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Abstract
In this research work, the necessary and sufficient conditions of a coupled
coincidence point of certain type of generalized contractions are explored. These
results are considered under JS-metric spaces equipped with a partial order.
Moreover, examples satisfying theorems are given. Finally, an application to a system
of integral equations is obtained using our results. In addition, an example of the
system is provided.
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1 Introduction
For a pair of mappings S : X × X → X and t : X → X defined on a nonempty set X, we
would like to find a coupled coincidence point of S and t, that is, an element (x, y) ∈ X × X
satisfying

tx = S(x, y) and ty = S(y, x).

In 2015, Kadelburg et al. [4] obtained a result for some contraction mappings on a metric
that defined a complete space that is partially ordered. In the same year, Jleli and Samet
[3] extended the concept of a metric space to another space called a JS-metric space. The
class of such metric spaces covers the class of standard metric, b-metric, and dislocated
metric spaces. The author also proved the Banach contraction principle and Ćirić’s fixed
point theorem in JS-metric spaces. Now, let us recall the definition. Assume a mapping
D : X × X → [0, +∞] satisfying for every x, y ∈ X:

(D1) if D(x, y) = 0 then x = y,
(D2) D(x, y) = D(y, x),
(D3) there exists K > 0 so that

lim
n→∞D(xn, x) = 0 implies D(x, y) ≤ K lim sup

n→∞
D(xn, y).
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Then we call D a JS-metric on X and (X,D) a JS-metric space.
As in classical metric spaces, similar definitions for sequences in JS-metric spaces are

defined in the usual way [3].
In 2017, Phudolsitthiphat and Wiriyapongsanon [6] extended the result in [4] to find

a coupled coincidence point of α-Geraghty contractions under JS-metric spaces. Next,
Ansari and Shukla [1, 2] gave the idea of a relation between F and h, precisely, the pair
(F , h) to be an upper class.

In this article, motivated by the discussion above, we obtain the existence results of a
coupled coincidence point of Geraghty-type contraction mappings with the pair (F , h)
being an upper class of type I in partially ordered JS-metric spaces. Furthermore, examples
of our theorems are given. Additionally, our results can be applied to a system of integral
equations. The existence theorems of a solution to the system are given together with an
example supporting the theorem.

2 Main results
Let us begin by recalling some notations and definitions needed in this section. Assume
that X is a nonempty set. Suppose that S : X × X → X and t : X → X are two mappings.
Then t commutes with S if

tS(x, y) = S(tx, ty) for every x, y ∈ X.

For a partial order �, define E� = {(x, y) ∈ X × X : x � y} (see [3]). Then S has the �-t-
monotone property if, for every x, y ∈ X,

x1, x2 ∈ X, (tx1, tx2) ∈ E� �⇒ (
S(x1, y), S(x2, y)

) ∈ E�

and

y1, y2 ∈ X, (ty1, ty2) ∈ E� �⇒ (
S(x, y1), S(x, y2)

) ∈ E�.

Next, we give the definition of triangular α-admissible property, which is needed later
in this section.

Definition 2.1 Suppose that S : X × X → X, t : X → X and α : X2 × X2 → [0, +∞] satisfy
the following:

(i) if α((tx, ty), (tu, tv)) ≥ 1, then α((S(x, y), S(y, x)), (S(u, v), S(v, u))) ≥ 1,
(ii) if α((tx, ty), (tu, tv)) ≥ 1 and α((tu, tv), (S(u, v), S(v, u))) ≥ 1, then

α
(
(tx, ty),

(
S(u, v), S(v, u)

)) ≥ 1.

Then S and t are said to be triangular α-admissible.

Now, let Θ ′ consist of all θ : [0, +∞] × [0, +∞] → [0, 1) so that all the following hold:
(θ1) θ (s, t) = θ (t, s) for any s, t ∈ [0, +∞],
(θ2) for {sn}, {tn} ⊆ [0, +∞],

lim
n→∞ θ (sn, tn) = 1 implies lim

n→∞ sn = lim
n→∞ tn = 0.
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Moreover, refer to [1, 2], the definition of an upper class of type I is extended as fol-
lows.

Definition 2.2 Given two mappings h : [0, +∞]× [0, +∞] →R∪{+∞} and F : [0, +∞]×
[0, +∞] → R ∪ {+∞}, define an upper class of type I to be the pair (F , h) satisfying that,
for all s, t, x, y ∈ [0, +∞],

(i) h(1, y) ≤ h(x, y) whenever 1 ≤ x,
(ii) F (s, t) ≤F (1, t) whenever 0 ≤ s ≤ 1,

(iii) y ≤ st whenever h(1, y) ≤F (s, t).

Example 2.3 For l > 1, m, n ∈ N, each pair (F , h) is an upper class of type I, where
h : [0, +∞] × [0, +∞] → R ∪ {+∞} and F : [0, +∞] × [0, +∞] → R ∪ {+∞} are defined
as follows:

(a) h(x, y) =
{ (y + l)x if x, y ∈ [0, +∞),

+∞ otherwise, andF (s, t) =
{ st + l if x ∈ [0, +∞),

+∞ otherwise.

(b) h(x, y) =
{ (x + l)y if x, y ∈ [0, +∞),

+∞ otherwise, andF (s, t) =
{ (1 + l)st if x ∈ [0, +∞),

+∞ otherwise.

(c) h(x, y) =
{ y if x, y ∈ [0, +∞),

+∞ otherwise, andF (s, t) =
{ st if x ∈ [0, +∞),

+∞ otherwise.

(d) h(x, y) =
{ xmyn if x, y ∈ [0, +∞),

+∞ otherwise, andF (s, t) =
{ sntn if x ∈ [0, +∞),

+∞ otherwise.

To introduce our first theorem, for convenience purposes, assume all of the following
throughout this section. Assume that (X,D,�) is a complete partially ordered JS-metric
space. Define S : X × X → X and t : X → X to have the properties as follows:

(i) S(X2) ⊆ t(X),
(ii) S is �-t-monotone,

(iii) t is D-continuous and commutes with S.
Now, we state the first main theorem. This result is a generalized version for coupled

coincidence points of [6, Theorem 3.1].

Theorem 2.4 Suppose that each statement is true:
(i) For any upper class (F , h) of type I, there are α : X2 × X2 → [0, +∞] and θ ∈ Θ ′

satisfying, for any (tx, tu) ∈ E�, (ty, tv) ∈ E�, the inequality is obtained:

h
(
α
(
(tx, ty), (tu, tv)

)
,D

(
S(x, y), S(u, v)

))

≤F
(
θ
(
D(tx, tu),D(ty, tv)

)
, M

(
(tx, tu), (ty, tv)

))

when

M
(
(tx, tu), (ty, tv)

)
= max

{
D(tx, tu),D(ty, tv),D

(
tx, S(x, y)

)
,

D
(
ty, S(y, x)

)
,D

(
tu, S(u, v)

)
,D

(
tv, S(v, u)

)}
;

(ii) S and t are triangular α-admissible, and there are x0, y0 ∈ X ,
(tx0, S(x0, y0)), (ty0, S(y0, x0)) ∈ E� so that

α
(
(tx0, ty0),

(
S(x0, y0), S(y0, x0)

)) ≥ 1 and

α
(
(ty0, tx0),

(
S(y0, x0), S(x0, y0)

)) ≥ 1;
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(iii) If limn→∞ D(txn, txn+1) = 0 and limn→∞ D(tyn, tyn+1) = 0, then

sup
{
D(tx0, txn),D(ty0, tyn) : n ∈N

}
< ∞,

where {xn} and {yn} are sequences in X ;
(iv) S is D-continuous.

Then a coupled coincidence point of t and S exists.

Proof Suppose that x0 and y0 are elements in X satisfying assumption (ii). Since S(X2) ⊆
t(X), we can choose x1, y1 ∈ X such that tx1 = S(x0, y0) and ty1 = S(y0, x0). Similarly, tx2 =
S(x1, y1) and ty2 = S(y1, x1) for some x2, y2 ∈ X. Continue this argument. Then {xn} and {yn}
are obtained with

txn+1 = S(xn, yn) and tyn+1 = S(yn, xn).

Suppose that txn0+1 = txn0 and tyn0+1 = tyn0 for some natural number n0. Then a coupled
coincidence point of t and S exists, i.e., (xn0 , yn0 ), and so we are done. Assume that

txn+1 = txn or tyn+1 = tyn

for each positive integer n. By condition (ii),

(tx0, tx1) ∈ E� and (ty0, ty1) ∈ E�.

Since S is �-t-monotone,

(
S(x0, y0), S(x1, y1)

) ∈ E� and
(
S(y0, x0), S(y1, x1)

) ∈ E�.

That is,

(tx1, tx2) ∈ E� and (ty1, ty2) ∈ E�.

Repeat this process, we have that

(txn, txn+1) ∈ E� and (tyn, tyn+1) ∈ E� for all n ∈N.

By transitivity of �, we get that

(txn, txn+m) ∈ E� and (tyn, tyn+m) ∈ E� for all n, m ∈N.

From assumption (ii),

α
(
(tx0, ty0), (tx1, ty1)

)
= α

(
(tx0, ty0),

(
S(x0, y0), S(y0, x0)

)) ≥ 1.

Since S and t are α-admissible,

α
(
(tx1, ty1), (tx2, ty2)

)
= α

((
S(x0, y0), S(y0, x0)

)
,
(
S(x1, y1), S(y1, x1)

)) ≥ 1.
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Thus, by mathematical induction, we obtain that

α
(
(txn, tyn), (txn+1, tyn+1)

) ≥ 1 for all n ∈N.

With the same process as above, it can be concluded that

α
(
(tyn, txn), (tyn+1, txn+1)

) ≥ 1 for all n ∈N.

Since S and t are triangular α-admissible,

α
(
(txn, tyn), (txn+m, tyn+m)

) ≥ 1 and

α
(
(tyn, txn), (tyn+m, txn+m)

) ≥ 1 for all n, m ∈N.

Next, we prove the following claims.
Claim 1. limn→∞ D(txn, txn+1) = 0 and limn→∞ D(tyn, tyn+1) = 0.
To prove by contradiction, assume that either limn→∞ D(txn, txn+1) = 0 or
limn→∞ D(tyn, tyn+1) = 0. Then there exists ε > 0 for which we can obtain a subsequence

{nk} such that nk ≥ k and

ε ≤ max
{
D(txnk , txnk +1),D(tynk , tynk +1)

}
.

Consider

h
(
1,D(txnk , txnk +1)

)

= h
(
1,D

(
S(xnk –1, ynk –1), S(xnk , ynk )

))

≤ h
(
α
(
(txnk –1, tynk –1), (txnk , tynk )

)
,D

(
S(xnk–1, ynk –1), S(xnk , ynk )

))

≤F
(
θ
(
D(txnk –1, txnk ),D(tynk –1, tynk )

)
, M

(
(txnk –1, txnk ), (tynk –1, tynk )

))

and

h
(
1,D(tynk , tynk +1)

)

= h
(
1,D

(
S(ynk –1, xnk –1), S(ynk , xnk )

))

≤ h
(
1,α

(
(tynk –1, txnk –1), (tynk , txnk )

)
D

(
S(ynk –1, xnk –1), S(ynk , xnk )

))

≤F
(
θ
(
D(tynk –1, tynk ),D(txnk –1, txnk )

)
, M

(
(tynk –1, tynk ), (txnk –1, txnk )

))
.

These two inequalities imply that

D(txnk , txnk +1)

≤ θ
(
D(txnk –1, txnk ),D(tynk –1, tynk )

)
M

(
(txnk –1, txnk ), (tynk –1, tynk )

)
(2.1)

and

D(tynk , tynk +1)
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≤ θ
(
D(tynk –1, tynk ),D(txnk –1, txnk )

)
M

(
(tynk –1, tynk ), (txnk –1, txnk )

)
. (2.2)

Since θ (s, t) ∈ [0, 1) for any s, t ∈ [0, +∞],

M
(
(txnk –1, txnk ), (tynk –1, tynk )

)
= M

(
(tynk –1, tynk ), (txnk –1, txnk )

)

= max
{
D(txnk –1, txnk ),D(tynk –1, tynk )

}
. (2.3)

From (2.1), (2.2), and (2.3),

max
{
D(txnk , txnk +1),D(tynk , tynk +1)

}

≤ θ
(
D(txnk –1, txnk ),D(tynk –1, tynk )

)
max

{
D(txnk –1, txnk ),D(tynk –1, tynk )

}
.

With this idea, we finally have the following inequality:

max
{
D(txnk , txnk +1),D(tynk , tynk +1)

}

≤
nk∏

i=1

θ
(
D(txnk –i, txnk +1–i),D(tynk –i, tynk +1–i)

)
max

{
D(tx0, tx1),D(ty0, ty1)

}
.

Then choose ik such that

θ
(
D(txnk –ik , txnk +1–ik ),D(tynk –ik , tynk +1–ik )

)

= max
1≤i≤nk

{
θ
(
D(txnk –i, txnk +1–i),D(tynk –i, tynk +1–i)

)}
.

Define η := lim supk→∞{θ (D(txnk–ik , txnk +1–ik ),D(tynk –ik , tynk +1–ik ))}.
If η < 1, then

lim
k→∞

max
{
D(txnk , txnk +1),D(tynk , tynk +1)

}
= 0.

This contradicts the assumption.
Assume that η = 1. For convenience, we suppose that

lim
k→∞

θ
(
D(txnk –ik , txnk +1–ik ),D(tynk –ik , tynk +1–ik )

)
= 1.

Since θ ∈ Θ ′,

lim
k→∞

D(txnk –ik , txnk +1–ik ) = 0 and lim
k→∞

D(tynk –ik , tynk +1–ik ) = 0.

That is, there exists k0 ∈ N such that

D(txnk0 –ik0
, txnk0 +1–ik0

) <
ε

2
and D(tynk0 –ik0

, tynk0 +1 – ik0 ) <
ε

2
.

Thus, we have that

ε ≤ max
{
D(txnk0

, txnk0 +1),D(tynk0
, tynk0 +1)

}
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≤
ik0∏

j=1

θ
(
D(txnk0 –j, txnk0 +1–j),D(tynk0 –j, tynk0 +1–j)

)

× max
{
D(txnk0 –ik0

, txnk0 +1–ik0
),D(tynk0 –ik0

, tynk0 +1–ik0
)
}

<
ε

2
.

This is a contradiction. Therefore, we conclude that

lim
n→∞D(txn, txn+1) = 0 and lim

n→∞D(tyn, tyn+1) = 0. (2.4)

Claim 2. {txn} and {tyn} are D-Cauchy sequences.
We suppose by contradiction that neither {txn} nor {tyn} is a D-Cauchy sequence. Con-

sequently, subsequences {nk} and {mk} can be obtained, where nk , mk ≥ k for each k ∈ N,
and ε′ ≤ max{D(txnk , txnk +mk ),D(tynk , tynk +mk )} for some ε′ > 0. Consider

h
(
1,D(txnk , txnk +mk )

)

= h
(
1,D

(
S(xnk –1, ynk –1), S(xnk+mk –1, ynk +mk –1)

))

≤ h
(
α
(
(txnk –1, tynk –1), (txnk +mk –1, tynk +mk –1)

)
,D

(
S(xnk –1, ynk –1), S(xnk–1, ynk –1)

))

≤F
(
θ
(
D(txnk –1, txnk +mk –1),D(tynk –1, tynk +mk –1)

)
, M

(
(txnk –1, txnk +mk –1), (tynk –1, tynk +mk –1)

))

and

h
(
1,D(tynk , tynk +mk )

)

= h
(
1,D

(
S(ynk –1, xnk –1), S(ynk +mk –1, xnk +mk –1)

))

≤ h
(
α
(
(tynk –1, txnk –1), (tynk +mk –1, txnk +mk –1)

)
,D

(
S(ynk –1, xnk –1), S(ynk +mk –1, xnk +mk –1)

))

≤F (θ
(
D(txnk –1, txnk +mk –1),D(tynk –1, tynk +mk –1)

)
, M

(
(txnk –1, txnk +mk –1), (tynk –1, tynk +mk –1)

)
.

These imply that

D(txnk , txnk +mk )

≤ θ
(
D(txnk –1, txnk +mk –1),D(tynk –1, tynk +mk –1)

)

× M
(
(txnk –1, txnk +mk –1), (tynk –1, tynk +mk –1)

)
) (2.5)

and

D(tynk , tynk +mk )

≤ θ
(
D(txnk –1, txnk +mk –1),D(tynk –1, tynk +mk –1)

)

× M
(
(txnk –1, txnk +mk –1), (tynk –1, tynk +mk –1)

)
. (2.6)

By (2.4), we have that

M
(
(txnk –1, txnk +mk –1), (tynk –1, tynk +mk –1)

)
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= M
(
(tynk –1, tynk +mk –1), (txnk –1, txnk +mk –1)

)

= max
{
D(txnk –1, txnk +mk –1),D(tynk –1, tynk +mk –1)

}
. (2.7)

From (2.5), (2.6), and (2.7), we obtain that

max
{
D(txnk , txnk +mk ),D(tynk , tynk +mk )

}

≤ θ
(
D(txnk –1, txnk +mk –1),D(tynk –1, tynk +mk –1)

)

× max
{
D(txnk –1, txnk +mk –1),D(tynk –1, tynk +mk –1)

}
.

Therefore,

max
{
D(txnk , txnk +mk ),D(tynk , tynk +mk )

}

≤
nk∏

i=1

θ
(
D(txnk –i, txnk +mk –i),D(tynk –i, tynk +mk –i)

)

× max
{
D(tx0, txmk ),D(ty0, tymk )

}
.

Choose ik such that

θ
(
D(txnk –ik , txnk +mk –ik ),D(tynk –ik , tynk +mk –ik )

)

= max
1≤i≤nk

{
θ
(
D(txnk –i, txnk +mk –i),D(tynk –i, tynk +mk –i)

)}
.

Define η := lim supk→∞{θ (D(txnk–ik , txnk +mk –ik ),D(tynk –ik , tynk +mk –ik ))}.
If η < 1, then limk→∞ max{D(txnk , txnk +mk ),D(tynk , tynk +mk )} = 0. This cannot be possible

due to the assumption.
Assume that η = 1. For convenience, suppose that

lim
k→∞

θ
(
D(txnk –ik , txnk +mk –ik ),D(tynk –ik , tynk +mk –ik )

)
= 1.

Since θ ∈ Θ ′ and (2.4),

lim
k→∞

D(txnk –ik , txnk +mk –ik ) = 0 and lim
k→∞

D(tynk –ik , tynk +mk –ik ) = 0.

We obtain that

D(txnk0 –ik0
, txnk0 +mk0 –ik0

) <
ε′

2
and D(tynk0 –ik0

, tynk0 +mk0 –ik0
) <

ε′

2

for some k0 ∈N. Thus, we have that

ε′ ≤ max
{
D(txnk0

, txnk0 +mk0
),D(tynk0

, tynk0 +mk0
)
}

≤
ik0∏

j=1

θ
(
D(txnk0 –j, txnk0 +mk0 –j),D(tynk0 –j, tynk0 +mk0 –j)

)

× max
{
D(txnk0 –ik0

, txnk0 +mk0 –ik0
),Dt(ynk0 –ik0

, tynk0 +mk0 –ik0
)
}
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<
ε′

2
.

This is a contradiction. Thus, the sequences {txn} and {tyn} must be D-Cauchy. By com-
pleteness of (X,D),

lim
n→∞D

(
S(xn, yn),ω

)
= lim

n→∞D(txn,ω) = 0,

lim
n→∞D

(
S(yn, xn),ω′) = lim

n→∞D
(
tyn,ω′) = 0

for some ω,ω′ ∈ X. By the continuity of t,

lim
n→∞D

(
t
(
S(xn, yn)

)
, tω

)
= 0 and lim

n→∞D
(
t
(
S(yn, xn)

)
, tω′) = 0.

By the continuity of S,

lim
n→∞D

(
S(txn, tyn), S

(
ω,ω′)) = 0 and lim

n→∞D
(
S(tyn, txn), S

(
ω′,ω

))
= 0.

Now, by the commutation between t and S, it can be obtained that tω = S(ω,ω′) and tω′ =
S(ω′,ω). Therefore, a coupled coincidence point of t and S exists, namely (ω,ω′). �

Corollary 2.5 Theorem 2.4 is valid when assumption (i) is substituted by one of the fol-
lowing statements:

(i) There are θ ∈ Θ ′ and l > 1 satisfying, for any (tx, tu) ∈ E�, (ty, tv) ∈ E�, the
inequality is obtained:

(
D

(
S(x, y), S(u, v)

)
+ l

)α((tx,ty),(tu,tv))

≤ θ
(
D(tx, tu),D(ty, tv)

)
M

(
(tx, tu), (ty, tv)

)
+ l

when

M
(
(tx, tu), (ty, tv)

)
= max

{
D(tx, tu),D(ty, tv),D

(
tx, S(x, y)

)
,

D
(
ty, S(y, x)

)
,D

(
tu, S(u, v)

)
,D

(
tv, S(v, u)

)}
;

(ii) There are θ ∈ Θ ′ and l > 1 satisfying, for any (tx, tu) ∈ E�, (ty, tv) ∈ E�, the
inequality is obtained:

(
α
(
(tx, ty), (tu, tv)

)
+ l

)D(S(x,y),S(u,v)) ≤ (1 + l)θ (D(tx,tu),D(ty,tv))M((tx,tu),(ty,tv))

when

M
(
(tx, tu), (ty, tv)

)
= max

{
D(tx, tu),D(ty, tv),D

(
tx, S(x, y)

)
,

D
(
ty, S(y, x)

)
,D

(
tu, S(u, v)

)
,D

(
tv, S(v, u)

)}
;

(iii) There is θ ∈ Θ ′ satisfying, for any (tx, tu) ∈ E�,(ty, tv) ∈ E�, the inequality is
obtained:

D
(
S(x, y), S(u, v)

) ≤ θ
(
D(tx, tu),D(ty, tv)

)
M

(
(tx, tu), (ty, tv)

)
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when

M
(
(tx, tu), (ty, tv)

)
= max

{
D(tx, tu),D(ty, tv),D

(
tx, S(x, y)

)
,

D
(
ty, S(y, x)

)
,D

(
tu, S(u, v)

)
,D

(
tv, S(v, u)

)}
;

(iv) There is θ ∈ Θ ′ satisfying, for any (tx, tu) ∈ E�, (ty, tv) ∈ E�, the inequality is
obtained:

(
α
(
(tx, ty), (tu, tv)

))m(
D

(
S(x, y), S(u, v)

))n

≤ (
θ
(
D(tx, tu)D(ty, tv)

))n(M
(
(tx, tu), (ty, tv)

))n

for all positive integers m, n when

M
(
(tx, tu), (ty, tv)

)
= max

{
D(tx, tu),D(ty, tv),D

(
tx, S(x, y)

)
,

D
(
ty, S(y, x)

)
,D

(
tu, S(u, v)

)
,D

(
tv, S(v, u)

)}
.

Proof
(i) Apply h and F from Example 2.3(a) to Theorem 2.4.

(ii) Apply h and F from Example 2.3(b) to Theorem 2.4.
(iii) Apply h and F from Example 2.3(c) to Theorem 2.4.
(iv) Apply h and F from Example 2.3(d) to Theorem 2.4. �

Remark 2.6
(1) Corollary 2.5 holds for standard metric, b-metric, and dislocated metric spaces.
(2) Theorem 3.1 in [4] is a consequence of Corollary 2.5(iii).
(3) Theorem 3.1 in [6] is a special case of Corollary 2.5(iv) when m = n = 1.

Example 2.7 Given X = [0, +∞] and x, y ∈ X, define D(x, y) = max{x, y}, and S : X ×X → X
and t : X → X by

S(x, y) =

⎧
⎨

⎩

x+y
2 if x, y ∈ [0, +∞),

+∞ otherwise
and tx =

⎧
⎨

⎩
2x if x ∈ [0, +∞),

+∞ otherwise.

Also, define α : X2 × X2 → [0, +∞] by

α
(
(x, y), (u, v)

)
=

⎧
⎨

⎩
4 if x ≤ y and u ≤ v,

0 otherwise.

Let x ≤ u and y ≤ v. Then

D
(
S(x, y), S(u, v)

)
= max

{
x + y

2
,

u + v
2

}

≤ 1
2

max{2u, 2v}

= θ
(
D(tx, tu),D(ty, tv)

)
M

(
(tx, tu), (ty, tv)

)
).
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Thus, assumption (iii) of Corollary 2.5 holds for θ (k, l) = 1
2 , where k, l ∈ [0, +∞]. From

Theorem 2.4, it can be easily shown that each property stated in the theorem holds. Hence,
it follows that a coupled coincidence point of t and S exists.

In this example, observe that D is not a metric on X. Then Theorem 3.1 in [4] cannot be
used to guarantee the existence of a coupled coincidence point for t and S. Moreover, one
of the assumptions of Theorems 3.1 and 3.2 in [6] fails as shown below. When x ≤ y ≤ v
and x ≤ u ≤ v, consider

α
(
(tx, ty), (tu, tv)

)
D

(
S(x, y), S(u, v)

)
= 4 max

{
x + y

2
,

u + v
2

}

= 4
(

u + v
2

)

= 2u + 2v

> θ
(
D(tx, tu),D(ty, tv)

) · 2v

= θ
(
D(tx, tu),D(ty, tv)

)
M

(
(tx, tu), (ty, tv)

)

for all θ ∈ Θ ′.
Define F ′ to be the class of mappings β : [0, +∞] → [0, 1) such that

β(tn) → 1 implies tn → 0 for all tn ∈ [0, +∞].

Next, we introduce our second main theorem which is a generalized version of [6, Theo-
rem 3.2]. It can be remarked that the continuity of S is not necessary to obtain the result.

Theorem 2.8 Suppose that each statement is true:
(i) For any upper class (F , h) of type I, there are α : X2 × X2 → [0, +∞] and β ∈F ′

satisfying, for any (tx, tu) ∈ E�, (ty, tv) ∈ E�, the inequality is obtained:

h
(
α
(
(tx, ty), (tu, tv)

)
,D

(
S(x, y), S(u, v)

))

≤F
(
β
(
M

(
(tx, tu), (ty, tv)

))
, M

(
(tx, tu), (ty, tv)

))

when

M
(
(tx, tu), (ty, tv)

)
= max

{
D(tx, tu),D(ty, tv),D

(
tx, S(x, y)

)
,

D
(
ty, S(y, x)

)
,D

(
tu, S(u, v)

)
,D

(
tv, S(v, u)

)}
;

(ii) S and t are triangular α-admissible, and there are x0, y0 ∈ X ,
(tx0, S(x0, y0)), (ty0, S(y0, x0)) ∈ E� so that

α
(
(tx0, ty0),

(
S(x0, y0), S(y0, x0)

)) ≥ 1 and

α
(
(ty0, tx0),

(
S(y0, x0), S(x0, y0)

)) ≥ 1;
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(iii) If limn→∞ D(txn, txn+1) = 0 and limn→∞ D(tyn, tyn+1) = 0, then

sup
{
D(tx0, txn),D(ty0, tyn) : n ∈N

}
< ∞,

where {xn} and {yn} are sequences in X ;
(iv) If {xn} and {yn} are sequences in X with (txn, txn+1), (tyn, tyn+1) ∈ E�,

α
(
(txn, tyn), (txn+1, tyn+1)

) ≥ 1,

α
(
(tyn, txn), (tyn+1, txn+1)

) ≥ 1 for all n ∈N,

and limn→∞ D(txn,ω) = 0 and limn→∞ D(tyn,ω′) = 0, then (txn, tω), (tyn, tω′) ∈ E�,

α
(
(txn, tyn),

(
tω, tω′)) ≥ 1,

α
(
(tyn, txn),

(
tω′, tω

)) ≥ 1 for all n ∈N;

(v) There exists 0 < C ≤ 1 such that

D
(
tω, S

(
ω,ω′)) ≤ C lim sup

n→∞
D

(
S(txn, tyn), S

(
ω,ω′)) and

D
(
tω′, S

(
ω′,ω

)) ≤ C lim sup
n→∞

D
(
S(tyn, txn), S

(
ω′,ω

))
.

Then t and S have a coupled coincidence point.

Proof According to the statements in Theorem 2.4, the sequences {txn} and {tyn} can
be obtained. Moreover, by using β(M((tx, tu), (ty, tv))) for θ (D(tx, tu),D(ty, tv)) in Theo-
rem 2.4, where x, y, u, v ∈ X, these two sequences are D-Cauchy in a JS-metric space (X,D)
that is complete. As a result,

lim
n→∞D

(
S(xn, yn),ω

)
= lim

n→∞D(txn,ω) = 0,

lim
n→∞D

(
S(yn, xn),ω′) = lim

n→∞D
(
tyn,ω′) = 0

for some ω,ω′ ∈ X. By the continuity of t,

lim
n→∞D

(
tS(xn, yn), tω

)
= lim

n→∞D(ttxn, tω) = 0,

lim
n→∞D

(
tS(yn, xn), tω′) = lim

n→∞D
(
ttyn, tω′) = 0.

By assumptions (i), (ii), we have that

h
(
1,D

(
S(txn, tyn), S

(
ω,ω′)))

≤ h
(
α
(
(ttxn, ttyn),

(
tω, tω′)),D

(
S(txn, tyn), S

(
ω,ω′)))

≤F
(
β
(
M

(
(ttxn, tω),

(
ttyn, tω′))), M

(
(ttxn, tω),

(
ttyn, tω′)))
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and

h
(
1,D

(
S(tyn, txn), S

(
ω′,ω

)))

≤ h
(
α
(
(ttyn, ttxn),

(
tω′, tω

))
,D

(
S(tyn, txn), S

(
ω′,ω

)))

≤F
(
β
(
M

((
ttyn, tω′), (ttxn, tω)

))
, M

((
ttyn, tω′), (ttxn, tω)

))
,

where

M
(
(ttxn, tω),

(
ttyn, tω′))

= M
((

ttyn, tω′), (ttxn, tω)
)

= max
{
D(ttxn, tω),D

(
ttyn, tω′),D

(
ttxn, S(txn, tyn)

)
,

D
(
ttyn, S(tyn, txn)

)
,D

(
tω, S

(
ω,ω′)),D

(
tω′, S

(
ω′,ω

))}
. (2.8)

Consequently,

D
(
S(txn, tyn), S

(
ω,ω′))

≤ β
(
M

(
(ttxn, tω),

(
ttyn, tω′)))M

(
(ttxn, tω),

(
ttyn, tω′)) (2.9)

and

D
(
S(tyn, txn), S

(
ω′,ω

))

≤ β
(
M

((
ttyn, tω′), (ttxn, tω)

))
M

((
ttyn, tω′), (ttxn, tω)

)
. (2.10)

Suppose that tω = S(ω,ω′) or tω′ = S(ω′,ω). That is,

D := max
{
D

(
tω, S

(
ω,ω′)),D

(
tω′, S

(
ω′,ω

))}
> 0.

By assumption (v), there exists 0 < C ≤ 1 such that

D
(
tω, S

(
ω,ω′)) ≤ C lim sup

n→∞
D

(
S(txn, tyn), S

(
ω,ω′)) ≤ CD,

and

D
(
tω′, S

(
ω′,ω

)) ≤ C lim sup
n→∞

D
(
S(tyn, txn), S

(
ω′,ω

)) ≤ CD.

Therefore,

D = max
{
D

(
tω, S

(
ω,ω′)),D

(
tω′, S

(
ω′,ω

))}

≤ C lim sup
n→∞

max
{
D

(
S(txn, tyn), S

(
ω,ω′)),D

(
S(tyn, txn), S

(
ω′,ω

))}

≤ CD.
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Since 1 ≤ 1
C , we get

D ≤ 1
C

D

≤ lim sup
n→∞

max
{
D

(
S(txn, tyn), S

(
ω,ω′)),D

(
S(tyn, txn), S

(
ω′,ω

))}

≤ D.

It follows that lim supn→∞ max{D(S(txn, tyn), S(ω,ω′)),D(S(tyn, txn), S(ω′,ω))} = D.
Then there exists a subsequence max{D(S(txnk , tynk ), S(ω,ω′)),D(S(tynk , txnk ), S(ω′,ω))}
such that

lim
k→∞

max
{
D

(
S(txnk , tynk ), S

(
ω,ω′)),D

(
S(tynk , txnk ), S

(
ω′,ω

))}
= D.

Letting k → ∞ in (2.8), we have that

lim
n→∞ M

(
(ttxnk , tω),

(
ttynk , tω′)) = D. (2.11)

From (2.9) and (2.10),

max{D(S(txnk , tynk ), S(ω,ω′)),D(S(tynk , txnk ), S(ω′,ω))}
M((ttxnk , tω), (ttynk , tω′))

≤ β
(
M

(
(ttxnk , tω),

(
ttynk , tω′))).

Taking limit on both sides of the inequality, we obtain that

lim
n→∞β

(
M

(
(ttxnk , tω),

(
ttynk , tω′))) = 1.

Thus, limn→∞ M((ttxnk , tω), (ttynk , tω′)) = 0. This contradicts equation (2.11). There-
fore, tω = S(ω,ω′) and tω′ = S(ω′,ω). Hence, (ω,ω′) is a coupled coincidence point of t
and S. �

Corollary 2.9 Theorem 2.8 is valid when assumption (i) is substituted by one of the fol-
lowing statements:

(i) There are β ∈F ′ and l > 1 satisfying, for any (tx, tu) ∈ E�, (ty, tv) ∈ E�, the
inequality is obtained:

(
D

(
S(x, y), S(u, v)

)
+ l

)α((tx,ty),(tu,tv))

≤ β
(
M

(
(tx, tu), (ty, tv)

))
M

(
(tx, tu), (ty, tv)

)
+ l

when

M
(
(tx, tu), (ty, tv)

)
= max

{
D(tx, tu),D(ty, tv),D

(
tx, S(x, y)

)
,

D
(
ty, S(y, x)

)
,D

(
tu, S(u, v)

)
,D

(
tv, S(v, u)

)}
;
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(ii) There are β ∈F ′ and l > 1 satisfying, for any (tx, tu) ∈ E�, (ty, tv) ∈ E�, the
inequality is obtained:

(
α
(
(tx, ty), (tu, tv)

)
+ l

)D(S(x,y),S(u,v)) ≤ (1 + l)β(M((tx,tu),(ty,tv)))M((tx,tu),(ty,tv))

when

M
(
(tx, tu), (ty, tv)

)
= max

{
D(tx, tu),D(ty, tv),D

(
tx, S(x, y)

)
,

D
(
ty, S(y, x)

)
,D

(
tu, S(u, v)

)
,D

(
tv, S(v, u)

)}
;

(iii) There is β ∈F ′ satisfying, for any (tx, tu) ∈ E�, (ty, tv) ∈ E�, the inequality is
obtained:

D
(
S(x, y), S(u, v)

) ≤ β
(
M

(
(tx, tu), (ty, tv)

))
M

(
(tx, tu), (ty, tv)

)

when

M
(
(tx, tu), (ty, tv)

)
= max

{
D(tx, tu),D(ty, tv),D

(
tx, S(x, y)

)
,

D
(
ty, S(y, x)

)
,D

(
tu, S(u, v)

)
,D

(
tv, S(v, u)

)}
;

(iv) There is β ∈F ′ satisfying, for any (tx, tu) ∈ E�, (ty, tv) ∈ E�, the inequality is
obtained:

(
α
(
(tx, ty), (tu, tv)

))m(
D

(
S(x, y), S(u, v)

))n

≤ (
β
(
M

(
(tx, tu), (ty, tv)

)))n(M
(
(tx, tu), (ty, tv)

))n

for all positive integers m, n when

M
(
(tx, tu), (ty, tv)

)
= max

{
D(tx, tu),D(ty, tv),D

(
tx, S(x, y)

)
,

D
(
ty, S(y, x)

)
,D

(
tu, S(u, v)

)
,D

(
tv, S(v, u)

)}
.

Proof
(i) Apply h and F from Example 2.3(a) to Theorem 2.8.

(ii) Apply h and F from Example 2.3(b) to Theorem 2.8.
(iii) Apply h and F from Example 2.3(c) to Theorem 2.8.
(iv) Apply h and F from Example 2.3(d) to Theorem 2.8. �

Remark 2.10
(1) Corollary 2.9 holds for standard metrics, b-metrics, and dislocated metrics.
(2) Theorem 3.2 in [6] is a consequence of Corollary 2.9(iv). Indeed, let m = n = 1.

Example 2.11 Given X = [0, +∞] and x, y ∈ X, define D(x, y) = |x| + |y|, and S : X × X → X
and t : X → X by

S(x, y) =

⎧
⎨

⎩

|x–y|
3 if x, y ∈ [0, +∞),

+∞ otherwise
and tx =

⎧
⎨

⎩
3x if x ∈ [0, +∞),

+∞ otherwise.
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Also, define α : X2 × X2 → [0, +∞] by

α
(
(x, y), (u, v)

)
=

⎧
⎨

⎩
1 if x ≤ y and u ≤ v,

0 otherwise.

Let x ≤ u and y ≤ v. When r > 1, consider

(
α
(
(tx, ty), (tu, tv)

)
+ r

)D(S(x,y),S(u,v)) ≤ (1 + r)( |x–y|
3 + |u–v|

3 )

≤ (1 + r)
1
3 (|x|+|y|+|u|+|v|)

≤ (1 + r)
2
3 max{|3x|+|3u|,|3y|+|3v|}

= (1 + r)β(M((tx,tu),(ty,tv)))M((tx,tu),(ty,tv)).

Thus, assumption (ii) of Corollary 2.9 holds for β(t) = 2
3 , where t ∈ [0, +∞]. From Theo-

rem 2.8, it can be easily shown that each property stated in the theorem holds. Hence, it
follows that a coupled coincidence point of t and S exists.

3 Application
In the real world, it has been known that many problems can be interpreted as a mathemat-
ical model. These models are written in several types of equations, for example, differential
equations, integral equations, functional equations, partial differential equations. To find
a solution to these problems, one has to solve the equations. There are some studies that
propose a solution to such problems using fixed point theory, for example, see [5]. For this
reason, it is our interest to apply our results to some problems. As a matter of fact, the
theorems obtained in the previous section are used to state the necessary and sufficient
conditions for the existence of a solution to a system of integral equations.

Given that h : [0, 1] → R, ki : [0, 1] × [0, 1] → R
+ and fi : [0, 1] ×R → R

+ are mappings,
where i = 1, 2, consider the following system of integral equations:

x(r) = h(r) +
∫ 1

0
k1(r, s)f1

(
s, x(s)

)
ds

∫ 1

0
k2(r, s)f2

(
s, y(s)

)
ds,

y(r) = h(r) +
∫ 1

0
k1(r, s)f1

(
s, y(s)

)
ds

∫ 1

0
k2(r, s)f2

(
s, x(s)

)
ds,

(3.1)

where r ∈ [0, 1]. Assume that X = C[0, 1]. Given that D(x, y) = supr∈[0,1] |x(r) – y(r)| for
x, y ∈ X, then (X,D,�) is a complete partially ordered JS-metric space. Using results from
the previous section, the existing theorems to a function satisfying system (3.1) can be
obtained as follows.

Theorem 3.1 From the system of equations (3.1), define S : X × X → X as

S(x, y)(r) = h(r) +
∫ 1

0
k1(r, s)f1

(
s, x(s)

)
ds

∫ 1

0
k2(r, s)f2

(
s, y(s)

)
ds,

where r ∈ [0, 1], and assume that
(i) h : [0, 1] →R, ki : [0, 1] × [0, 1] →R

+ and fi : [0, 1] ×R →R
+ are continuous, where

i = 1, 2;
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(ii) f1(r, x1(r)) ≤ f1(r, x2(r)) and f2(r, x1(r)) ≤ f2(r, x2(r)) whenever x1 ≤ x2 for x1, x2 ∈ X ;
(iii) there are K , L, M ∈R

+, 2KLM < 1,
∫ 1

0 ki(r, s) ds ≤ K ,
∫ 1

0 ki(r, s)fi(s, x(s)) ds ≤ M, and

∣∣fi
(
r, x(r)

)
– fi

(
r, u(r)

)∣∣ ≤ L
∣∣x(r) – u(r)

∣∣,

where 0 ≤ r ≤ 1, x, u ∈ X and i = 1, 2;
(iv) there are x0, y0 ∈ X so that x0 ≤ S(x0, y0) and y0 ≤ S(y0, x0);
(v) if xn, yn ∈ X such that limn→∞ |xn – xn+1| = 0 and limn→∞ |yn – yn+1| = 0, then

sup{|x0 – xn|, |y0 – yn| : n ∈ N} < ∞, where x0 and y0 are defined as in (iv).
Then a solution to system (3.1) is obtained.

Proof Note that S is D-continuous. Define t : X → X by tx = x for x ∈ X. Obviously,
S(X2) ⊆ t(X) and t is D-continuous and commutes with S. Next, we show that S is �-
t-monotone. Assume that x1, x2, y ∈ X, x1 � x2. According to assumption (ii),

S(x1, y)(r) = h(r) +
∫ 1

0
k1(r, s)f1

(
s, x1(s)

)
ds

∫ 1

0
k2(r, s)f2

(
s, y(s)

)
ds

≤ h(r) +
∫ 1

0
k1(r, s)f1

(
s, x2(s)

)
ds

∫ 1

0
k2(r, s)f2

(
s, y(s)

)
ds

= S(x2, y)(r)

and

S(y, x1)(r) = h(r) +
∫ 1

0
k1(r, s)f1

(
s, y(s)

)
ds

∫ 1

0
k2(r, s)f2

(
s, x1(s)

)
ds

≤ h(r) +
∫ 1

0
k1(r, s)f1

(
s, y(s)

)
ds

∫ 1

0
k2(r, s)f2

(
s, x2(s)

)
ds

= S(y, x2)(r).

Thus, S has the �-t-monotone property.
Let α : X2 × X2 → [0, +∞] be defined as α((x, y), (u, v)) = 1 for any (x, y), (u, v) ∈ X2.

Clearly, t and S are triangular α-admissible. In addition, it is easy to see that conditions
(ii) and (iii) of Theorem 2.4 are satisfied from assumptions (iv) and (v), respectively.

At this point, to apply Theorem 2.4, only condition (i) is needed. However, this condition
can be replaced by condition (iii) of Corollary 2.5. Now, we show that the latter condition
is satisfied. Let x, y, u, v ∈ X. If x � u and y � v, from assumption (iii),

∣
∣S(x, y)(r) – S(u, v)(r)

∣
∣

=
∣∣
∣∣

∫ 1

0
k1(r, s)f1

(
s, x(s)

)
ds

∫ 1

0
k2(r, s)f2

(
s, y(s)

)
ds

–
∫ 1

0
k1(r, s)f1

(
s, u(s)

)
ds

∫ 1

0
k2(r, s)f2

(
s, v(s)

)
ds

∣∣∣
∣

≤
∣
∣∣∣

∫ 1

0
k1(r, s)f1

(
s, x(s)

)
ds

∫ 1

0
k2(r, s)

[
f2

(
s, y(s)

)
– f2

(
s, v(s)

)]
ds

∣
∣∣∣

+
∣∣
∣∣

∫ 1

0
k1(r, s)

[
f1

(
s, x(s)

)
– f1

(
s, u(s)

)]
ds

∫ 1

0
k2(r, s)f2

(
s, v(s)

)
ds

∣∣
∣∣
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≤ KML sup
r∈[0,1]

∣∣y(r) – v(r)
∣∣ + KML sup

r∈[0,1]

∣∣x(r) – u(r)
∣∣

≤ 2KML max
{

sup
r∈[0,1]

∣∣y(r) – v(r)
∣∣, sup

r∈[0,1]

∣∣x(r) – u(r)
∣∣
}

.

Let θ = 2KML < 1. Then θ ∈ Θ ′. Therefore, condition (iii) of Corollary 2.5 is obtained.
Hence, a coupled fixed point of S exists. Consequently, there is a solution to system
(3.1). �

An essential observation is that the given JS-metric D is, in fact, a metric. Now, define a
new JS-metric D : X × X → [0,∞] by D(x, y) = supr∈[0,1](|x(r)| + |y(r)|). It follows that this
JS-metric D is not a metric. As a result, (X,D,�) is complete partially ordered. Similarly,
the existence of a solution to the system of integral equations can be guaranteed only if
the integral equations are homogeneous.

Theorem 3.2 From the system of equations (3.1), let S : X × X → X be defined as

S(x, y)(r) =
∫ 1

0
k1(r, s)f1

(
s, x(s)

)
ds

∫ 1

0
k2(r, s)f2

(
s, y(s)

)
ds,

where r ∈ [0, 1], and assume that
(i) ki : [0, 1] × [0, 1] →R

+ and fi : [0, 1] ×R→ R
+ are continuous, where i = 1, 2;

(ii) f1(r, x1(r)) ≤ f1(r, x2(r)) and f2(r, x1(r)) ≤ f2(r, x2(r)) whenever x1 ≤ x2 for x1, x2 ∈ X ;
(iii) there are K , L, M ∈R

+, 2KLM < 1,
∫ 1

0 ki(r, s) ds ≤ K ,
∫ 1

0 ki(r, s)fi(s, x(s)) ds ≤ M, and

∣
∣fi

(
r, x(r)

)∣∣ +
∣
∣fi

(
r, u(r)

)∣∣ ≤ L
(∣∣x(r)

∣
∣ +

∣
∣u(r)

∣
∣),

where r ∈ [0, 1], x, u ∈ X and i = 1, 2;
(iv) there are x0, y0 ∈ X so that x0 ≤ S(x0, y0) and y0 ≤ S(y0, x0).

Then a solution to system (3.1) is obtained when the integral equations are homogeneous.

Proof Similarly, let t be an identity mapping on X. With this JS-metric D, we get the D-
continuities of t and S. Furthermore, it can be noticed that condition (iii) of Theorem 2.4
is always true for this JS-metric D. Next, suppose α((x, y), (u, v)) = 1 for any (x, y), (u, v) ∈
X2. Repeating the same arguments used in Theorem 3.1, it follows that all the conditions
except condition (i) in Theorem 2.4 are valid.

To apply Theorem 2.4, our task is to prove condition (i) which, again, can be replaced
by condition (iii) of Corollary 2.5. Let x, y, u, v ∈ X. If x � u and y � v, by assumption (iii),

∣∣S(x, y)(r)
∣∣ +

∣∣S(u, v)(r)
∣∣

=
∣∣∣
∣

∫ 1

0
k1(r, s)f1

(
s, x(s)

)
ds

∫ 1

0
k2(r, s)f2

(
s, y(s)

)
ds

∣∣∣
∣

+
∣
∣∣∣

∫ 1

0
k1(r, s)f1

(
s, u(s)

)
ds

∫ 1

0
k2(r, s)f2

(
s, v(s)

)
ds

∣
∣∣∣

≤
∣∣
∣∣

∫ 1

0
k1(r, s)f1

(
s, x(s)

)
ds

∫ 1

0
k2(r, s)

[
f2

(
s, y(s)

)
+ f2

(
s, v(s)

)]
ds

∣∣
∣∣
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+
∣
∣∣
∣

∫ 1

0
k1(r, s)

[
f1

(
s, x(s)

)
+ f1

(
s, u(s)

)]
ds

∫ 1

0
k2(r, s)f2

(
s, v(s)

)
ds

∣
∣∣
∣

≤ KML sup
r∈[0,1]

(∣∣y(r)
∣
∣ +

∣
∣v(r)

∣
∣) + KML sup

r∈[0,1]

(∣∣x(r)
∣
∣ +

∣
∣u(r)

∣
∣)

≤ 2KML max
{

sup
r∈[0,1]

(∣∣y(r)
∣∣ +

∣∣v(r)
∣∣), sup

r∈[0,1]

(∣∣x(r)
∣∣ +

∣∣u(r)
∣∣)

}
.

Likewise, let θ = 2KML < 1, and so θ ∈ Θ ′. Then, we have condition (iii) of Corollary 2.5.
As a result, there is a solution to system (3.1) when the integral equations are homoge-
neous. �

Example 3.3 Consider the following system of integral equations:

x(r) =
∫ 1

0
s2e–r2 · s3

1 + s6 · |x(s)|
1 + |x(s)| ds

∫ 1

0

s2

1 + r2 · 1
1 + s3 · |y(s)|

2 + |y(s)| ds,

y(r) =
∫ 1

0
s2e–r2 · s3

1 + s6 · |y(s)|
1 + |y(s)| ds

∫ 1

0

s2

1 + r2 · 1
1 + s3 · |x(s)|

2 + |x(s)| ds,

where r ∈ [0, 1]. Define the following functions:

k1(r, s) = s2e–r2
,

k2(r, s) =
s2

1 + r2 ,

f1
(
s, x(s)

)
=

s3

1 + s6 · |x(s)|
1 + |x(s)| ,

f2
(
s, x(s)

)
=

1
1 + s3 · |x(s)|

2 + |x(s)| ,

where r, s ∈ [0, 1]. It can be seen that ki and fi are continuous, and fi(r, x) ≥ 0 for i = 1, 2.
Moreover, fi(r, x(r)) ≤ fi(r, y(r)) whenever x ≤ y for each i = 1, 2. In addition, note that con-
dition (iv) of Theorem 3.2 holds for any nonpositive-valued mappings x0, y0. Finally, we
have to show that this example satisfies condition (iii) of Theorem 3.2. Consider

∣∣f1
(
r, x(r)

)∣∣ +
∣∣f1

(
r, u(r)

)∣∣

=
r3

1 + r6 ·
(∣∣

∣∣
|x(r)|

1 + |x(r)|
∣∣
∣∣ +

∣∣
∣∣

|u(r)|
1 + |u(r)|

∣∣
∣∣

)

≤ 1
2
(∣∣x(r)

∣
∣ +

∣
∣u(r)

∣
∣),

∣
∣f2

(
r, y(r)

)∣∣ +
∣
∣f2

(
r, v(r)

)∣∣

=
1

1 + r3 ·
(∣

∣∣
∣

|y(r)|
2 + |y(r)|

∣
∣∣
∣ +

∣
∣∣
∣

|v(r)|
2 + |v(r)|

∣
∣∣
∣

)

≤ 1
2
(∣∣y(r)

∣
∣ +

∣
∣v(r)

∣
∣),

then let L = 1
2 . Next,

∫ 1

0
k1(r, s)f1

(
s, x1(s)

)
ds ≤

∫ 1

0
s2e–r2 · s3

1 + s6 ds =
1
6

e–r2
ln 2 ≤ 1

6
ln 2,
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∫ 1

0
k2(r, s)f2

(
s, x1(s)

)
ds ≤

∫ 1

0

s2

1 + r2 · 1
1 + s3 ds =

1
1 + r2 · 1

3
ln 2 ≤ 1

3
ln 2.

Thus, setting M = 1
3 ln 2, we get that

∫ 1
0 ki(t, s)fi(s, x1(s)) ds ≤ M for i = 1, 2. Since

∫ 1

0
k1(r, s) ds =

1
3

e–r2 ≤ 1
3

,

∫ 1

0
k2(r, s) ds =

1
3(1 + r2)

≤ 1
3

,

choose K = 1
3 . Consequently, 2KLM < 1. Finally, each hypothesis in Theorem 3.2 is true.

This leads to a conclusion that there is a solution to the system in C[0, 1].
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