SIVIE [17, 18]
14 v
x(v)=1+ / e ¥ sin(x(u)) du + / e cos(x(u)) dB(u), vel0,1).
0 0

The mean and approximate solutions of Example 6.2 for m = 2% and m = 2° are respec-
tively given in Fig. 3 and Fig. 4, where the mean solution is obtained by 10* trajectories.
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