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Abstract
Transmission dynamics of swine influenza pandemic is analysed through a
deterministic model. Qualitative analysis of the model includes global asymptotic
stability of disease-free and endemic equilibria under a certain condition based on
the reproduction number. Sensitivity analysis to ponder the effect of model
parameters on the reproduction number is performed and control strategies are
designed. It is also verified that the obtained numerical results are in good agreement
with the analytical ones.
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1 Introduction
Flu, as a pig infection, was first diagnosed at the time of Spanish influenza pandemic of
1918–1919. First of all, Koen depicted the flu ailment in those families for which this dis-
ease appeared in their swine herds [1]. The first seclusion of influenza virus from pigs
happened in 1930 [2] and several years later from humans [3]. Swine influenza virus was
first separated from a human in 1974, affirming the hypothesis that swine flu infections
could contaminate people [4].

In the twentieth century, the recognition of influenza subtypes made it possible to di-
agnose transmission to humans accurately. The recorded number of confirmed transmis-
sions was 50. Some of its strains passed from human to human. The 2009 H1N1 virus was
not zoonotic swine flu, as it was not transported from pigs to people, but from one person
to another.

The standard methods of the transmission of influenza viruses in people are through the
dissemination of large droplets and coughing of an infected person [5]. There is additional
potential for transmission through contact with fomites that are tainted with respiratory
or gastrointestinal material. Since numerous patients suffering from swine influenza infec-
tion have had loose bowels, the potential for fecal viral shedding and resulting fecal-oral
transmission is considered and studied [6].

It is estimated that 2009 pandemic influenza A H1N1 caused more than 18,300 deaths
across 74 countries of the world [7]. In the same year, the world also experienced epidemic
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of H1N1 influenza termed as swine influenza that led to more than 16,455 mortalities
globally [8]. In Canada, this type of epidemic appeared twice. First, it occurred during
spring 2009 and then in October 2009. It lasted for about three months [9]. In 2014, 937
cases of swine flu had been reported in India and 218 deaths had been observed due to
this disease. In 2015, the recorded cases and casualties had performed better than the
past numbers. There is a huge aggregate of affirmed cases, and these cases are greater
than 33,000, which involves approximately 2000 passed away cases [10].

Isolation (of people dreaded to have been presented to a transmittable illness) is one of
the most seasoned general well-being control strategy of transferable maladies in given
population. During flare-ups of a transmittable infection in human populations, essential
general well-being control measures, eminent isolation (of people associated with being
presented to the sickness), and detachment (of people with clinical side effects of the sick-
ness) are commonly actualized to control or moderate the malady trouble (estimated in
terms of the number of new cases, hospitalization, grimness, mortality). These measures
have been viably utilized in the control of various developing and reappearing human and
creature illnesses such as sickness, plague, cholera, typhus, yellow fever, smallpox, diph-
theria, tuberculosis, measles, ebola, serious intense respiratory disorder, cow-like tuber-
culosis, rinderpest, foot-and-mouth, psittacosis, and all the more as of the late 2009 swine
flu pandemic [11–13].

Optimal control hypothesis is an incredible scientific apparatus to settle on choice in-
cluding complex dynamical frameworks. It has additionally been connected to irresistible
infection issues previously, and is a decent strategy for deciding how to control a sickness
best, for modeling what level of the population ought to be immunized as time advances
in a given pestilence model to limit both the quantity of contaminated individuals and the
expense of actualizing the immunization technique. Various examinations have utilized
the uses of ideal control hypothesis in epidemiological models. Lenhart and Workman
[14] introduced many examples of optimal control applied to different problems, includ-
ing an infectious disease problem. Sweilam et al. [15] studied an optimal control problem
for the fractional tuberculosis (TB) infection models. Different displaying studies have ad-
ditionally been made to think about the job of optimal control using epidemic models [16,
17].

For the comprehension of the transmission dynamics of influenza, there exist numerous
mathematical models. Brian et al. [18] presented the literature about influenza models and
discussed how these models are helpful to study the dynamics of swine flu. Martcheva [19]
discussed the evolutionary model of influenza A with drift and shift. Rahman and Zou [20]
analyzed two strains influenza model with inoculation for strain 1 being executed. Trans-
mission dynamics of H1N1 influenza has been discussed by different authors through
mathematical models [21–25]. However, to the authors’ knowledge, no such model of
swine flu has been developed in which the impact of quarantine individuals is discussed
and optimal control strategies have been designed on the basis of model sensitive param-
eters.

The version used in this work incorporates an extension presented in Imran et al. [25]
that accounts for the quarantine class. The potential highlights of the proposed model are
summarized as follows:

• A novel epidemiological model is designed by considering the effect of quarantines.
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Figure 1 Schematic flow diagram of influenza
model

• The effect of model parameters on the dynamics of swine flu is analyzed using
sensitivity analysis.

• Control strategies have been designed on the basis of sensitive parameters.
The objective of this study is to analyse new features of the model under consideration. In
the first phase, qualitative analysis has been completed including the sensitivity analysis.
Secondly, to project the potential impact of pandemic influenza, optimal control strate-
gies have been designed. The remaining part of the paper is arranged as follows: In Sect. 2,
model formulation, with parameter description including parameter values, is presented.
In Sect. 3, we discuss the model analysis, equilibria, and their stabilities. In Sect. 4, sen-
sitivity analysis is performed. Section 5 is devoted to the formulation of optimal control
problem. Optimal control existence is given in Sect. 6. In Sect. 7, analytical results are
verified through numerical simulations. In Sect. 8, concluding remarks are presented.

2 Model formulation
The whole population is divided into ten heterogeneous compartments, namely low-risk
susceptibles, high-risk susceptibles, vaccinated, exposed, quarantined, symptomatic indi-
viduals at early stage, symptomatic people at later stage, hospitalized, treated, and recov-
ered denoted by SL(t), SH(t), P(t), L(t), Q(t), I1(t), I2(t), H(t), T(t), and R(t) at any time t,
respectively. Thus the total human population can be written as

N(t) = SL(t) + SH (t) + P(t) + L(t) + Q(t) + I1(t) + I2(t) + H(t) + T(t) + R(t).

Pregnant ladies, juveniles, health care workers, elderly, and other immune-compromised
individuals are considered as high-risk susceptibles and the remaining population has
been thought to be at low risk to get infected by swine flu. Flow diagram of model (1)
is shown in Fig. 1.

We have the accompanying system of nonlinear ODEs to portray our problem:

dSL

dt
= π – πp – λSL – σLSL – μSL,

dSH

dt
= πp – θHλSH – σHSH – μSH ,

dP
dt

= σLSL + σHSH – θPλP – μP,



Hussain et al. Advances in Difference Equations        (2019) 2019:508 Page 4 of 22

dL
dt

= λ(SL + θHSH + θPP) – (α + β1 + μ)L,

dQ
dt

= β1L – (μ + η)Q,

dI1

dt
= αL – (τ1 + γ + μ)I1,

(1)

dI2

dt
= γ I1 – (τ2 + ψ + φI2 + μ + δ)I2,

dH
dt

= ψI2 + ηQ – (φH + μ + θ1δ)H ,

dT
dt

= τ1I1 + τ2I2 – (φT + μ)T ,

dR
dt

= φI2 I2 + φHH + φT T – μR,

where “λ”, the infection rate, is given by

λ = β
η1L + ηQ + I1 + η2I2 + η3H + η4T

N
. (2)

In (2), β is the compelling contact rate, and the refinement parameters 0 ≤ ηi < 1 (i ∈
{1, 2, 3, 4}) describe the supposed reduction of infectiousness of exposed, symptomatic in-
dividuals at later stage, hospitalized, and treated individuals, respectively, in relation to the
symptomatically-infected (infectious) individuals in the I1 class. Similarly, 0 ≤ η < 1 rep-
resents the assumed depreciation of virulence of quarantined individuals in connection to
people in the I1 class.

Susceptible individuals who are at low risk are reduced by infection (at the rate λ), vac-
cination (at a rate σL), and natural death (at a rate μ). Similarly high-risk susceptible indi-
viduals are reduced by infection (at the rate θHλ), vaccination (at a rate σH ), and natural
death (at a rate μ). The parameter θH > 1 represents the supposition that the people which
are at high risk are more sensitive to get tainted as compared to the people which are at
low risk. We assume that people in all epidemiological compartments are expected to suf-
fer same natural death rate μ, whereas disease-induced death rates of individuals in the I2

class and the hospitalized class are δ and θ1δ (0 < θ1 < 1), respectively.
Vaccinated individuals can become tainted at a decreased rate θPλ, where 1 – θP (0 <

θP < 1) is the adequacy of the antiviral in averting infection. Latently-infected individuals
(E) are produced at the rate λ and reduced by the formation of clinical indications of the
malady (at a rate α) and quarantined (at a rate β1). Latent individuals move to the symp-
tomatic initial level of infection I1, and afterward with the rate γ they move to I2, which
is the later class of infectious. People in classes I1 and I2 respectively get the medication
at rates τ1 and τ2. Infected individuals I2 are hospitalized at the rate ψ and quarantined
individuals at the rate η. Recovery rates of I2, hospitalized, and treated individuals are φI2 ,
φH , and φT , respectively. We consider that recovered individuals are permanently immune
against re-infection with H1N1. Parameters along with numerical values are described in
Table 1.
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Table 1 Description of the model parameters and nominal values

Parameters Explanation Value Ref

π Human birth rate 1,119,583 1
80∗365 [25]

1
μ Average lifespan of humans 80*365 [25]
p Part of high-risk susceptible individuals 0.4 [25]
β Effectual contact rate for spreading H1N1 influenza 0.9 [25]
σL Cure rate of low-risk susceptible individualsby using antiviral drugs 0.3 [26]
σH The rate at which high-risk susceptible individuals get cured by

using antiviral drugs
0.5 [26]

α Rate at which latent individuals become infected 1/1.9 [26]
τ1 Medication rate of individuals at the early stage of infection 1/5 [26]
τ2 Medication rate of individuals at the later stage of infection 1/3 [26]
φI2 Cure rate of symptomatic infectious individuals at the later stage 1/5 [26]
φT Cure rate of treated individuals 1/3 [26]
η1 Refinement parameter (see text) 0.1 [26]
η2 Refinement parameter (see text) 1/2 [26]
η3 Refinement parameter (see text) 1.2 [26]
η4 Refinement parameter (see text) 1 [26]
θH Refinement parameter for infection rate of high risk 1.2 [26]
1 – θP Drug efficacy against infection 0.5 [26]
ψ Hospitalized rate of individuals in the I2 class 0.5 [26]
γ Progression rate from I1 to I2 classes 0.06 [26]
δ It denotes the rate at which the people in class I2 die 1/100 [26]
θ1δ It denotes the rate at which the people in class H die 1/100 [26]

3 Analysis of the model
3.1 Basic properties
All the mentioned parameters in model (1) are nonnegative because it deals with human
population. It can be easily proved that the closed set D = {(SL, SH , P, L, Q, I1, I2, H , T , R) ∈
R10

+ : N ≤ π
μ
} is positively-invariant and attracting with respect to model (1).

3.2 Disease-free equilibrium and its stability
The disease-free equilibrium (DFE) of system (1) is given by

ε0 =
(
S∗

L, S∗
H , P∗, L∗, Q∗, I∗

1 , I∗
2 , H∗, T∗, R∗)

=
(

S∗
L, S∗

H ,
σLS∗

L + σHS∗
H

μ
, 0, 0, 0, 0, 0, 0, 0

)
, (3)

with S∗
L = π (1–P)

σL+μ
and S∗

H = πP
σH +μ

.
Following the notation given in [27], the nonnegative matrix F consisting of the new

infection terms and the matrix V of the progression terms involved in model (1) are given,
respectively, by

F =

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

βη1Ω βηΩ βΩ βη2Ω βη3Ω βη4Ω

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

,
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V =

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

K1 0 0 0 0 0
–β1 K 0 0 0 0
–α 0 K2 0 0 0
0 0 –γ K3 0 0
0 –η 0 –ψ K4 0
0 0 –τ1 –τ2 0 K5

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

,

where K1 = α +β1 +μ, K = μ+η, K2 = τ1 +γ +μ, K3 = τ2 +ψ +φI2 +μ+δ, K4 = φH +μ+θ1δ,
K5 = φT + μ, and Ω = S∗

L+θH S∗
H +θPP∗

N∗ .
It pursues the control reproduction number, signified by RC = ρ(FV –1), which is given

as follows:

RC = ρ
(
FV –1)

=
Ωβ

K1

(
η1 +

α

K2
+

β1η

K
+ αγ

η2

K2K3
+

η4

K2K3K5
(αγ τ2 + ατ1K3)

+
1
K

η3

K2K3K4
(Kαγψ + ηβ1K2K3)

)
,

where ρ denotes the overwhelming eigenvalue in the absolute value of FV –1. Utilizing
Theorem 2 in [27], the accompanying outcome is set up as follows.

Lemma 3.1 The DFE of model (1), given by (3), is locally-asymptotically stable (LAS) if
RC < 1 and unstable if RC > 1.

The control reproduction number RC represents the average number of new cases gen-
erated by a primary infectious individual in a population where some susceptible individu-
als receive antiviral prophylaxis. Lemma (3.1) shows that, for RC <1, the H1N1 pandemic
can be removed from the population if the basin of attraction of DFE(ε0) contains the
initial sub-populations. Global stability of the DFE is proved in the following theorem to
ensure that illness can be destroyed totally if the control reproduction number is less than
one.

Theorem 3.2 The DFE, ε0, of model (1) is GAS in D if RC ≤ R∗ = Ω
θH

.

Proof Consider the Lyapunov function

G(t) = g1L + gQ + g2I1 + g3I2 + g4H + g5T ,

where

g1 = η1K2K3K4K5 + αK3k4K5 + αγ η2K4K5 + αγ τ2η4K4 + ατ1η4K3K4

+ αγψη3K5 +
β1ηK2K3K4K5

K
+ η3ηβ1

K5K2K3

K
,

g =
ηη3K1K2K3K5

K
+ η

K1K2K3K4K5

K
,

g2 = γ τ2η4K1K4 + γψη3K1K5 + γ η2K1K4K5 + τ1η4K1K3K4 + K1K3K4K5,
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g3 = η2K1K2K4K5 + ψη3K1K2K5 + τ2η4K1K2K4,

g4 = η3K1K2K3K5,

g5 = η4K1K2K3K4.

The time derivative of G(t) is given by

G′(t) = g1L′ + gQ′ + g2I ′
1 + g3I ′

2 + g4H ′ + g5T ′

= g1
(
λ(SL + θHSH + θPP) – K1L

)
+ g(β1L – KQ) + g2(αL – K2I1) + g3(γ I1 – K3I2)

+ g4(ψI2 + ηQ – K4H) + g5(τ1I1 + τ2I2 – K5T)

=
(

η1K2K3K4K5 + αK3K4K5 + αγ η2K4K5 + αγ τ2K4η4 + ατ1K3K4η4 + αγψη3K5

+
β1ηK2K3K4k5

K
+ η3ηβ1

K5

K
K2K3

)
λ(SL + θHSH + θPP)

– K1K2K3K4K5(η1L + ηQ + I1 + η2I2 + η3H + η4T)

≤ g1λθHN – K1K2K3K4K5
λN
β

≤ K1K2K3K4K5
λN
β

(
RC

R∗ – 1
)

.

Thus G′(t) ≤ 0 if RC ≤ R∗ and G′(t) = 0 if and only if L = Q = I1 = I2 = H = T = 0. Moreover,
the greatest compact invariant set in {(SL, SH , P, L, Q, I1, I2, H , T , R) ∈ D : G′ = 0} is the sin-
gleton set {ε0}. According to LaSalle’s invariance principle [28], every solution to system
(1) converges to ε0, as t → ∞. Hence the DFE is globally asymptotically stable. �

3.3 Endemic equilibrium and its stability
In this section, the existence of endemic equilibrium (EE) for system (1) (that is, equilibria
where the infected classes are taken nonzero) and its stability are established. Let

E1 =
(
S∗∗

L , S∗∗
H , P∗∗, L∗∗, Q∗∗, I∗∗

1 , I∗∗
2 , H∗∗, T∗∗, R∗∗)

be EE of model (1). Further, suppose that

λ∗∗ =
β(η1L∗∗ + ηQ∗∗ + I∗∗

1 + η2I∗∗
2 + η3H∗∗ + η4T∗∗)

N∗∗

denotes the infection force at the steady-state. By simplifying the model at steady-state,
we have

S∗∗
L =

π – pip
λ∗∗ + σL + μ

,

S∗∗
H =

πp
θHλ∗∗ + σH + μ

,

P∗∗ = π
((1 – p)θHσL + pσH )λ∗∗ + (1 – p)σL(σH + μ) + pσH (σL + μ)

Q
,

L∗∗ =
λ∗∗(πθPθHλ∗∗2 + m1λ

∗∗ + m2)
K1Q

,
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Q∗∗ =
λ∗∗β1(πθPθHλ∗∗2 + m1λ

∗∗ + m2)
K1KQ

, (4)

I∗∗
1 =

αλ∗∗(πθPθHλ∗∗2 + m1λ
∗∗ + m2)

K1K2Q
,

I∗∗
2 =

γαλ∗∗(πθPθHλ∗∗2 + m1λ
∗∗ + m2)

K1K2K3Q
,

H∗∗ =
αγψλ∗∗(πθPθHλ∗∗2 + m1λ

∗∗ + m2)
K1k2K3K4Q

+
λ∗∗ηβ1(πθPθHλ∗∗2 + m1λ

∗∗ + m2)
K1KK4Q

,

T∗∗ =
τ1αλ∗∗(πθPθHλ∗∗2 + m1λ

∗∗ + m2)
K1K2K5Q

+
τ2γαλ∗∗(πθPθHλ∗∗2 + m1λ

∗∗ + m2)
K1K2K3K5Q

,

where

Q =
(
λ∗∗ + σL + μ

)(
θHλ∗∗ + σH + μ

)(
θPλ∗∗ + μ

)
,

m1 = π
{

(1 – p)
[
μθH + (σH + μ)θP

]
+ pθH

[
μ + (σL + μ)θP

]
+ θPA

}
,

m2 = π
{

(1 – p)(σH + μ)μ + pθH (σL + μ)μ + θPB
}

,

A = (1 – p)θHσL + pσH ,

B = (1 – p)σL(σH + μ) + pσH (σL + μ).

Using (4) in the expression of λ∗∗, we get

a0λ
∗∗3 + b0λ

∗∗2 + c0λ
∗∗ + d0 = 0, (5)

where

a0 = A1A8,

b0 = πθHθP

(
1 –

RC

Ω

)
+ πpθP(1 – θH ) + A2A8,

c0 = π (1 – p)
(
θP(σH + μ) + μθH

){
1 –

RC

Ω

}
+ πp

(
θP(μ + σL + μ)

){
1 –

θHRC

Ω

}

+ πA7

(
1 –

θPRC

Ω

)
+ A3A8,

d0 = π (1 – p)(σH + μ)
{
μ

(
1 –

RC

Ω

)
+ σL

(
1 – θP

RC

Ω

)}

+ πP(σL + μ)
{
μ

(
1 – θH

RC

Ω

)
+ σH

(
1 – θP

RC

Ω

)}
,

A1 = πθHθP,

A2 = π
{

(1 – p)
[
μθH + (σH + μ)θP

]
+ pθH

[
μ + (σL + μ)θP

]
+ θPA

}
,

A3 = π
{

(1 – p)(σH + μ)μ + pθH (σL + μ)μ + θPB
}

,

A7 = (1 – p)θHσL + pσH ,

A8 =
1

K1
+

β1

K1K
+

α

K1K2
+

γα

K1K2K3
+

αγψ

K1K2K3K4
+

ηβ1

K1KK4
+

τ1α

K1K2K5
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+
τ2γα

K1K2K3K5
+

γαφI2

μK1K2K3
+

φHαγψ

μK1K2K3K4
+

φHηβ1

μK1KK4
+

φTτ1α

μK1K2K5

φTτ2γα

μK1K2K3K5
.

It can be easily verified that coefficients of Eq. (5) are positive when RC
Ω

< 1
θH

, then by
Descarte’s rule of sign, there is no positive root. When RC

Ω
> 1

θP
, all the coefficients of Eq. (5)

are positive other than d0, thus in this case, the sign changes only once. Hence, we conclude
the above discussion as follows.

Theorem 3.3 If RC
Ω

> 1
θP

, then there exists one and only one EE for system (1). However, in
the case of RC

Ω
< 1

θH
, no EE exists.

Now, the global stability of EE calculated for model (1) is given for the exceptional situ-
ation where the disease-induced fatality is negligible. It is noted that the setting δ = 0 im-
plies N → π

μ
as t → ∞. Using N = π

μ
gives λ = β2(η1L + ηQ + I1 + η2I2 + η3H + η4T), where

β2 = β
μ

π
. Consider the accompanying change of variables: SL

S∗
L

= x1, SH
S∗

H
= x2, P

P∗ = x3, L
L∗ =

x4, Q
Q∗ = x5, I1

I∗1
= x6, I2

I∗2
= x7, H

H∗ = x8, T
T∗ = x9, R

R∗ = x10.
The Lyapunov function for the sub-framework comprising the initial nine equations of

(1) is as follows:

L(t) = a1(x1 – 1 – log x1) + a2(x2 – 1 – log x2) + a3(x3 – 1 – log x3)

+ a4(x4 – 1 – log x4) + a5(x5 – 1 – log x5) + a6(x6 – 1 – log x6)

+ a7(x7 – 1 – log x7) + a8(x8 – 1 – log x8) + a9(x9 – 1 – log x9),

where ai (i = 1, 2, . . . , 9) are constants and their values are found later. Now, differentiating
L w.r.t. time along the solutions of (1), we have

L′ = a1
π

S∗
L

(1 – p)
(

2 –
1
x1

– x1

)
+ a1β2η1L∗(x1 + x4 – x1x4 – 1)

+ a1β2I∗
1 (x1 + x6 – x1x6 – 1) + a1β2η2I∗

2 (x1 + x7 – x1x7 – 1)

+ a1β2ηQ∗(x1 + x5 – x1x5 – 1) + a1β2η3H∗(x1 + x8 – x1x8 – 1)

+ a1β2η4T∗(x1 + x9 – x1x9 – 1) + a2
πp
S∗

H

(
2 –

1
x2

– x2

)

+ a2β2η1L∗θH (x2 + x4 – x2x4 – 1)

+ a2β2I∗
1 θH (x2 + x6 – x2x6 – 1) + a2β2η2I∗

2 θH (x2 + x7 – x2x7 – 1)

+ a2β2ηQ∗θH (x2 + x5 – x2x5 – 1) + a2β2η3H∗θH (x2 + x8 – x2x8 – 1)

+ a2β2η4T∗θH (x2 + x9 – x2x9 – 1) + a3σH
S∗

H
P∗

(
x2 – x3 –

x2

x3
+ 1

)

+ a3σL
S∗

L
P∗

(
x1 – x3 –

x1

x3
+ 1

)

+ a3β2η1L∗θP(x3 + x4 – x3x4 – 1) + a3β2I∗
1 θP(x3 + x6 – x3x6 – 1)

+ a3β2η2I∗
2 θP(x3 + x7 – x3x7 – 1) + a3β2ηQ∗θP(x3 + x5 – x3x5 – 1)

+ a3β2η3H∗θP(x3 + x8 – x3x8 – 1) + a3β2η4T∗θP(x3 + x9 – x3x9 – 1)
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+ a4β2η1S∗
L(x1x4 – x4 – x1 + 1) + a4β2η1θPP∗(x3x4 – x4 – x3 + 1)

+ a4β2η1θHS∗
H (x2x4 – x4 – x2 + 1) + a4β2I∗

1
S∗

L
L∗

(
x1x6 – x4 –

x1

x4
x6 + 1

)

+ a4β2θHI∗
1

S∗
H

L∗

(
x2x6 – x4 –

x2

x4
x6 + 1

)
+ a4β2η2I∗

2
S∗

L
L∗

(
x1x7 – x4 –

x1

x4
x7 + 1

)

+ a4β2θP
I∗

1
L∗ P∗

(
x3x6 – x4 –

x3

x4
x6 + 1

)
+ a4ηβ2

S∗
L

L∗ Q∗
(

x1x5 – x4 –
x1

x4
x5 + 1

)

+ a4β2η3S∗
L

H∗

L∗

(
x1x8 – x4 –

x1

x4
x8 + 1

)
+ a4β2η4

S∗
L

L∗ T∗
(

x1x9 – x4 –
x1

x4
x9 + 1

)

+ a4ηβ2θH
S∗

H
L∗ Q∗

(
x2x5 – x4 –

x2

x4
x5 + 1

)

+ a4β2η3θHS∗
H

H∗

L∗

(
x2x8 – x4 –

x2

x4
x8 + 1

)

+ a4β2η4θH
S∗

H
L∗ T∗

(
x2x9 – x4 –

x2

x4
x9 + 1

)

+ a4β2η2θHI∗
2

S∗
H

L∗

(
x2x7 – x4 –

x2

x4
x7 + 1

)

+ a4ηβ2
θP

L∗ P∗Q∗
(

x3x5 – x4 –
x3

x4
x5 + 1

)

+ a4β2η3θP
H∗

L∗ P∗
(

x3x8 – x4 –
x3

x4
x8 + 1

)

+ a4β2η4
θP

L∗ P∗T∗
(

x3x9 – x4 –
x3

x4
x9 + 1

)

+ a4β2η2θP
I∗

2
L∗ P∗

(
x3x7 – x4 –

x3

x4
x7 + 1

)

+ a5β1
L∗

Q∗

[
x4 – x5 –

x4

x5
+ 1

]
+ a6

α

I∗
1

L∗
[

x4 – x6 –
x4

x6
+ 1

]

+ a7γ
I∗

1
I∗

2

[
x6 – x7 –

x6

x7
+ 1

]

+ a8

[
η

H∗ Q∗
(

x5 – x8 –
x5

x8
+ 1

)
+ ψ

I∗
2

H∗

(
x7 – x8 –

x7

x8
+ 1

)]

+ a9

[
τ1

I∗
1

T∗

(
x6 – x9 –

x6

x9
+ 1

)
+ τ2

I∗
2

T∗

(
x7 – x9 –

x7

x9
+ 1

)]
.

In order to find the values of ai (i = 1, 2, . . . , 9), putting the coefficients of x1, x2, x3, x4, x5, x6,
x7, x8, x9, x1x4, x1x5, x1x6, x1x7, x1x8, x1x9, x2x4, x2x5, x2x6, x2x7, x2x8, x2x9, x3x4, x3x5, x3x6, x3

x7, x3x8, x3x9 equal to zero, we get

a1 = a4
S∗

L
L∗ , a2 = a4

S∗
H

L∗ , a3 = a4
P∗

L∗ ,

a5 =
Q∗

β1L∗

(
a1β2ηQ∗ + a2β2ηQ∗θH + a3β2ηQ∗θP + a8

η

H∗ Q∗
)

,

a6 =
I∗

1
αL∗

(
a1β2I∗

1 + a2β2I∗
1 θH + a3β2I∗

1 θP + a7γ
I∗

1
I∗

2
+ a9τ1

I∗
1

T∗

)
,
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a7 =
I∗

2
γ I∗

1

(
a1β2η2I∗

2 + a2β2η2I∗
2 θH + a3β2η2I∗

2 θP + a8ψ
I∗

2
H∗ + a9τ2

I∗
2

T∗

)
,

a8 =
1

( η

H∗ Q∗ + ψ
I∗2
H∗ )

(
a1β2η3H∗ + a2β2η3H∗θH + a3β2η3H∗θP

)
,

a9 =
1

(τ1
I∗1
T∗ + τ2

I∗2
T∗ )

(
a1β2η4T∗ + a2β2η4T∗θH + a3β2η4T∗θP

)
.

Now

L′ = a1
π

S∗
L

(1 – p)
(

1 –
1
x1

)
+ a1(μ + σL) + a2

πp
S∗

H

(
1 –

1
x2

)
+ a2(σH + μ)

+ a3σH
S∗

H
P∗

(
1 –

x2

x3

)
+ a3σL

S∗
L

P∗

(
1 –

x1

x3

)
+ a3μ + a4β2η1S∗

L + a4β2η1θPP∗

+ a4β2η1θHS∗
H + a4β2I∗

1
S∗

L
L∗

(
1 –

x1

x4
x6

)
+ a4β2θHI∗

1
S∗

H
L∗

(
1 –

x2

x4
x6

)

+ a4β2η2I∗
2

S∗
L

L∗

(
1 –

x1

x4
x7

)
+ a4β2θP

I∗
1

L∗ P∗
(

1 –
x3

x4
x6

)
+ a4ηβ2

S∗
L

L∗ Q∗
(

1 –
x1

x4
x5

)

+ a4β2η3S∗
L

H∗

L∗

(
1 –

x1

x4
x8

)
+ a4β2η4

S∗
L

L∗ T∗
(

1 –
x1

x4
x9

)

+ a4ηβ2θH
S∗

H
L∗ Q∗

(
1 –

x2

x4
x5

)
+ a4β2η3θHS∗

H
H∗

L∗

(
1 –

x2

x4
x8

)

+ a4β2η4θH
S∗

H
L∗ T∗

(
1 –

x2

x4
x9

)
+ a4β2η2θHI∗

2
S∗

H
L∗

(
1 –

x2

x4
x7

)

+ a4ηβ2
θP

L∗ P∗Q∗
(

1 –
x3

x4
x5

)

+ a4β2η3θP
H∗

L∗ P∗
(

1 –
x3

x4
x8

)
+ a4β2η4

θP

L∗ P∗T∗
(

1 –
x3

x4
x9

)

+ a4β2η2θP
I∗

2
L∗ P∗

(
1 –

x3

x4
x7

)

+ a5β1
L∗

Q∗

[
1 –

x4

x5

]
+ a6

α

I∗
1

L∗
[

1 –
x4

x6

]
+ a7γ

I∗
1

I∗
2

[
1 –

x6

x7

]

+ a8

[
η

H∗ Q∗
(

1 –
x5

x8

)
+ ψ

I∗
2

H∗

(
1 –

x7

x8

)]

+ a9

[
τ1

I∗
1

T∗

(
1 –

x6

x9

)
+ τ2

I∗
2

T∗

(
1 –

x7

x9

)]

= P(x1, x2, . . . , x9).

Let us construct the following function to show that L′ ≤ 0 in D, which is a positively
invariant region:

U (x1, x2, . . . , x9) =
15∑

k=1

Uk(x1, x2, . . . , x9),
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where

U1 = d1

(
3 –

1
x1

–
x1

x4
x6 –

x4

x6

)
,

U2 = d2

(
4 –

1
x2

–
x2

x3
–

x3

x4
x6 –

x4

x6

)
,

U3 = d3

(
4 –

x1

x3
–

1
x1

–
x3

x4
x5 –

x4

x5

)
,

U4 = d4

(
4 –

x1

x4
x9 –

1
x1

–
x4

x6
–

x6

x9

)
,

U5 = d5

(
4 –

x1

x4
x7 –

1
x1

–
x4

x6
–

x6

x7

)
,

U6 = d6

(
3 –

x2

x4
x6 –

1
x2

–
x4

x6

)
,

U7 = d7

(
3 –

x1

x4
x5 –

1
x1

–
x4

x5

)
,

U8 = d8

(
4 –

x1

x4
x8 –

1
x1

–
x5

x8
–

x4

x5

)
,

U9 = d9

(
3 –

x2

x4
x5 –

1
x2

–
x4

x5

)
,

U10 = d10

(
5 –

x2

x4
x8 –

x7

x8
–

1
x2

–
x6

x7
–

x4

x6

)
,

U11 = d11

(
6 –

x3

x4
x8 –

x2

x3
–

1
x2

–
x7

x8
–

x6

x7
–

x4

x6

)
,

U12 = d12

(
6 –

x3

x4
x9 –

x2

x3
–

1
x2

–
x7

x9
–

x6

x7
–

x4

x6

)
,

U13 = d13

(
5 –

x3

x4
x7 –

x2

x3
–

1
x2

–
x6

x7
–

x4

x6

)
,

U14 = d14

(
5 –

x2

x4
x9 –

1
x2

–
x7

x9
–

x6

x7
–

x4

x6

)
,

U15 = d15

(
4 –

x2

x4
x7 –

1
x2

–
x6

x7
–

x4

x6

)
.

Comparison of the same terms between P(x1, x2, x3, x4, x5, x6, x7, x8, x9) and

15∑

k=1

Uk(x1, x2, x3, x4, x5, x6, x7, x8, x9)

yields the following equations:

d1 = a4β2I∗
1

S∗
L

L∗ , d2 = a4β2θP
I∗

1
L∗ P∗, d3 = a4ηβ2

θP

L∗ P∗Q∗,

d4 = a4β2η4
S∗

L
L∗ T∗, d5 = a4β2η2I∗

2
S∗

L
L∗ ,

d6 = a4β2θHI∗
1

S∗
H

L∗ , d7 = a4ηβ2
S∗

L
L∗ Q∗, d8 = a4β2η3S∗

L
H∗

L∗ ,
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d9 = a4ηβ2θH
S∗

H
L∗ Q∗, d10 = a4β2η3θHS∗

H
H∗

L∗ ,

d11 = a4β2η3θP
H∗

L∗ P∗, d12 = a4β2η4
θP

L∗ P∗T∗, d13 = a4β2η2θP
I∗

2
L∗ P∗,

d14 = a4β2η4θH
S∗

H
L∗ T∗, d15 = a4β2η2θHI∗

2
S∗

H
L∗ .

Thus

L′ = a4β2I∗
1

S∗
L

L∗

(
3 –

1
x1

–
x1

x4
x6 –

x4

x6

)
+ a4β2θP

I∗
1

L∗ P∗
(

4 –
1
x2

–
x2

x3
–

x3

x4
x6 –

x4

x6

)

+ a4ηβ2
θP

L∗ P∗Q∗
(

4 –
x1

x3
–

1
x1

–
x3

x4
x5 –

x4

x5

)

+ a4β2η4
S∗

L
L∗ T∗

(
4 –

x1

x4
x9 –

1
x1

–
x4

x6
–

x6

x9

)

+ a4β2η2I∗
2

S∗
L

L∗

(
4 –

x1

x4
x7 –

1
x1

–
x4

x6
–

x6

x7

)
+ a4β2θHI∗

1
S∗

H
L∗

(
3 –

x2

x4
x6 –

1
x2

–
x4

x6

)

+ a4ηβ2
S∗

L
L∗ Q∗

(
3 –

x1

x4
x5 –

1
x1

–
x4

x5

)
+ a4β2η3S∗

L
H∗

L∗

(
4 –

x1

x4
x8 –

1
x1

–
x5

x8
–

x4

x5

)

+ a4ηβ2θH
S∗

H
L∗ Q∗

(
3 –

x2

x4
x5 –

1
x2

–
x4

x5

)

+ a4β2η3θHS∗
H

H∗

L∗

(
5 –

x2

x4
x8 –

x7

x8
–

1
x2

–
x6

x7
–

x4

x6

)

+ a4β2η3θP
H∗

L∗ P∗
(

6 –
x3

x4
x8 –

x2

x3
–

1
x2

–
x7

x8
–

x6

x7
–

x4

x6

)

+ a4β2η4
θP

L∗ P∗T∗
(

6 –
x3

x4
x9 –

x2

x3
– –

1
x2

–
x7

x9
–

x6

x7
–

x4

x6

)

+ a4β2η2θP
I∗

2
L∗ P∗

(
5 –

x3

x4
x7 –

x2

x3
–

1
x2

–
x6

x7
–

x4

x6

)

+ a4β2η4θH
S∗

H
L∗ T∗

(
5 –

x2

x4
x9 –

1
x2

–
x7

x9
–

x6

x7
–

x4

x6

)

+ a4β2η2θHI∗
2

S∗
H

L∗

(
4 –

x2

x4
x7 –

1
x2

–
x6

x7
–

x4

x6

)
.

Since the arithmetic mean is greater than or equal to the geometric mean, we have 1
x1

+
x1
x4

x6 + x4
x6

≥ 3, 1
x2

+ x2
x3

+ x3
x4

x6 + x4
x6

≥ 4, x1
x3

+ 1
x1

+ x3
x4

x5 + x4
x5

≥ 4, x1
x4

x9 + 1
x1

+ x4
x6

+ x6
x9

≥ 4, x1
x4

x7 +
1

x1
+ x4

x6
+ x6

x7
≥ 4, x2

x4
x6 + 1

x2
+ x4

x6
≥ 3, x1

x4
x5 + 1

x1
+ x4

x5
≥ 3, x1

x4
x8 + 1

x1
+ x5

x8
+ x4

x5
≥ 4, x2

x4
x5 + 1

x2
+ x4

x5
≥

3, x2
x4

x8 + x7
x8

+ 1
x2

+ x6
x7

+ x4
x6

≥ 5, x3
x4

x8 + x2
x3

+ 1
x2

+ x7
x8

+ x6
x7

+ x4
x6

≥ 6, x3
x4

x9 + x2
x3

+ 1
x2

+ x7
x9

+ x6
x7

+ x4
x6

≥
6, x3

x4
x7 + x2

x3
+ 1

x2
+ x6

x7
+ x4

x6
≥ 5, x2

x4
x9 + 1

x2
+ x7

x9
+ x6

x7
+ x4

x6
≥ 5, x2

x4
x7 + 1

x2
+ x6

x7
+ x4

x6
≥ 4.

In this manner, we have L′ ≤ 0 in D. The equality L′ = 0 exists if and only if {xi = 1, i =
1, 2, . . . , 9}. That is, SL = S∗

L, SH = S∗
H , P = P∗, L = L∗, Q = Q∗, I1 = I∗

1 , I2 = I∗
2 , H = H∗, T = T∗

in D. The maximal compact invariant set in {(SL, SH , P, L, Q, I1, I2, H , T , R) ∈ D : L′ = 0} is
“E1” whenever RC > 1. By LaSalle’s invariance principle [28], “E1” is globally asymptotically
stable for RC > 1.
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Figure 2 Sensitivity of RC with respect to model parameters

4 Sensitivity analysis
The main thing for an infectious disease is to study its capability to enter a population. To
check which variables are in charge of the expanse and existence of disease, we carry out
the sensitivity analysis of RC w.r.t. different parameters involved in RC . It helps us in con-
trolling the disease. We computed the sensitivity indices of the reproduction number RC

with respect to the model parameters given in Table 1. The sensitivity of the reproduction
number RC is shown in Fig. 2.

From Fig. 2, it is observed that sensitive parameters are η3,β , (1 – θP), τ1, and θH . Param-
eters η3,β , (1–θP) are directly proportional to RC and τ1 and θH are inversely proportional.
It can be easily seen that by increasing (decreasing) the values of η3,β , (1 – θP) by 10%, the
values of RC increase (decrease) by almost 11%, 10%, and 9%, respectively. Similarly, by
increment (reduction) in the values of τ1 and θH by 10%, reduction (increment) of almost
6% and 5% occurs in the values of RC , respectively. It means that we should focus on the
isolation of hospitalized and infectious people. Sensitive parameter τ1 indicates that the
more the people will be treated at an early stage, the less the infection will spread.

5 Optimal control
Control strategies include prevention, vaccination or antiviral drugs, quarantine, and
treatment. To estimate the effect of controlling strategies, we modify our model as fol-
lows:

dSL

dt
= π (1 – p) – (1 – u1)λSL – σLSL – r2u2SL – μSL,

dSH

dt
= πp – (1 – u1)θHλSH – σHSH – r2u2SH – μSH ,

dP
dt

= (σLSL + σHSH) + r2u2(SL + SH ) – (1 – u1)θPλP – μP,

dL
dt

= (1 – u1)λ(SL + θHSH + θPP) – (α + μ)L – β1L – r3u3L,

dQ
dt

= β1L + r3u3L – (μ + η)Q,

dI1

dt
= αL – τ1I1 – (γ + μ)I1,

(6)
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dI2

dt
= γ I1 – r4u4I2 – (τ2 + ψ + φI2 + μ + δ)I2,

dH
dt

= ψI2 + ηQ – (φH + μ + θ1δ)H ,

dT
dt

= τ1I1 + τ2I2 + r4u4I2 – (φT + μ)T ,

dR
dt

= φI2 I2 + φHH + φT T – μR.

The parameter u1(t) represents the awareness campaign of using the medical mask
through the media transmission to reduce the force of infection, u2(t) portrays the vacci-
nation or usage of antiviral drugs, u3(t) represents the quarantine of exposed individuals,
and u4(t) denotes the treatment of infectious people. To inspect the optimal level of en-
deavors required to control the disease, we define the objective functional J . It helps to
limit the number of infectious as well as minimize the cost of applied controls u1, u2, u3,
and u4. One has

J(u1, u2, u3, u4) =
∫ T

0

(

f1L + f2Q + f3I1 + f4I2 +
1
2

4∑

i=1

Biu2
i

)

dt,

where f1, f2, f3, and f4 represent the positive weights. The number of infected people and
cost of controls u1(t), u2(t), u3(t), and u4(t) are reduced with the aid of the above mentioned
objective functional. For this, we find an optimal control u∗

1, u∗
2, u∗

3, and u∗
4 such that

J
(
u∗

1, u∗
2, u∗

3, u∗
4
)

= min
{

J(u1, u2, u3, u4), (u1, u2, u3, u4) ∈ U
}

,

where

U =
{

(u1, u2, u3, u4)|ui(t) ∈ [0, 1] and ui(t)

is Lebesgue measurable on [0, 1], i = 1, 2, 3, 4
}

is the control set. This OC problem is solved using Pontryagin’s maximum principle [29]
along with the derivation of necessary conditions.

6 Existence of an optimal control
Optimal control existence can be proved through a well-known classical result: according
to [30], we have to check the following hypotheses:

(H1) The set consisting of controls and state variables is nonempty.
(H2) The admissible control set U is convex and closed.
(H3) R.H.S of system (6) is bounded by a linear function in the state and control.
(H4) The objective functional J has a convex integrand on U . This integrand is bounded

below by c1(|u1|2 + |u2|2)
β
2 – c2, where c1, c2 > 0 and β > 1.

The existence of solutions of ODEs (6) is established by using the result given by Lukes
([31], Th. 9.2.1, p. 182). In this way, we confirm the above hypotheses. (H1) is satisfied
because the coefficients are bounded. The boundedness of solutions shows that (H2) has
been satisfied by the control set. Since the solutions are bounded and we have bilinearity
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of the system in u1, u2, u3, u4, hence R.H.S of (6) fulfills hypothesis (H3). The last condition
is also satisfied as the integrand of objective functional is convex.

f1L + f2Q + f3I1 + f4I2 +
1
2

4∑

i=1

Biui
2 ≥ c1

( 4∑

i=1

|ui|2
) β

2

– c2,

where f1, f2, f3, f4, B1, B2, B3, B4, c1, c2 > 0 and β > 1. Hence we have the following theorem.

Theorem 6.1 For U = {(u1, u2, u3, u4)|0 ≤ ui(t) ≤ 1, i = 1, 2, 3, 4, and t ∈ [0, T]} subject to
Eqs. (6) having the initial conditions and

J =
∫ T

0

(

f1L + f2Q + f3I1 + f4I2 +
1
2

4∑

i=1

Biu2
i

)

dt,

there is an optimal control u = (u∗
1, u∗

2, u∗
3, u∗

4) such that J(u∗
1, u∗

2, u∗
3, u∗

4) = min{J(u1, u2, u3,
u4) : (u1, u2, u3, u4) ∈ U}.

For the solution of system (6), its Lagrangian and Hamiltonian have to be defined. Its
Lagrangian is

L(L, Q, I1, I2, u1, u2, u3, u4) = f1L + f2Q + f3I1 + f4I2 +
1
2
(
B1u2

1 + B2u2
2 + B3u2

3 + B4u2
4
)
.

We have to set up the minimal value of the Lagrangian. For this purpose, we construct the
Hamiltonian H for the OC problem as follows:

Let us take X = (SL, SH , P, L, Q, I1, I2, H , T , R), U = (u1, u2, u3, u4), and λ = (λ1,λ2, . . . ,λ10),
then we have

H(X, U ,λ)

= f1L + f2Q + f3I1 + f4I2 +
1
2
(
B1u2

1 + B2u2
2 + B3u2

3 + B4u2
4
)

+ λ1
(
π (1 – p) – (1 – u1)λSL – σLSL – r2u2SL – μSL

)

+ λ2
(
πp – (1 – u1)θHλSH – σHSH – r2u2SH – μSH

)

+ λ3
(
(σLSL + σHSH ) + r2u2(SL + SH ) – (1 – u1)θPλP – μP

)

+ λ4
(
(1 – u1)λ(SL + θHSH + θPP) – (α + μ)L – β1L – r3u3L

)

+ λ5
(
β1L + r3u3L – (μ + η)Q

)
+ λ6

(
αL – τ1I1 – (γ + μ)I1

)

+ λ7
(
γ I1 – r4u4I2 – (τ2 + ψ + φI2 + μ + δ)I2

)
+ λ8

(
ψI2 + ηQ – (φH + μ + θ1δ)H

)

+ λ9
(
τ1I1 + τ2I2 + r4u4I2 – (φT + μ)T

)
+ λ10(φI2 I2 + φHH + φT T – μR).

6.1 The optimality system
We apply Pontryagin’s maximum principle [14] for finding the necessary conditions for
the OC. It is discussed as follows:
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There exists a nontrivial vector function λ(t) = (λ1(t),λ2(t), . . . ,λ10(t)) provided (u∗
1, u∗

2,
u∗

3, u∗
4) is an optimal solution of the OC problem. This function satisfies the following con-

ditions. The state equation is

dx
dt

=
∂

∂λ

(
H

(
t, u∗

1, u∗
2,λ(t)

))
,

the condition of optimality is given by

∂

∂u
(
H

(
t, u∗

1, u∗
2, u∗

3, u∗
4,λ(t)

))
= 0,

and the equation containing the adjoint variables is given by

dλ

dt
= –

∂

∂x
(
H

(
t, u∗

1, u∗
2, u∗

3, u∗
4,λ(t)

))
.

Now, essential conditions are applied to the Hamiltonian H .

Theorem 6.2 For the optimal controls u∗
1, u∗

2, u∗
3, u∗

4 and solutions ŜL, ŜH , P̂, L̂, Q̂, Î1, Î2, Ĥ ,
T̂ , R̂ of the corresponding state system (6), there are adjoint variables λ1,λ2, . . . ,λ10 satisfy-
ing the following equations:

dλ1

dt
= (λ1 – λ4)(1 – u1)λ + (λ1 – λ3)r2u2 + λ1μ – λ3σL,

dλ2

dt
= (λ2 – λ4)(1 – u1)λθH + (λ2 – λ3)σH + (λ2 – λ3)r2u2 + λ2μ,

dλ3

dt
= (λ3 – λ4)(1 – u1)λθP + λ3μ,

dλ4

dt
= –f1 + (λ4 – λ6)α + (λ4 – λ5)β1 + (λ4 – λ5)r3u3 + λ4μ,

dλ5

dt
= –f2 + λ5μ + (λ5 – λ8)η,

dλ6

dt
= –f3 + (λ6 – λ9)τ1 + (λ6 – λ7)γ + λ6μ,

dλ7

dt
= –f4 + (λ7 – λ9)r4u4 + (λ7 – λ9)τ2 + (λ7 – λ8)ψ + (λ7 – λ10)φI2 + λ7(μ + δ),

dλ8

dt
= (λ8 – λ10)φH + λ8(μ + θ1δ),

dλ9

dt
= (λ9 – λ10)φT + λ9μ,

dλ10

dt
= λ10μ,

with transversality conditions λ1(T) = λ2(T) = · · · = λ10(T) = 0. Additionally, u∗
1, u∗

2, u∗
3, u∗

4

are given by

u∗
1 =

(λ4 – λ1)λSL + (λ4 – λ2)θHλSH + (λ4 – λ3)θPλP
B1

,

u∗
2 =

(λ1 – λ3)r2SL + (λ2 – λ3)r2SH

B2
,
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u∗
3 =

λ4r3L – λ5r3L
B3

,

u∗
4 =

(λ7 – λ9)r4I
B4

.

Proof Hamiltonian H is used for determining the adjoint equations and transversality
conditions. Let us consider SL = ŜL, SH = ŜH , P = P̂, L = L̂, Q = Q̂, I1 = Î1, I2 = Î2, H = Ĥ , T =
T̂ , R = R̂, and differentiating H w.r.t. (SL, SH , P, L, Q, I1, I2, H , T , R), we obtain

dλ1

dt
= (λ1 – λ4)(1 – u1)λ + (λ1 – λ3)r2u2 + λ1μ – λ3σL,

dλ2

dt
= (λ2 – λ4)(1 – u1)λθH + (λ2 – λ3)σH + (λ2 – λ3)r2u2 + λ2μ,

dλ3

dt
= (λ3 – λ4)(1 – u1)λθP + λ3μ,

dλ4

dt
= –f1 + (λ4 – λ6)α + (λ4 – λ5)β1 + (λ4 – λ5)r3u3 + λ4μ,

dλ5

dt
= –f2 + λ5μ + (λ5 – λ8)η,

dλ6

dt
= –f3 + (λ6 – λ9)τ1 + (λ6 – λ7)γ + λ6μ,

dλ7

dt
= –f4 + (λ7 – λ9)r4u4 + (λ7 – λ9)τ2 + (λ7 – λ8)ψ + (λ7 – λ10)φI2 + λ7(μ + δ),

dλ8

dt
= (λ8 – λ10)φH + λ8(μ + θ1δ),

dλ9

dt
= (λ9 – λ10)φT + λ9μ,

dλ10

dt
= λ10μ,

with transversality conditions λ1(T) = λ2(T) = · · · = λ10(T) = 0. With the help of control
space U and conditions of optimality, we can write

u∗
1 =

(λ4 – λ1)λSL + (λ4 – λ2)θHλSH + (λ4 – λ3)θPλP
B1

,

u∗
2 =

(λ1 – λ3)r2SL + (λ2 – λ3)r2SH

B2
,

u∗
3 =

λ4r3L – λ5r3L
B3

,

u∗
4 =

(λ7 – λ9)r4I
B4

. �

7 Numerical simulations
In this section, the model is solved numerically. The values of weight constants in the
objective functional are f1 = 1, f2 = 5, f3 = 10, f4 = 8, B1 = 3, B2 = 7, B3 = 8, B4 = 9. Other pa-
rameter values are given in Table 1. It is observed that the numerical outcomes are in
great concurrence with the obtained hypothetical outcomes. Figure 3 demonstrates that
the population approaches DFE when RC is less than 1, while Fig. 4 demonstrates that
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Figure 3 The population approaches DFE when RC = 0.238

Figure 4 The population approaches EE when RC = 1.4

the population approaches EE when the reproductive number exceeds unity even δ 	= 0. It
means that the condition δ = 0 is the weaker condition for the global stability of endemic
equilibrium. We also numerically investigated the influence of applied control strategies
on the spread of swine flu in a population. Individuals having no control are represented
by red lines in the graphs, while blue lines indicate the individuals with control. In Fig. 5,
we observed that the endemic level of L(t) (latent individuals), Q(t) (quarantined individu-
als), I1(t) (symptomatic individuals at initial stage), I2(t) (symptomatic individuals at later
stage), and H(t) (hospitalized individuals) is reduced by applying these control strategies.

8 Conclusions
The deterministic model of swine influenza pandemic is rigorously analyzed in this arti-
cle. The model consists of ten mutually exclusive compartments. It is shown that disease-
free equilibrium is globally asymptotically stable whenever RC ≤ R∗ = Ω

θh
. The existence of

unique endemic equilibrium is proved for Rc
Ω

> 1
θP

, and its global stability is computed ana-
lytically when δ = 0. Numerically, it is shown that the population approaches the endemic
level even if δ 	= 0. Sensitivity analysis suggests that the parameters β ,η3, τ1 greatly influ-
ence the control reproduction number. Optimal control problem is analyzed. It consists
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Figure 5 The plots represent the population with and without control

of four controls: the awareness campaign of using the medical mask through the media
transmission to reduce the force of infection, vaccination or the use of antiviral drugs,
the quarantine of exposed individuals, and the treatment of infectious people. Graphical
results verify the usefulness of these control measures.
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