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Abstract
A first-order random coefficient integer-valued autoregressive model based on the
negative binomial thinning operator under r states random environment is
introduced. This paper derives numerical characteristics of the proposed model,
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1 Introduction
Counting process is common in many real-life situations. Such examples are not only
found in medicine, insurance theory, and crime but also in meteorology, queueing systems,
biology, and other fields of insurance theory. Since counting sequences can count criminal
offenses, patients, earthquakes, detected errors, traffic accidents, insurance transactions,
and so on, they have attracted the interest of scientists for many years as well as nowadays.

Counting sequence is also called integer-valued time series. Binomial thinning oper-
ator is often used to build integer-valued models. For example, Al-Osh and Alzaid [1]
established the first-order integer-valued autoregressive (INAR) model and considered
the autoregressive parameter as survival probability. Freeland and McCabe [2] derived a
corrected explicit expression for the asymptotic variance matrix of the conditional least
squares estimators of the first-order integer-valued autoregressive model. Alzaid and Al-
Osh [3] introduced an integer-valued autoregressive process with lag p. Du and Li [4]
proved ergodicity of the pth-order integer-valued autoregressive model and derived the
correlation structure. Zheng et al. [5] extended the INAR(1) model to a random coeffi-
cient model, in which the fixed autoregressive parameter was replaced by the random
variable, and derived conditional least squares and quasi-likelihood estimators of the pro-
posed model parameters and established their asymptotic properties. Tang and Wang [6]
proposed the random coefficient integer-valued autoregressive model under random en-
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vironment by introducing a Markov chain with a finite state. Liu et al. [7] introduced ran-
dom environment binomial thinning integer-valued autoregressive process with Poisson
or geometric marginal.

In the above references, Bernoulli random variable is used in the INAR models based
on the binomial thinning operator. Since Bernoulli variable has only two possible values
of 0 and 1, the mean and variance of Bernoulli distribution are equal, it is not always ap-
propriate for the analysis of integer-valued time series. Therefore, Ristić et al. [8] defined
negative binomial thinning operator for integer-valued time series and discussed in some
details the first-order integer-valued autoregressive model with geometric marginal. From
then on, integer-valued autoregressive models based on negative binomial thinning oper-
ator have attracted widespread attention in the fields of statistics and economics. Ristić
et al. [9] proposed a bivariate integer-valued autoregressive model of the first-order with
geometric marginal and developed parameter estimators of conditional least squares esti-
mation. Bakouch [10] derived higher-order moments and numerical characteristics of the
integer-valued autoregressive model with geometric marginal. Nastić et al. [11] modeled
real data by the pth-order integer-valued autoregressive model with geometric marginal
and derived some regression properties of the new model. Zhang [12] introduced the ran-
dom coefficient integer-valued autoregressive process of order 1 and proved the strict sta-
tionarity of the proposed model.

On the other hand, the introduction of random environment in the INAR models has
greatly improved the adaptability of the model. Nastić et al. [13] and Laketa et al. [14] stud-
ied integer-valued autoregressive models based on the negative binomial thinning opera-
tor with different geometric marginal under random environment. For a more detailed and
profound introduction to random environment models, see Laketa [15]. Nastić et al. [16]
introduced first-order random environment integer-valued autoregressive model with the
geometric marginal, which is given as follows:

Xn(zn) = α ∗ Xn–1(zn–1) + εn(zn–1, zn), n ∈ N, (1)

where the fixed coefficient α ∈ (0, 1), zn is the true value of r states random environment
process {Zn}, {εn(zn–1, zn)} is an independent and identically distributed innovation se-
quence, Xn(zn) is non-negative random variables. In their paper, the distributional and
correlation properties of model (1) are discussed, and the k-step-ahead conditional ex-
pectation and variance are derived.

However, the fixed coefficient α in model (1) may change with time or others in certain
cases. For example, if α ∗ Xn–1(zn–1) in model (1) indicates the number of offspring species
under a small isolated area in time n – 1 (include maternal), and εn(zn–1, zn) denotes the
admitted of newly species in time n, then Xn(zn) stands for the number of species in time
n, but model (1) does not show this influence from temperature, humidity, and some other
factors which may affect Xn(zn) very much. It is more reasonable to express the fixed co-
efficient α as random variables αn. Therefore in this paper, we extend model (1) to a ran-
dom coefficient model, where the fixed coefficient α is replaced by random autoregressive
variables αn. Random coefficient models can be fitted to the data which are affected by
external factors such as disease data, crime data, etc. Disease data are collected under
the influence of medical level, patient constitution, and so on. The collection of criminal
data is influenced by factors such as regional economy and government policies. Random
coefficient models are better than model (1) for this kind of data. Therefore, random co-
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efficient models have many applications in medical, criminal, financial, and other fields.
The main idea of this article is to investigate the basic probabilistic and statistic properties
of the proposed model and develop the Yule–Walker estimation methods for the relevant
parameters.

The structure of the paper is as follows. In Sect. 2, we introduce the new random coeffi-
cient integer-valued autoregressive process of order 1 and study its properties. In Sect. 3,
Yule–Walker estimators and the strong consistency of the proposed parameter estimators
are established. Section 4 develops the results of numerical simulation.

2 The first-order random coefficient integer-valued autoregressive model
under r states random environment

In this section, we give the definition and the probabilistic properties of the new model
with random coefficient. Throughout the paper, let {Zn}, n ∈ N0, N0 = N ∪ 0, be r states
Markov chain, where r ∈ {1, 2, 3, . . .}, Zn ∈ Er = {1, 2, . . . , r}. The random coefficient se-
quence {Xn(Zn)} is defined as follows.

Definition 1 If a sequence of integer-valued random variables {Xn(zn)}, n ∈N0,

Xn(zn) = αn ∗ Xn–1(zn–1) + εn(zn–1, zn), n ∈N, (2)

satisfies the following conditions:
(i) zn is true value of the random environment process {Zn}, n ∈N0, zn ∈ Er .

(ii) {αn} is a sequence of independent and identically distributed random variables
which takes values on (0, 1). Let α = E(αn), σ 2

α = Var(αn) and note that they are
assumed finite, where 0 < α2 + σ 2

α < 1.
(iii) “∗” is a negative binomial thinning operator and satisfies

αn ∗ Xn–1(zn–1) =
∑Xn–1(zn–1)

i=1 W (n)
i , where W (n)

i is independent and identically
distributed random variables with probability mass function
P(W (n)

i = w) = αw
n

(1+αn)w+1 , w ∈N0.
(iv) {εn(zn–1, zn)} is an independent and identically distributed non-negative random

sequence. E(εn(zn–1, zn)) = μεn(zn–1,zn) and Var(εn(zn–1, zn)) = σ 2
εn(zn–1,zn) are assumed

finite. The sequence {εn(zn–1, zn)} meets the following conditions:
(A1) {Zn}, {εn(zn–1, zn)}, and {αn}, n ∈ N0, are mutually independent,
(A2) zm and εm(zm–1, zm) are independent of Xn(zn), n < m.

(v) For any zi = z, i ≥ 0, z ∈ Er , I is a characteristic function, where

I{zn=z} =

{
1, zn = z;
0, zn �= z.

(vi) The probability mass function of non-negative random variables Xn(zn) is as
follows:

P
(
Xn(zn) = x

)
=

(μzn )x

(1 + μzn )x+1 , x ∈N0,μzn ∈ {μ1,μ2, . . . ,μr}.

We say model (2) is a first-order random coefficient integer-valued autoregressive
model based on negative binomial thinning operator under r states random
environment, for short, RrRCINAR(1) model.
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Remark 1 Random variables Xn(zn) and εn(zn–1, zn) can also be expressed as

Xn(zn) =
r∑

z=1

Xn(z)I{zn=z}

and

εn(zn–1, zn) =
r∑

z1=1

r∑

z2=1

εn(z1, z2)I{zn–1=z1,zn=z2}.

Next, we consider {Xn(zn), zn} as a bivariate time series and derive its transition prob-
ability. The Markov chain property of the process {Xn(zn), zn} is given by the following
lemma.

Lemma 1 Suppose that the random variables Xn(zn) are given by model (2), then the bi-
variate process {Xn(zn), zn} is a Markov chain.

Proof Let pij = P(zn = j|zn–1 = i) be transition probability of the Markov chain {Zn}, where
i, j ∈ Er . Let Yn = (Xn(zn), zn) and yn = (xn, j), where zn = j. Let A = {Ys = ys, 0 ≤ s < n – 1}.
Therefore, for n ∈N, we have

Pn–1,n = P(Yn = yn|Yn–1 = yn–1, A)

= P
(
Xn(zn) = xn, zn = j|zn–1 = i, Xn–1(zn–1) = xn–1, A

)

= P
(
Xn(zn) = xn|zn = j, zn–1 = i, Xn–1(zn–1) = xn–1, A

)

· P
(
zn = j|zn–1 = i, Xn–1(zn–1) = xn–1, A

)

= P
(
αn ∗ xn–1 + εn(i, j) = xn

) · P(zn = j|zn–1 = i)

= pij · P
(
αn ∗ xn–1 + εn(i, j) = xn

)

= pij · P
(
Xn(j) = xn

)

= pij ·
μ

xn
j

(1 + μj)xn+1 , (3)

where μj ∈ {μ1,μ2, . . . ,μr}. Analogous to (3), we get

P(Yn = yn|Yn–1 = yn–1)

= P
(
Xn(zn) = xn, zn = j|zn–1 = i, Xn–1(zn–1) = xn–1

)

= pij ·
μ

xn
j

(1 + μj)xn+1 . (4)

The results of Eqs. (3) and (4) are equal. So the process {Xn(zn), zn} is a Markov chain. �

Then we introduce some properties of the negative binomial thinning operator when
the random variable Xn–1(zn–1) has discrete distributions.

Lemma 2 The sequence αn ∗ Xn–1(zn–1) is independent of the random variable Xn–1(zn–1).
Then
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(i) E(αn ∗ Xn–1(zn–1)) = αE(Xn–1(zn–1)).
(ii) E(αn ∗ Xn–1(zn–1))2 = α2E(Xn–1(zn–1)2) + α(1 + α)E(Xn–1(zn–1)).

Proof (i) By the definition of the negative binomial thinning operator, we have

E
(
αn ∗ Xn–1(zn–1)

)
= E

(Xn–1(zn–1)∑

i=1

W (n)
i

)

= E
(
W (n)

1 Xn–1(zn–1)
)

= EE
(
W (n)

1 |αn
) · E

(
Xn–1(zn–1)

)

= αE
(
Xn–1(zn–1)

)
.

(ii) Using the result given by (i), we have that

E
(
αn ∗ Xn–1(zn–1)

)2

= E
[
E
{(

αn ∗ Xn–1(zn–1)
)2|Xn–1(zn–1)

}]

= E
{
Var

(
αn ∗ Xn–1(zn–1)

∣
∣Xn–1(zn–1)

)
+ E2(αn ∗ Xn–1(zn–1)

∣
∣Xn–1(zn–1)

)}

= EE
{

Xn–1(zn–1) Var W (n)
1 + X2

n–1(zn–1)E2(W (n)
1

)|αn
}

= α2E
(
X2

n–1(zn–1)
)

+ α(1 + α)E
(
Xn–1(zn–1)

)
. �

Remark 2 Lemma 2 obtains the first-order and second-order moments of the sequence
αn ∗ Xn–1(zn–1). Scholars who are interested in methods for solving higher order moments
can be referred to Du and Li [4] and Silva and Oliveira [17].

The following lemma gives some properties of negative binomial thinning operator
when αn = 1.

Lemma 3 The distribution of 1 ∗ Xn–1(zn–1) under the state zn–1 can be written as

1 ∗ Xn–1(zn–1) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 w.p. 1
1+μzn–1

;

Xn–1(zn–1) w.p.
μ2

zn–1
(1+μzn–1 )2 ;

Xn–1(zn–1) + Yn–1(zn–1) w.p. μzn–1
(1+μzn–1 )2 ,

where the random variable Yn–1(zn–1) has geometric distribution with parameter 1+μzn–1
2+μzn–1

,
μzn–1 > 0, and Yn–1(zn–1) is independent of Xn–1(zn–1).

Proof We consider the probability generating function of the sequence 1 ∗ Xn–1(zn–1):

E
(
s1∗Xn–1(zn–1))

= E
((

EsW1
)Xn–1(zn–1)) = E

[(
1

2 – s

)Xn–1(zn–1)]

=
∞∑

x=0

(
1

2 – s

)x

· P
(
Xn–1(zn–1) = x

)
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=
∞∑

x=0

(
μzn–1

(2 – s)(1 + μzn–1 )

)x

· 1
(1 + μzn–1 )

=
1

1 – μzn–1
(2–s)(1+μzn–1 )

· 1
(1 + μzn–1 )

=
2 – s

2 + μzn–1 – (1 + μzn–1 )s

=
1

1 + μzn–1
+

μ2
zn–1

(1 + μzn–1 )2 · 1
1 + μzn–1 – sμzn–1

+
μzn–1

(1 + μzn–1 )2 · 1
1 + μzn–1 – sμzn–1

· 1
2 + μzn–1 – (1 + μzn–1 )s

=
1

1 + μzn–1
· E

(
s0) +

μ2
zn–1

(1 + μzn–1 )2 · E
(
sXn–1(zn–1))

+
μzn–1

(1 + μzn–1 )2 · E
(
sXn–1(zn–1)+Yn–1(zn–1)).

This completes the proof. �

Moments, covariances, and correlation coefficient of the random variable Xn(zn) will be
useful in obtaining the estimating equations for Yule–Walker estimation. The moments
and conditional moments are given by the following theorem.

Theorem 1 Let {Xn(zn)}, zn ∈ Er , be the RrRCINAR(1) process, and let μ1 > 0, μ2 > 0, . . . ,
μr > 0. For n ∈N,

(i) E(Xn(zn)) = μzn ;
(ii) E(Xn(zn)|Xn–1(zn–1)) = α · Xn–1(zn–1) + μεn(zn–1,zn);

(iii) Var(Xn(zn)) = μzn (1 + μzn );
(iv) Var(Xn(zn)|Xn–1(zn–1),αn) = αn(αn + 1)Xn–1(zn–1) + σ 2

εn(zn–1,zn);
(v) Var(Xn(zn)|Xn–1(zn–1)) = (α + α2 + σ 2

α )Xn–1(zn–1) + σ 2
α · X2

n–1(zn–1) + σ 2
εn(zn–1,zn);

(vi) γ
(k)
n = αk(μ2

zn–k
+ μzn–k );

(vii) ρ
(k)
n = αk

√
μ2

zn–k +μzn–k
μ2

zn +μzn
.

Proof (i) Let Φ(s) be the probability generating function of the random variable Xn(zn),
we obtain the following:

Φ(s) = E
(
sXn(zn))

=
∞∑

x=0

sx · P
(
Xn(zn) = x

)

=
∞∑

x=0

(
s · μzn

1 + μzn

)x

· 1
1 + μzn

=
1

1 – s·μzn
1+μzn

· 1
1 + μzn

=
1

1 + μzn – s · μzn
,



Cui and Wang Advances in Difference Equations        (2019) 2019:500 Page 7 of 16

so we have Φ ′(1) = μzn . By the property of probability generating function, we have

E
(
Xn(zn)

)
= Φ ′(1),

then we can get expectation of the random variable Xn(zn).
(ii) From the smoothness of expectation and the independence of Xn–1(zn–1) and W (n)

i ,
for arbitrary n ∈N, we have

E
(
Xn(zn)|Xn–1(zn–1)

)

= E
(
αn ∗ Xn–1(zn–1) + εn(zn–1, zn)|Xn–1(zn–1)

)

= E
(
αn ∗ Xn–1(zn–1)|Xn–1(zn–1)

)
+ μεn(zn–1,zn)

= E

(Xn–1(zn–1)∑

i=1

W (n)
i |Xn–1(zn–1)

)

+ μεn(zn–1,zn)

= E
(
Xn–1(zn–1) · W (n)

1 |Xn–1(zn–1)
)

+ μεn(zn–1,zn)

= Xn–1(zn–1)E
(
W (n)

1
)

+ μεn(zn–1,zn)

= Xn–1(zn–1)EE
(
W (n)

1 |αn
)

+ μεn(zn–1,zn)

= α · Xn–1(zn–1) + μεn(zn–1,zn),

where μεn(zn–1,zn) is expectation of the random variable εn(zn–1, zn).
(iii) Because of Φ ′(1) = μzn and Φ ′′(1) = 2μ2

zn , applying the property of probability gen-
erating function, we have

Var
(
Xn(zn)

)
= Φ ′′(1) + Φ ′(1)

(
1 – Φ ′(1)

)

= 2μ2
zn + μzn (1 – μzn )

= μzn (1 + μzn ).

(iv) By using the definition of negative binomial thinning operator and the variance of
random variables εn(zn–1, zn), we have

Var
(
Xn(zn)|Xn–1(zn–1),αn

)

= Var
(
αn ∗ Xn–1(zn–1) + εn(zn–1, zn)|Xn–1(zn–1),αn

)

= Var
(
αn ∗ Xn–1(zn–1)|Xn–1(zn–1),αn

)
+ σ 2

εn(zn–1,zn)

= Var

(Xn–1(zn–1)∑

i=1

W (n)
i |Xn–1(zn–1),αn

)

+ σ 2
εn(zn–1,zn)

= Var

(Xn–1(zn–1)∑

i=1

W (n)
i |Xn–1(zn–1),αn

)

+ σ 2
εn(zn–1,zn)

= αn(1 + αn)Xn–1(zn–1) + σ 2
εn(zn–1,zn).
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(v) Next, we derive the conditional variance of the random variable Xn(zn) on Xn–1(zn–1):

Var
(
Xn(zn)|Xn–1(zn–1)

)

= Var
(
αn ∗ Xn–1(zn–1) + εn(zn–1, zn)|Xn–1(zn–1)

)

= Var
(
αn ∗ Xn–1(zn–1)|Xn–1(zn–1)

)
+ σ 2

εn(zn–1,zn)

= Eαn

(
Var

(
αn ∗ Xn–1(zn–1)|Xn–1(zn–1),αn

))

+ Varαn

(
E
(
αn ∗ Xn–1(zn–1)|Xn–1(zn–1),αn

))
+ σ 2

εn(zn–1,zn).

Let Eαn and Varαn be respectively the expectation and variance of the random variable αn,
we have

Eαn

(
Var

(
αn ∗ Xn–1(zn–1)|Xn–1(zn–1),αn

))

= Eαn

(

Var

(Xn–1(zn–1)∑

i=1

W (n)
i |Xn–1(zn–1),αn

))

= Eαn

((
αn + α2

n
) · Xn–1(zn–1)

)

=
(
α + α2 + σ 2

α

)
Xn–1(zn–1)

and

Varαn

(
E
(
αn ∗ Xn–1(zn–1)|Xn–1(zn–1),αn

))
= Varαn

(
αn · Xn–1(zn–1)

)

= σ 2
α X2

n–1(zn–1).

Therefore

Var
(
Xn(zn)|Xn–1(zn–1)

)

= Eαn

(
Var

(
αn ∗ Xn–1(zn–1)|Xn–1(zn–1),αn

))

+ Varαn

(
E
(
αn ∗ Xn–1(zn–1)|Xn–1(zn–1),αn

))
+ σ 2

εn(zn–1,zn)

=
(
α + α2 + σ 2

α

)
Xn–1(zn–1) + σ 2

α X2
n–1(zn–1) + σ 2

εn(zn–1,zn).

(vi) By repeated application of the smoothness of expectation,

E
(
αn ∗ αn–1 ∗ · · · ∗ αn–k+1 ∗ Xn–k(zn–k)

)

= EE
(
αn ∗ αn–1 ∗ · · · ∗ αn–k+1 ∗ Xn–k(zn–k)|αn–1 ∗ · · · ∗ αn–k+1 ∗ Xn–k(zn–k)

)

= E
(
α
(
αn–1 ∗ · · · ∗ αn–k+1 ∗ Xn–k(zn–k)

))

· · ·
= αk · E

(
Xn–k(zn–k)

)
.

Through similar approach, we have

E
(
Xn–k(zn–k) · (αn ∗ αn–1 ∗ · · · ∗ αn–k+1 ∗ Xn–k(zn–k)

))
= αkE

(
X2

n–k(zn–k)
)
.
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By the independence of Xn–k(zn–k) and {εn–k(zn–k–1, zn–k), k ≥ 0}, for n > k, we have

γ (k)
n = Cov

(
Xn(zn), Xn–k(zn–k)

)

= Cov
(
αn ∗ Xn–1(zn–1) + εn(zn–1, zn), Xn–k(zn–k)

)

= Cov
(
αn ∗ Xn–1(zn–1), Xn–k(zn–k)

)
+ Cov

(
εn(zn–1, zn), Xn–k(zn–k)

)

= Cov
(
αn ∗ (

αn–1 ∗ Xn–2(zn–2) + εn–1(zn–2, zn–1)
)
, Xn–k(zn–k)

)

= Cov
(
αn ∗ αn–1 ∗ Xn–2(zn–2), Xn–k(zn–k)

)

· · ·
= Cov

(
αn ∗ αn–1 ∗ αn–2 ∗ · · · ∗ αn–k+1 ∗ Xn–k(zn–k), Xn–k(zn–k)

)

= E
(
Xn–k(zn–k) · (αn ∗ αn–1 ∗ αn–2 ∗ · · · ∗ αn–k+1 ∗ Xn–k(zn–k)

))

– E
(
Xn–k(zn–k)

) · E
(
αn ∗ αn–1 ∗ αn–2 ∗ · · · ∗ αn–k+1 ∗ Xn–k(zn–k)

)

= αkE
(
X2

n–k(zn–k)
)

– αkE2(Xn–k(zn–k)
)

= αk Var
(
Xn–k(zn–k)

)

= αk(μ2
zn–k

+ μzn–k

)
.

(vii) From (vi) in Theorem 1, we have

ρ(k)
n =

γ
(k)
n

√
γ

(0)
n · γ (0)

n–k

=
αk(μ2

zn–k
+ μzn–k )

√
(μ2

zn + μzn )(μ2
zn–k

+ μzn–k )
= αk

√
μ2

zn–k
+ μzn–k

μ2
zn + μzn

.

We complete the proof of this part. �

3 Yule–Walker estimation
Now we investigate the Yule–Walker estimators for the RrRCINAR(1) model. Since the
marginal distribution of the RrRCINAR(1) model varies at different circumstances, we
can not use the Yule–Walker estimation method directly. Therefore, in order to use the
Yule–Walker estimation methods, we set a sample belonging to the same environment
state.

Let us assume that the data that are in the same cluster are observed under the same
state. Select a sample of size N in model (2), X1(z1), X2(z2), . . . , XN (zN ). When the sample
corresponds to the environment k ∈ Er , then ∃i, n ∈ N, zi �= k, zi+1 = zi+2 = · · · = zn = k,
zn+1 �= k, we call Xi+1(k), Xi+2(k), . . . , Xn(k) a subsample if Xi(j), Xi+1(k), Xi+2(k), . . . , Xn(k),
Xn+1(l), j �= k, l �= k, j, k, l ∈ Er .

The sample X1(z1), X2(z2), . . . , XN (zN ) can be partitioned into subsample with different
states, for k ∈ {1, 2, . . . , r}, let

Ik =
{

i ∈ {1, 2, . . . , N}|zi = k
}

be the subscript of the sample X1(z1), X2(z2), . . . , XN (zN ) corresponding to the environ-
ment k.
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Let nk be the number of the sample X1(z1), X2(z2), . . . , XN (zN ) in the circumstance k, then
we have

r⋃

k=1

Ik = {1, 2, . . . , N}, |Ik| = nk , n1 + n2 + · · · + nr = N .

Let

Uk =
(
Xk1 (k), Xk2 (k), . . . , Xknk

(k)
)
, ki ∈ Ik , ki < ki+1,∀i ∈ {1, 2, . . . , nk – 1},

it represents a set of elements in the state k. Subsamples are denoted as Uk,1, Uk,2, . . . , Uk,ik ,
where {1, 2, . . . , ik} represents the order of subsamples in the state k.

Similar to Zhang [12], the Yule–Walker estimation of the sample mean μ̂k,l , the sample
variance γ̂

(k)
0,l , and the first-order sample covariance γ̂

(k)
1,l of the set Uk,l are given by

μ̂k,l =
1

nk,l

∑

i∈Jk,l

Xi(k),

γ̂
(k)
0,l =

1
nk,l

∑

i∈Jk,l

(
Xi(k) – μ̂k,l

)2,

γ̂
(k)
1,l =

1
nk,l

∑

{i,i+1}⊆Jk,l

(
Xi+1(k) – μ̂k,l

)(
Xi(k) – μ̂k,l

)
,

where Jk,l = {i ∈ {1, 2, . . . , N}|Xi(zi) ∈ Uk,l}, |Jk,l| = nk,l , nk,1 +nk,2 + · · ·+nk,ik = nk . By inequal-
ity of 0 < α2 + σ 2

α < 1, we can get that estimators μ̂k,l , γ̂ (k)
0,l , and γ̂

(k)
1,l are strongly consistent.

We can obtain Yule–Walker estimators μ̂k , γ̂
(k)
0 , and γ̂

(k)
1 of the set Uk in the same way,

these estimators are defined as follows:

μ̂k =
1
nk

∑

i∈Ik

Xi(k),

γ̂
(k)
0 =

1
nk

∑

i∈Ik

(
Xi(k) – μ̂k

)2,

γ̂
(k)
1 =

1
nk

∑

{i,i+1}⊆Ik

(
Xi+1(k) – μ̂k

)(
Xi(k) – μ̂k

)
.

Next, we prove the strong consistency of estimators μ̂k , γ̂ (k)
0 , and γ̂

(k)
1 .

Theorem 2 The estimators μ̂k , γ̂
(k)
0 , and γ̂

(k)
1 under the circumstance k are strongly con-

sistent.

Proof First, let us prove that the estimator μ̂k is strongly consistent, that is, P(μ̂k → μk ,
nk → ∞) = 1. We assume that

nk,l → ∞, l ∈ {1, 2, . . . , d},
nk,j → cj < ∞, j ∈ {d + 1, d + 2, . . . , ik},

where nk = nk,1 + nk,2 + · · · + nk,ik , when nk → ∞.
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It holds that

μ̂k =
1
nk

∑

i∈Ik

Xi(k) =
1
nk

ik∑

l=1

∑

i∈Jk,l

Xi(k) =
ik∑

l=1

nk,l

nk

1
nk.l

∑

i∈Jk,l

Xi(k)

=
ik∑

l=1

nk,l

nk
μ̂k,l =

d∑

l=1

nk,l

nk
μ̂k,l +

ik∑

l=d+1

nk,l

nk
μ̂k,l,

because limnk→∞
nk,j
nk

= 0, j ∈ {d + 1, d + 2, . . . , ik}, we can rewrite

μ̂k =
d∑

l=1

nk,l

nk
μ̂k,l.

Estimator μ̂k,l is strongly consistent, that is,

P
(
μ̂k,l → μk , nk,l → ∞,∀l ∈ {1, 2, . . . , d}) = 1.

The sum
∑ik

j=d+1 nk,j → ∑ik
j=d+1 cj is negligible compared with nk,l → ∞, so we can

rewrite nk as nk = nk,1 + nk,2 + · · · + nk,d . This implies

μ̂k =
d∑

l=1

nk,l

nk
μ̂k,l =

d∑

l=1

nk,l

nk

(
μk + o(nk,l)

)
=

d∑

l=1

nk,l

nk
μk+

d∑

l=1

nk,l

nk
o(nk,l)

= μk

∑d
l=1 nk,l

nk
+

d∑

l=1

nk,l

nk
o(nk,l) = μk +

d∑

l=1

nk,l

nk
o(nk,l)

= μk +
d∑

l=1

nk,l

nk
o(nk,l),

where limnk,l→∞,∀l∈{1,2,...,d}
nk,l
nk

< ∞. Therefore, μ̂k → μk , nk,l → ∞, ∀l ∈ {1, 2, . . . , d}.
According to the assumptions, we can get

nk → ∞ ⇔ nk,l → ∞, ∀l ∈ {1, 2, . . . , d},

and then

lim
nk,l→∞,∀l∈{1,2,...,d}

μ̂k = lim
nk→∞ μ̂k = μk .

Here, we complete the proof that the estimator μ̂k is strongly consistent. The proofs of
estimators γ̂

(k)
0 and γ̂

(k)
1 are similar to the proof of estimator μ̂k . �

The parameter estimator α̂ of α can be expressed as

α̂ =
r∑

k=1

nk

N
α̂k ,
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where

α̂k =
γ̂

(k)
1

γ̂
(k)
0

.

Theorem 3 The estimators α̂ and α̂k are strongly consistent.

Proof It is easy to get the strong consistency of estimator α̂k by the strong consistency of
estimators γ̂

(k)
0 and γ̂

(k)
1 .

Next, we prove the strong consistency of estimator α̂ =
∑r

k=1
nk
N α̂k , when nk → ∞. Be-

cause α̂k is strongly consistent and (N → ∞) ⇔ (nk → ∞,∀k ∈ {1, 2, . . . , r}), it is obvious
to prove that α̂ is strongly consistent by using the subadditivity of the probability. �

The remaining estimator μ̂εn(i,j) of μεn(i,j) is given by

μ̂εn(i,j) = μ̂j – α̂ · μ̂i.

Theorem 4 The estimator μ̂εn(i,j) is strongly consistent.

Proof Using strong consistency of estimators μ̂j, μ̂i, and α̂, it is obvious to prove that
estimator μ̂εn(i,j) is strongly consistent. �

Let

PM =

⎛

⎜
⎜
⎜
⎜
⎝

p11 p12 · · · p1r

p21 p22 · · · p2r
...

...
. . .

...
pr1 pr2 · · · prr

⎞

⎟
⎟
⎟
⎟
⎠

be a transition probability matrix, where r is the number of states, and pkj, k, j ∈ {1, 2, . . . , r}
is the transition probability from state k to state j. The estimator of pkj is defined as

p̂kj =
nkj

nk
,

where nk represents the number of elements in the state k, nkj represents the number of
elements transferring from state k to state j. We can easily come to the following conclu-
sion.

Theorem 5 The estimator p̂kj is strongly consistent.

4 Model simulation
In this section we consider the following model:

Xn(zn) = αn ∗ Xn–1(zn–1) + εn(zn–1, zn),

where αn has uniform distribution and takes values on (c, d) with expectation E(αn) = α =
c+d

2 , 0 < c < d < 1.
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The distribution of the random variable εn(zn–1, zn) is defined as

εn(zn–1, zn) =

{
Geom( μzn

1+μzn
), w.p. 1 – αμzn–1

μzn –α
;

Geom( α
1+α

), w.p. αμzn–1
μzn –α

,

where α = c+d
2 and the expectation of the random variable εn(zn–1, zn) is μεn(zn–1,zn) =

μzn – αμzn–1 .
The RrRCINAR(1) model includes two processes, one is an environment state process

{Zn} and the other is a random coefficient integer-valued autoregressive process. The re-
alization of the environment state process is required so that the state process will occur
one step earlier than the counting process. We choose four cases of different parameter
values to generate random numbers and use the mean square error (MSE) to reflect the
error of Yule–Walker estimators:

MSE(α̂) =
1

K – 1

K∑

i=1

(

α̂i –
1
K

K∑

i=1

α̂i

)

and

MSE
(
μ̂

(k)
i

)
=

1
K – 1

K∑

i=1

(

μ̂
(k)
i –

1
K

K∑

i=1

μ̂
(k)
i

)

,

where α̂i and μ̂
(k)
i are the ith simulation values, i ∈ K , j ∈ Er , K is repeated times of each

simulation. In the simulation study, the sample sizes are 100, 200, and 500, each simulation
is repeated 500 times.

Note that the value of estimator μ̂εn(i,j) is directly related to estimators μ̂i, μ̂j, and α̂,
where i, j ∈ Er . So value and mean square error of the estimator μ̂εn(i,j) will not be given
here.

In case (a), we suppose that the RrRCINAR(1) model counts in two possible random
states, Er = {1, 2}. The true parameter value is μ = (1, 2). μ1 = 1 is the expectation of the
random variable Xn(zn) in state 1. Meanwhile, μ2 = 2 is the expectation of the random
variable Xn(zn) in state 2. The random variable αn has uniform distribution with param-
eter vector (0.05, 0.25). The vector PV = (0.8, 0.2) is the probability of the initial state z0.
The RrRCINAR(1) model is derived from a dynamic structure by a random environment
probability transition matrix. In this case, using

PM =

(
0.8 0.2
0.5 0.5

)

as a probability transition matrix. This transition matrix shows that state 1 will not change
with probability 0.8 and will change with probability 0.2. The probabilities of keeping the
current state and entering other states are equal when the model is under state 2. The
simulation result can be seen in Table 1.

In case (b), we consider a mean vector μ = (2, 4). Let c = 0.15, d = 0.25, and Er = {1, 2}.
The probability of the initial state is fair by probability value vector PV = (0.5, 0.5). As a
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Table 1 Case (a)

n μ̂1
YW μ̂2

YW α̂YW

100 1.0640 2.0313 0.1455
MSE 0.0297 0.2138 0.0810
200 1.0500 2.0365 0.1456
MSE 0.0168 0.1012 0.0309
500 1.0657 2.0264 0.1478
MSE 0.0057 0.0428 0.0133

Table 2 Case (b)

n μ̂1
YW μ̂2

YW α̂YW

100 1.9919 4.0280 0.1983
MSE 0.0790 0.8196 0.0979
200 1.9870 3.9970 0.2006
MSE 0.0155 0.1695 0.0141
500 1.9871 4.0074 0.2001
MSE 0.0135 0.1514 0.0163

Table 3 Case (c)

n μ̂1
YW μ̂2

YW α̂YW

100 3.0082 3.9825 0.3017
MSE 0.1725 0.7619 0.0764
200 2.9792 3.9911 0.3007
MSE 0.0901 0.3415 0.0296
500 2.9675 3.9756 0.3006
MSE 0.0359 0.1525 0.0128

transition probability matrix, we have chosen

PM =

(
0.8 0.2
0.6 0.4

)

.

We see that the present state will not change with probability 0.8 or 0.4 and will change
with probability 0.2 or 0.6. Table 2 presents the result of the simulation of case (b).

In case (c), a true mean vector value μ = (3, 4), two fixed values c = 0.15, d = 0.45, and
a set Er = {1, 2}. The probability vector is PV = (0.6, 0.4) of the initial random state. The
random variable X0(z0) is a probability of 0.6 in state 1 and a probability of 0.4 in state 2.
The state transition matrix is the same as case (a). The simulation result of case (c) is shown
in Table 3.

In case (d), we assume that model (2) is performed in three different states, where
Er = {1, 2, 3}. The parameter true value is μ = (1, 2, 3). Let us choose c = 0.15, d = 0.25.
The probability of the initial state is close to fairness, due to the value of its distribution
PV = (0.33, 0.34, 0.33). Next, the transition probability matrix of the random environment
is given as

PM =

⎛

⎜
⎝

0.7 0.1 0.2
0.1 0.6 0.3
0.5 0.2 0.3

⎞

⎟
⎠ .
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Table 4 Case (d)

n μ̂1
YW μ̂2

YW μ̂3
YW α̂YW

100 1.0001 2.1153 3.1191 0.1994
MSE 0.0516 0.2128 0.3799 0.0183
200 1.0321 2.0451 3.0048 0.1982
MSE 0.0214 0.1297 0.2343 0.0092
500 1.0793 2.0225 2.9957 0.1983
MSE 0.0078 0.0483 0.0894 0.0039

When model (2) is in state 1, the current state is maintained with a high probability, and
it enters other states with a small probability. When the present state is 2, it stays in the
current state with probability 0.6 and shifts to other states with probability 0.1 or 0.3.
When state 3 is reached, it enters other states with a high probability and stays at the
current state with a small probability. The simulation result of case (d) is listed in Table 4.

From the simulation results in Tables 1, 2, 3, 4, we can see that the values of the mean
square error decrease with the increase in sample capacity, and with the increase in the
sample size, all Yule–Walker estimators are convergent with the mean square error de-
creasing towards zero. The random environment process determines the dynamic struc-
ture of the RrRCINAR(1) model, so in the simulation, the realization of a random environ-
ment process is ahead of the RrRCINAR(1) model by the random state process probability
transition matrix.

5 Summary and conclusions
In this article, we have presented a random coefficient INAR(1) model of the adjustable
nature with the negative binomial thinning operator. The new model is non-stationary
due to different geometric marginal distributions. Yule–Walker estimators of the model
parameters are obtained and their strong consistency is derived. Tests on model data indi-
cate that the Yule–Walker estimation is effective. The numerical simulation shows that the
proposed model is feasible. The RrRCINAR(1) process is a dynamic structure which is de-
termined by the transition matrix, the random environment process transition probability
matrix can be adjusted when the simulation is performed. The RrRCINAR(1) process with
dynamic structure has flexibility in data processing. This random coefficient model with
known states can be used in criminal, medical, and other fields.
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