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Abstract
The stability problem of linear systems with time-varying delays is studied by
improving a Lyapunov–Krasovskii functional (LKF). Based on the newly developed LKF,
a less conservative stability criterion than some previous ones is derived. Firstly, to
avoid introducing the terms with h2(t), which are not convenient to directly use the
convexity of linear matrix inequality (LMI), the type of integral terms
{∫ t

s ẋ(u)du,
∫ s
t–h ẋ(u)du} is used in the LKF instead of {∫ t

s x(u)du,
∫ s
t–h x(u)du}. Secondly,

two couples of integral terms {∫ t
s ẋ(u)du,

∫ s
t–h(t) ẋ(u)du}, and {∫ t–h(t)

s ẋ(u)du,
∫ s
t–h ẋ(u)du}

are supplemented in the integral functionals
∫ t
t–h(t) ẋ(u)du and

∫ t–h(t)
t–h ẋ(u)du,

respectively, so that the time delay, its derivative, and information between them can
be fully utilized. Thirdly, the LKF is further augmented by two delay-dependent
non-integral items. Finally, three numerical examples are presented under two
different delay sets, to show the effectiveness of the proposed approach.

Keywords: Delay-dependent stability; Lyapunov–Krasovskii functional; Linear matrix
inequalities; Time-delayed system; Time-varying delay

1 Introduction
Time delays are of frequent occurrence in many practical systems, which often results
in the major source of poor performance and instability. The stability problems of time-
delayed systems have been a hot research topic. In this paper, the stability problems of
time-delayed linear systems will be further analyzed via the LKF method application. The
time-delayed linear system is described as follows:

⎧
⎨

⎩

ẋ(t) = Ax(t) + Adx(t – h(t)),

x(s) = ψ(s), s ∈ [–h, 0],
(1)

where x(t) ∈ R
n is the state vector of the system. A and Ad are real constant matrices

with appropriate dimensions. h(t) is the time-varying delay, which is a continuous and
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differentiable functional satisfying the following constraint condition:

0 ≤ h(t) ≤ h,
∣
∣ḣ(t)

∣
∣ ≤ μ < 1, ∀t ≥ 0, (2)

where h and μ are positive constants.
To analyze the stability problem of system (1) based on the Lyapunov theorem [1–5], the

main efforts are concentrated on the following several directions: one is finding an appro-
priate LKF, for example, LKF with delay partitioning approach [6–9], LKF with augmented
terms [10–12], LKF with triple-integral and quadruple-integral terms [13, 14], and so on.
The other is reducing the upper bounds of the time derivative of LKF as much as possible
by developing various inequality techniques, such as Jensen inequality [15], Wirtinger-
based inequality [16], auxiliary function based inequality [17], Bessel–Legendre inequal-
ity [18], and so on. Besides, further increasing the freedom of solving LMI, additional
free-weighting-matrix technique is frequently introduced into the derivatives of LKF, for
instance, the generalized zero equality [19], the one or second-order reciprocally convex
combination [20–22], the free-weighting-matrix approach [23], and so on. Inspired by the
research of [16–18, 24, 25], the tighter inequality technique seems to lead to less con-
servative stability criteria. Recently, Zhang [26] considered the effect of the LKFs while
discussing the relationship between the inequality technique and the conservatism of re-
sults. The results illustrate that the integral inequality that makes the upper bound closer
to the true value does not always reduce the conservatism of the corresponding stability
results unless an appropriate LKF is constructed. Thus, it is very important to construct
a proper LKF. Recently, a novel LKF with the single integral items deliberately augmented
by adding state derivative-related integral terms was proposed by Lee et al. [27] as follows:

V (t) = η1(t)T Pη1(t) +
∫ t

t–h(t)
η2(t, s)T Qη2(t, s) ds

+
∫ t–h(t)

t–h
η2(t, s)T Sη2(t, s) ds +

∫ 0

–h

∫ t

t+θ

ẋT (s)Rẋ(s) ds dθ , (3)

where P > 0, Q > 0, S > 0, and R > 0 are the corresponding Lyapunov matrices which need
to be determined and

ηT
1 (t) =

[
xT (t) xT (t – h(t)) xT (t – h)

∫ t
t–h(t) x(s) ds

∫ t–h(t)
t–h x(s) ds

1
h(t)

∫ 0
–h(t)

∫ t
t+θ

x(s) ds dθ 1
h–h(t)

∫ –h(t)
–h

∫ t–h(t)
t+θ

x(s) ds dθ

]
,

ηT
2 (t, s) =

[
xT (s) ẋT (s)

∫ t
s ẋT (u) du

∫ s
t–h ẋT (u) du

]
.

Compared with the LKFs proposed in [28], η1(t) included the state-related vectors, that
is, single- and double-integral terms, to coordinate with the application of the second-
order affine Bessel–Legendre inequality; and to avoid introducing the terms with h2(t),
the integral items

∫ t
s ẋ(u) du and

∫ s
t–h ẋ(u) du were added into the integrand vector η2(t, s)

instead of
∫ t

s x(u) du and
∫ s

t–h x(u) du, which can be solved conveniently by Matlab LMI-
Tool box. A less conservative stability condition than some previous ones was obtained in
[27] via LKF (3). However, if the integral terms

∫ t
s ẋ(u) du and

∫ s
t–h ẋ(u) du are divided into



Duan et al. Advances in Difference Equations         (2020) 2020:21 Page 3 of 13

{∫ t
s ẋ(u) du,

∫ s
t–h(t) ẋ(u) du}, and {∫ t–h(t)

s ẋ(u) du,
∫ s

t–h ẋ(u) du}, respectively, rather than con-
sidering about them directly, the relationships of part η2(t, s)-related states can be tightly
characterized by correlative Lyapunov matrices. So, there is still room for improvement
in the conservatism of stability conditions by constructing a new LKF based on the above
analysis.

This paper contributes to the stability problem of time-delayed linear systems via a
new LKF application. Firstly, the type of integral terms {∫ t

s ẋ(u) du,
∫ s

t–h ẋ(u) du} is cho-
sen in the LKF instead of {∫ t

s x(u) du,
∫ s

t–h x(u) du}. Secondly, two couples of integral terms
{∫ t

s ẋ(u) du,
∫ s

t–h(t) ẋ(u) du}, and {∫ t–h(t)
s ẋ(u) du,

∫ s
t–h ẋ(u) du} are involved in η2(t, s), respec-

tively, such that the time delay, its derivative and some single integral-related states in-
formation between them can be tightly characterized by correlative Lyapunov matrices.
Finally, a less conservative stability criterion than some existing ones is given based on the
new LKF.

For intuitive and simple understanding, the main contributions are summed up as fol-
lows:

• Two integral terms {∫ t
s ẋ(u) du,

∫ s
t–h(t) ẋ(u) du}, and {∫ t–h(t)

s ẋ(u) du,
∫ s

t–h ẋ(u) du} are
supplemented in the integrand vectors η2(t, s), respectively, which can be seen as a
complement to the terms {∫ t

t–h(t) ẋ(u) du and
∫ t–h(t)

t–h ẋ(u) du}. The time delay, its
derivative, and some single integral-related states information between them can be
fully utilized through the Lyapunov matrices Q1 and Q2.

• The type of integral terms {∫ t
s ẋ(u) du,

∫ s
t–h ẋ(u) du} is chosen in the integrand vectors

η2(t, s) of the LKF instead of {∫ t
s x(u) du,

∫ s
t–h x(u) du}, which can be solved

conveniently by using the convexity of LMI without introducing any additional
inequalities.

• The affine Bessel–Legendre inequality proposed in [27] is used to bound the
derivative of the LKF instead of Bessel–Legendre inequality proposed in [18], because
the former is the affine version of the length of the integral interval not the reciprocal
of the integral interval, that is, b – a is linear in affine Bessel–Legendre inequality,
which can be easily solved by the convex property.

Notation P > 0 (< 0) means that matrix P is a positive (negative) definite matrix. In and
0n represent an n-dimensional unit matrix and an n-dimensional zero matrix. diag{· · · }
stands for a block-diagonal matrix, and ei (i = 1, . . . , m) are block entry matrices with eT

3 =
[0 0 I 0 · · ·0︸ ︷︷ ︸

m–3

], where m is the length of the vector ξ (t) in theorems and corollaries. ∗ denotes

the symmetric terms in a block matrix. F[h(t), d(t)], G[x(t)] denote F , G are the functions
of h(t), d(t), and x(t), respectively. Sym{B} = B + BT .

2 Problem formulation
This paper mainly derives a new stability criterion for the time-delayed linear system (1)
satisfying condition (2) via a modified LKF application. To achieve this purpose, the fol-
lowing lemma is very important.

Lemma 1 (Affine Bessel–Legendre inequality [27]) For given matrices R > 0, X and a con-
tinuous and differentiable function {x(s) | s ∈ [a, b]}, the following integral inequality holds
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for all integer N ∈N:

∫ b

a
ẋT (s)Rẋ(s) ds ≥ ξT

N
[
XHN + HT

N XT – (b – a)XR̃–1XT]
ξN , (4)

where

ξN =

⎧
⎨

⎩

[xT (b) xT (a)]T , if N = 0,

[xT (b) xT (a) 1
b–aΩT

0 · · · 1
b–aΩT

N–1]T , if N > 0,

ΓN (k) =

⎧
⎨

⎩

[In – In], if N = 0,

[In (–1)k+1In γ 0
NkIn · · · γ N–1

Nk In], if N > 0,

Ωk =
∫ b

a
Lk(s)x(s) ds, γ i

Nk =

⎧
⎨

⎩

–(2i + 1)(1 – (–1)k+i), if i ≤ k,

0, if i ≥ k + 1,

Lk(s) = (–1)k
k∑

l=0

[

(–1)l

(
k
l

)(
k + l

l

)](
s – a
b – a

)l

,

HN =
[
Γ T

N (0) Γ T
N (1) · · · Γ T

N (N)
]T

, R̃ = diag
{

R, 3R, . . . , (2N + 1)R
}

.

3 Main results
3.1 A modified LKF
For simplicity of presentation, we define the following notations:

hd = 1 – ḣ(t), h12 = h – h(t), v1(t) =
∫ t

t–h(t)

x(s)
h(t)

ds, v2(t) =
∫ t–h(t)

t–h

x(s)
h12

ds,

u1(t) =
∫ 0

–h(t)

∫ t

t+θ

x(s)
h2(t)

ds dθ , u2(t) =
∫ –h(t)

–h

∫ t–h(t)

t+θ

x(s)
h2

12
ds dθ ,

ζ T (t) =
[

xT (t) xT (t – h(t)) xT (t – h) h(t)vT
1 (t) h12vT

2 (t) h(t)uT
1 (t) h12uT

2 (t)
]

,

ζ T
a (t) =

[
xT (t) xT (t – h(t)) xT (t – h) vT

1 (t) uT
1 (t)

]
,

ζ T
b (t) =

[
xT (t) xT (t – h(t)) xT (t – h) vT

2 (t) uT
2 (t)

]
,

ηT
1 (t, s) =

[
xT (s) ẋT (s)

∫ t
s ẋT (u) du

∫ s
t–h(t) ẋT (u) du

]
,

ηT
2 (t, s) =

[
xT (s) ẋT (s)

∫ t–h(t)
s ẋT (u) du

∫ s
t–h ẋT (u) du

]
,

ξT (t) =
[
xT (t) xT (t – h(t)) xT (t – h) ẋT (t) ẋT (t – h(t)) ẋT (t – h)

vT
1 (t) vT

2 (t) uT
1 (t) uT

2 (t)
]

.

Now, we construct the following new LKF:

V (t) = ζ (t)T Pζ (t) + h(t)ζ (t)T
a Paζa(t) + h12ζb(t)T Pbζb(t) +

∫ t

t–h(t)
η1(t, s)T Q1η1(t, s) ds

+
∫ t–h(t)

t–h
η2(t, s)T Q2η2(t, s) ds +

∫ 0

–h

∫ t

t+θ

ẋT (s)Rẋ(s) ds dθ , (5)
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where P > 0, Pa > 0, Pb > 0, Q1 > 0, Q2 > 0, and R > 0 are the corresponding Lyapunov
matrices which need to be determined.

Remark 1 Compared with LKFs (3) in this paper and (7) in [29], two delay-dependent
terms h(t)ζ (t)T

a Paζa(t), h12ζb(t)T Pbζb(t) are added into the non-integral items and two
different vectors η1(t, s) and η2(t, s) in the new LKF (5) are further augmented by sup-
plementing

∫ s
t–h(t) ẋ(u) du and

∫ t–h(t)
s ẋ(u) du corresponding to different integral intervals,

respectively, so that two different integral intervals [t – h(t), t] and [t – h, t – h(t)] corre-
spond to two different integral vectors η1(t, s) and η2(t, s), not just the same integral vector
[xT (s) ẋT (s)

∫ t
s ẋT (u) du

∫ s
t–h ẋT (u) du]. Moreover, for the domain of integration, the whole

integral domain of
∫ t

t–h(t) ẋ(s) ds and
∫ t–h(t)

t–h ẋ(s) ds is just the sum of the two integral do-
mains of the integral items

∫ s
t–h(t) ẋ(u) du and

∫ t
s ẋ(u) du and the sum of the two integral

domains of the integral items
∫ s

t–h ẋ(u) du and
∫ t–h(t)

s ẋ(u) du, respectively. Thus, the two
supplementary integral items can be seen as the complements to the terms

∫ t
s ẋ(u) du and

∫ s
t–h ẋ(u) du, where the time delay, its derivative, and some single integral-related states

coupling information between them can be tightly characterized through the positive-
definite matrices Q1 and Q2. Three numerical examples in Sect. 4 will show that it is very
helpful for the two complementary terms to reduce the conservatism of the stability cri-
terion.

Remark 2 Recently, LKFs with
∫ b

a x(u) du in η1(t, s) and η2(t, s) instead of
∫ b

a ẋ(u) du were
constructed in [11, 28], which was aimed at coordinating with the second-order B-L inte-
gral inequality with the integral items u1(t) and u2(t). However, they had to introduce
the terms with h2(t) when bounding the derivative of the LKFs, which led to adding
some additional inequality constraints into the main results. Indeed, the coupling rela-
tionship between the two integral items u1(t) and u2(t) already included in the derivative
of ζ (t)T Pζ (t). Thus, to avoid introducing the terms with h2(t), the type of

∫ b
a ẋ(u) du inte-

gral items is chosen in η1(t, s) and η2(t, s), respectively, which can be solved conveniently
by using the convexity of LMI without introducing any additional inequality constraints.

Remark 3 The time delay concerned in this paper is time varying, differentiable and
its change rate should be smaller than 1. Indeed, the delay may be undifferentiable for
some practical systems [30, 31]. Thus, our methods can be extended to the case of un-
differentiable delay by reconstructing some augmented terms in our LKF. For example,
ζ T (t) = [xT (t) xT (t – h)

∫ t
t–h xT (s) ds

∫ 0
–h

∫ t
t+θ

xT (s) ds dθ ],
∫ t

t–h ηT
1 (t, s)Qη1(t, s), and so on.

3.2 Stability conditions
Theorem 1 For given values of h ≥ 0, μ < 1, if there exist real positive definite matrices
P ∈ R

7n×7n, (Pa, Pb ∈ R
5n×5n), (Qi ∈ R

4n×4n), (R ∈ R
n×n) and any matrices (Ū ∈ R

3n×n),
Xi ∈ R

4n×3n (i = 1, 2) such that the following LMIs hold for d ∈ {–μ,μ}, then system (1) is
stable under constraint conditions (2):

[
Π [0, d] hE2X2

∗ –hR̃

]

< 0, (6)

[
Π [h, d] hE1X1

∗ –hR̃

]

< 0, (7)



Duan et al. Advances in Difference Equations         (2020) 2020:21 Page 6 of 13

where

Π
[
h(t), ḣ(t)

]
= Sym

{
Π1

[
h(t), ḣ(t)

]}
+ Π2

[
ḣ(t)

]
+ Π3,

Π1
[
h(t), ḣ(t)

]
= Δ1PaΩ

T
1 + Δ2PbΩ

T
2 + G0

[
h(t)

]
PGT

1
[
ḣ(t)

]

+ Π1ŪΠT
2 + G2

[
h(t)

]
Q1GT

3
[
ḣ(t)

]
+ G4

[
h(t)

]
Q2GT

5
[
ḣ(t)

]
,

Δ1 =
[
e1 e2 e3 e7 e9

]
, Δ2 =

[
e1 e2 e3 e8 e10

]
,

Ω1 =
[
h(t)e4 h(t)hde5 h(t)e6 e1 – hde2 – ḣ(t)e7 e1 – hde7 – 2ḣ(t)e9

]
,

Ω2 =
[
h12e4 h12hde5 h12e6 hde2 – e3 + ḣ(t)e8 hde2 – e8 + 2ḣ(t)e10

]
,

G0
[
h(t)

]
=
[
e1 e2 e3 h(t)e7 h12e8 h(t)e9 h12e10

]
,

G1
[
ḣ(t)

]
=

[
e4 hde5 e6 e1 – hde2 hde2 – e3 e1 – hde7 – ḣ(t)e9

hde2 – e8 + ḣ(t)e10

]
,

G2
[
h(t)

]
=
[
h(t)e7 e1 – e2 h(t)(e1 – e7) h(t)(e7 – e2)

]
,

G3
[
ḣ(t)

]
=
[
0 0 e4 –hde5

]
,

G4
[
h(t)

]
=
[
h12e8 e2 – e3 h12(e2 – e8) h12(e8 – e3)

]
,

G5
[
ḣ(t)

]
=
[
0 0 hde5 –e6

]
,

Π2
[
ḣ(t)

]
= ḣ(t)Δ1PaΔ

T
1 – ḣ(t)Δ2PbΔ

T
2

+
[

e1 e4 0 e1 – e2

]
Q1

[
e1 e4 0 e1 – e2

]T

– hd

[
e2 e5 e1 – e2 0

]
Q1

[
e2 e5 e1 – e2 0

]T

+ hd

[
e2 e5 0 e2 – e3

]
Q2

[
e2 e5 0 e2 – e3

]T

–
[
e3 e6 e2 – e3 0

]
Q2

[
e3 e6 e2 – e3 0

]T
,

Π3 = he4ReT
4 – E1

[
X1H + HT XT

1
]
ET

1 – E2
[
X2H + HT XT

2
]
ET

2 ,

E1 =
[
e1 e2 e7 e9

]
, E2 =

[
e2 e3 e8 e10

]
,

R̃ = diag{R, 3R, 5R}, Π1 =
[
e1 e2 e4

]
, Π2 = e1AT + e2AT

d – e4,

H =

⎡

⎢
⎣

In –In 0n 0n

In In –2In 0n

In –In 6In –12In

⎤

⎥
⎦ .

Proof Construct LKF (5). The time derivative of V (t) with respect to time is as follows:

V̇ (t) = 2ζ T (t)Pζ̇ (t) + 2h(t)ζ T
a (t)Paζ̇a(t) + 2h12ζ

T
b (t)Pbζ̇b(t)

+ ḣ(t)ζ T
a (t)Paζa(t) – ḣ(t)ζ T

b (t)Pbζb(t)
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+ ηT
1 (t, t)Q1η1(t, t) – hdη

T
1
(
t, t – h(t)

)
Q1η1

(
t, t – h(t)

)

+ hdη
T
2
(
t, t – h(t)

)
Q2η1

(
t, t – h(t)

)
– ηT

2 (t, t – h)Q2η2(t, t – h)

+ 2
∫ t

t–h(t)
ηT

1 (t, s)Q1
∂(η1(t, s))

∂t
ds + 2

∫ t–h(t)

t–h
ηT

2 (t, s)Q2
∂(η2(t, s))

∂t
ds

+ hẋT (t)Rẋ(t) –
∫ t

t–h
ẋT (s)Rẋ(s) ds.

We can get the following facts:

ζ T (t) = ξT (t)
[
e1 e2 e3 h(t)e7 h12e8 h(t)e9 h12e10

]
, (8)

ζ̇ (t) =
[
e4 hde5 e6 e1 – hde2 hde2 – e3 e1 – hde7 – ḣ(t)e9

hde2 – e8 + ḣ(t)e10

]T
ξ (t), (9)

ζ T
a (t) = ξT (t)

[
e1 e2 e3 e7 e9

]
,

ζ T
b (t) = ξT (t)

[
e1 e2 e3 e8 e10

]
,

(10)

h(t)ζ̇a(t) =
[

h(t)e4 h(t)hde5 h(t)e6 e1 – hde2 – ḣ(t)e7 e1 – hde7 – 2ḣ(t)e9

]T
ξ (t),

(11)

h12ζ̇a(t) =
[

h12e4 h12hde5 h12e6 hde2 – e3 + ḣ(t)e8 hde2 – e8 + 2ḣ(t)e10

]T
ξ (t),

(12)

ηT
1 (t, t) = ξT (t)

[
e1 e4 0 e1 – e2

]
,

ηT
1
(
t, t – h(t)

)
= ξT (t)

[
e2 e5 e1 – e2 0

]
,

(13)

ηT
2
(
t, t – h(t)

)
= ξT (t)

[
e2 e5 0 e2 – e3

]
,

ηT
2 (t, t – h) = ξT (t)

[
e3 e6 e2 – e3 0

]
,

(14)

∫ t

t–h(t)
ηT

1 (t, s) ds = ξT (t)
[
h(t)e7 e1 – e2 h(t)(e1 – e7) h(t)(e7 – e2)

]
, (15)

∫ t–h(t)

t–h
ηT

2 (t, s) ds = ξT (t)
[
h12e8 e2 – e3 h12(e2 – e8) h12(e8 – e3)

]
, (16)

∂(η1(t, s))
∂t

=
[
0 0 e4 –hde5

]T
ξ (t), (17)

∂(η2(t, s))
∂t

=
[
0 0 hde5 –e6

]T
ξ (t). (18)

For any appropriately dimensioned matrices ŪT = [UT
1 UT

2 UT
3 ], it is true that

0 = 2ξT (t)
[
e1 e2 e4

]
Ū

[
Āx(t) + Ādx

(
t – h(t)

)
– ẋ(t)

]
. (19)
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It follows from Lemma 1 with N = 2 that

–
∫ t

t–h
ẋT (s)Rẋ(s) ds = –

∫ t

t–h(t)
ẋT (s)Rẋ(s) ds –

∫ t–h(t)

t–h
ẋT (s)Rẋ(s) ds

≤ –ξT (t)E1
[
X1H + HT XT

1 – h(t)X1R̃–1XT
1
]
ET

1 ξ (t)

– ξT (t)E2
[
X2H + HT XT

2 – h12X2R̃–1XT
2
]
ET

2 ξ (t).

Finally, from the above derivation, we have

V̇ (t) ≤ ξT (t)
{
Π

[
h(t), ḣ(t)

]
+ h(t)E1X1R̃–1XT

1 ET
1 + h12E2XT

2 R̃–1X2ET
2
}
ξ (t). (20)

Then one can see that Π [h(t), ḣ(t)] + h(t)E1X1R̃–1XT
1 ET

1 + h12E2XT
2 R̃–1X2ET

2 is linear on
the two time delay variables h(t) and ḣ(t). Thus, inequalities (6)–(7) hold for h(t) ∈ [0, h],
ḣ(t) ∈ [–μ,μ], which implies that V̇ (t) < 0 by the transformation of Schur complement
equivalence. This shows that system (1) is stable from Lyapunov stability theory, which
completes the proof. �

Remark 4 Indeed, Theorem 1 can be generalized to an N-dependent stability crite-
rion based the N-dependent affine Bessel–Legendre inequality. For the sake of sim-
plicity, N = 2 is chosen in this paper. Therefore, in the case of N > 2, an appro-
priate LKF can be obtained by adding the following form of state vectors in ζ T (t),
ζ T

a (t), and ζ T
b (t): vN (t) =

∫ 0
–h(t)

∫ t
t+θ1

∫ t
t+θ2

· · · ∫ t
t+θN–1

x(s)
hN–1(t) ds dθN–1 dθN–2 · · · dθ1 and v̄N (t) =

∫ –h(t)
–h

∫ t–h(t)
t+θ1

∫ t–h(t)
t+θ2

· · · ∫ t–h(t)
t+θN–1

x(s)
hN–1

12 (t)
ds dθN–1 dθN–2 · · · dθ1. So the stability criterion derived

via the N-dependent LKF is also hierarchy of LMI conditions, that is, the conservatism of
the stability criterion decreases as N increases.

Remark 5 It is worth noting that the author of [32] pointed out that the delay set is a
polyhedral set, and two main characterizations of the allowable delay set were given, that
is, the usual assumptive delay set H1 satisfying [h(t), ḣ(t)] ∈ H1 = [0, h] × [–μ,μ] and an-
other new allowable delay set H2 satisfying [h(t), ḣ(t)] ∈ H2 = {(0, 0), (0,μ), (h, 0), (h, –μ)}.
Figure 1 depicts the graphical interpretation of the above two delay sets H1 and H2, where

Figure 1 Graphical interpretation ofH1 andH2
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we can find that once the values of h, μ are given, H2 is included in H1. In the next section
of this paper, the two allowable delay sets, that is, the usual delay set H1 and the refined
allowable delay set H2, will be used to show the effectiveness of Theorem 1.

In addition, the original forms of inequalities (6) and (7) are not LMIs because of their
dependence on the two time-varying delay variables h(t) and ḣ(t). Indeed, the conditions
can be rearranged as the following form:

Ξ1 + ḣ(t)
[
Ξ2 + h(t)Ξ3

]
< 0, (21)

where Ξi, i = 1, 2, 3, are time-independent matrix-combinations. According to the con-
vex combination technique [33], the original forms of inequalities (6) and (7) hold if the
following LMIs hold for the above two allowable delay sets H1 and H2, respectively:

H1: Ξ1 + ḣ(t)
[
Ξ2 + h(t)Ξ3

]
{[h(t),ḣ(t)]=[0,h]×[–μ,μ]} < 0, (22)

H2: Ξ1 + ḣ(t)
[
Ξ2 + h(t)Ξ3

]
{(h(t),ḣ(t))={(0,0),(0,μ),(h,0),(h,–μ)}} < 0, (23)

which implies that the solution of inequalities (6)–(7) becomes the feasibility-checking of
the LMIs.

4 Numerical example
In the following content, the maximum allowable upper bounds (MAUBs) in three nu-
merical examples will be calculated by Theorem 1 under the two delay sets H1 and H2.
The main program tools for obtaining the MAUBs is Matlab LMI-based toolbox. And the
corresponding values of MAUB and the numbers of decision variables (NoVs) will be care-
fully compared with some recent methods, which is provided to illustrate the effectiveness
of Theorem 1.

Example 1 Consider the following systems:

ẋ(t) =

[
0 1

–1 –1

]

x(t) +

[
0 0
0 –1

]

x
(
t – h(t)

)
. (24)

The corresponding values of MAUB and NoV compared among some recent previous
results and Theorem 1 are listed in Table 1. To confirm the obtained result (h = 3.118),

Table 1 MAUBs h under different μ for Example 1

Delay sets Methods\μ 0.05 0.1 0.3 0.5 NoVs

H1 [34] (Th. 1) 2.613 2.424 2.131 1.793 27n2 + 4n
[24] (Th. 2 C2.) 2.598 2.397 2.128 1.787 23n2 + 4n
[35] (Th. 1) 2.573 2.420 2.133 2.005 142n2 + 18n
[36] (Th. 1) 2.575 2.425 2.230 2.019 114n2 + 18n
[37] (Th. 3) 2.590 2.438 2.240 2.026 70n2 + 12n
[38] (Th. 3) 2.602 2.475 2.230 2.102 91.5n2 + 4.5n
Theorem 1 2.821 2.746 2.549 2.437 90n2 + 13n
Percentage over [38] 8.42% 10.95% 14.30% 15.94% –

H2 Theorem 1 3.118 3.109 3.084 3.058 90n2 + 13n
Percentage over [38] 19.83% 25.62% 38.30% 45.48% –
Percentage overH1 10.53% 13.22% 20.99% 25.48% –
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Figure 2 The state responses for Example 1

Table 2 MAUBs under different μ for Example 2

Delay sets Methods\μ 0.1 0.2 0.5 0.8 NoVs

H1 [24] (Th. 2 C2.) 6.6103 4.0034 1.6875 1.0287 23n2 + 4n
[35] (Th. 1) 7.1672 4.5179 2.4158 1.8384 142n2 + 18n
[36] (Th. 1) 7.1765 4.5438 2.4963 1.9225 114n2 + 18n
[39] (Th. 3) 7.2030 4.5126 2.3860 1.8476 203n2 + 9n
[37] (Th. 3) 7.1905 4.5275 2.4473 1.8562 70n2 + 12n
[10] (Pro. 1) 7.2734 4.6213 2.6505 2.0612 78.5n2 + 2.5n
[11] (Th. 1) 7.4001 4.7954 2.7175 2.0894 108n2 + 12n
[38] (Th. 3) 8.6565 5.8907 3.1754 2.3953 91.5n2 + 4.5n
Theorem 1 9.1713 7.0501 3.7790 2.6594 90n2 + 13n
Percentage over [38] 5.95% 19.68% 19.01% 10.84% –

H2 Theorem 1 20.8822 14.3184 9.1853 7.5645 90n2 + 13n
Percentage over [38] 141.23% 143.07% 189.26% 215.78% –
Percentage overH1 127.69% 103.09% 143.06% 184.93% –

the simulation result is shown in Fig. 2. As you can see from Fig. 2, the state responses of
system (24) with h(t) = 3.118

2 + 3.118
2 sin( 0.1t

3.118 ) and the initial vector [0.2 – 0.3]T converge to
zero.

Example 2 Consider another system:

ẋ(t) =

[
0 1

–1 –2

]

x(t) +

[
0 0

–1 1

]

x
(
t – h(t)

)
. (25)

Table 2 shows the MAUBs calculated by using Theorem 1 and other methods in the
references under different bounds of delay derivative. To confirm the obtained result (h =
20.8822), the simulation result is shown in Fig. 3. We can find from the figure that the
state responses of system (25) with h(t) = 20.8822

2 + 20.8822
2 sin( 0.2t

20.8822 ) and the initial vector
[0.50.3]T converge to zero.
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Figure 3 The state responses for Example 2

Table 3 MAUBs h for different μ (Example 3)

Delay sets Methods\μ 0.1 0.2 0.5 0.8 NoVs

H1 [34] (Th. 1) 4.753 3.873 2.429 2.183 27n2 + 4n
[24] (Th. 2 C2.) 4.714 3.855 2.608 2.375 23n2 + 4n
[23] (Th. 1) 4.788 4.065 3.055 2.615 65n2 + 11n
[26] (Th. 2 C2.) 4.809 4.091 3.109 2.710 25n2 + 7n
[35] (Th. 1) 4.829 4.139 3.155 2.730 142n2 + 18n
[36] (Th. 1) 4.831 4.142 3.148 2.713 114n2 + 18n
[37] (Th. 3) 4.844 4.142 3.117 2.698 70n2 + 12n
[38] (Th. 1) 4.883 4.167 3.163 2.730 91.5n2 + 4.5n
[28] (Pro. 1) 4.910 4.233 3.309 2.882 54.5n2 + 6.5n
[32] (Th. 8 N = 2) 4.930 4.220 3.090 2.660 62.5n2 + 6.5n
[27] (Th. 2 N = 2) 4.900 4.190 3.160 2.730 65n2 + 8n
[11] (Th. 1) 4.942 4.234 3.309 2.882 108n2 + 12n
[39] (Th. 3) 4.944 4.274 3.305 2.850 203n2 + 9n
Theorem 1 5.102 4.402 3.411 2.981 90n2 + 13n
Percentage over [39] 3.20% 3.00% 3.21% 4.60% –

H2 [32] (Th. 8 N = 2) 6.172 6.164 5.07 3.94 62.5n2 + 6.5n
Theorem 1 6.168 6.168 5.97 5.43 90n2 + 13n
Percentage over [39] 24.76% 44.31% 80.64% 90.53% –
Percentage over [32] –0.07% 0.06% 17.75% 37.82% –
Percentage overH1 13.36% 24.75% 30.64% 19.00% –

Example 3 Consider the following system:

ẋ(t) =

[
–2 0
0 –0.9

]

x(t) +

[
–1 0
–1 –1

]

x
(
t – h(t)

)
. (26)

[40] gave the MAUB hmax = 6.1725 by delay sweeping techniques (see, for instance, [40]).
The comparative results among some other methods in the references and Theorem 1 are
listed in Table 3.

From Tables 1–3, we can find the following five observations:
• For the delay sets H1 and H2, it is obvious that the MAUBs obtained by Theorem 1

are all larger than those obtained by other methods proposed in [11, 23, 24, 26–28,
34–39], especially for the delay set H2.
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• It is seen that the NoVs in our criterion is larger than those in [24, 26, 34], smaller than
those in [10, 11, 23, 28, 32, 35–39], and the same as that in [27].

• From Table 3, for the case of slow-varying delays and the delay set H2, only
Theorem 8 in [32] is less conservative than Theorem 1. However, Theorem 1 becomes
less conservative than the condition in [32] with the smaller NoVs for the case of
fast-varying delays.

• The effectiveness of Theorem 1 is more obvious under the fast-varying delays than the
slow-varying delays by comparing the corresponding increase percentages.

• The choice of the delay set, such as H2, has a great effect on increasing the MAUBs,
which matches the description in [32].

5 Conclusions
This paper considers the stability problem of time-delayed linear systems. A modified LKF
is proposed with two couples of integral terms supplemented in the integral functionals.
A less conservative stability criterion is derived based on the new LKF and Lemma 1. Three
numerical examples illustrate the effectiveness of the proposed result.
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