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of H1N1 in”uenza termed as swine in”uenza that led to more than 16,455 mortalities

globally [8]. In Canada, this type of epidemic appeared twice. First, it occurred during

spring 2009 and then in October 2009. It lasted for about three months [9]. In 2014, 937

cases of swine ”u had been reported in India and 218 deaths had been observed due to

this disease. In 2015, the recorded cases and casualties had performed better than the

past numbers. There is a huge aggregate of a�rmed cases, and these cases are greater

than 33,000, which involves approximately 2000 passed away cases [10].

Isolation (of people dreaded to have been presented to a transmittable illness) is one of

the most seasoned general well-being control strategy of transferable maladies in given

population. During ”are-ups of a transmittable infection in human populations, essential

general well-being control measures, eminent isolation (of people associated with being

presented to the sickness), and detachment (of people with clinical side e�ects of the sick-

ness) are commonly actualized to control or moderate the malady trouble (estimated in

terms of the number of new cases, hospitalization, grimness, mortality). These measures

have been viably utilized in the control of various developing and reappearing human and

creature illnesses such as sickness, plague, cholera, typhus, yellow fever, smallpox, diph-

theria, tuberculosis, measles, ebola, serious intense respiratory disorder, cow-like tuber-

culosis, rinderpest, foot-and-mouth, psittacosis, and all the more as of the late 2009 swine

”u pandemic [11…13].

Optimal control hypothesis is an incredible scienti“c apparatus to settle on choice in-

cluding complex dynamical frameworks. It has additionally been connected to irresistible

infection issues previously, and is a decent strategy for deciding how to control a sickness

best, for modeling what level of the population ought to be immunized as time advances

in a given pestilence model to limit both the quantity of contaminated individuals and the

expense of actualizing the immunization technique. Various examinations have utilized

the uses of ideal control hypothesis in epidemiological models. Lenhart and Workman

[14] introduced many examples of optimal control applied to di�erent problems, includ-

ing an infectious disease problem. Sweilam et al. [15] studied an optimal control problem

for the fractional tuberculosis (TB) infection models. Di�erent displaying studies have ad-

ditionally been made to think about the job of optimal control using epidemic models [16,

17].

For the comprehension of the transmission dynamics of in”uenza, there exist numerous

mathematical models. Brian et al. [18] presented the literature about in”uenza models and

discussed how these models are helpful to study the dynamics of swine ”u. Martcheva [19]

discussed the evolutionary model of in”uenza A with drift and shift. Rahman and Zou [20]

analyzed two strains in”uenza model with inoculation for strain 1 being executed. Trans-

mission dynamics of H1N1 in”uenza has been discussed by di�erent authors through

mathematical models [21…25]. However, to the authors• knowledge, no such model of

swine ”u has been developed in which the impact of quarantine individuals is discussed

and optimal control strategies have been designed on the basis of model sensitive param-

eters.

The version used in this work incorporates an extension presented in Imran et al. [25]

that accounts for the quarantine class. The potential highlights of the proposed model are

summarized as follows:

• A novel epidemiological model is designed by considering the effect of quarantines.
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Figure 1 Schematic ”ow diagram of in”uenza
model

• The effect of model parameters on the dynamics of swine flu is analyzed using
sensitivity analysis.

• Control strategies have been designed on the basis of sensitive parameters.
The objective of this study is to analyse new features of the model under consideration. In
the “rst phase, qualitative analysis has been completed including the sensitivity analysis.
Secondly, to project the potential impact of pandemic in”uenza, optimal control strate-
gies have been designed. The remaining part of the paper is arranged as follows: In Sect.2,
model formulation, with parameter description including parameter values, is presented.
In Sect.3, we discuss the model analysis, equilibria, and their stabilities. In Sect.4, sen-
sitivity analysis is performed. Section5 is devoted to the formulation of optimal control
problem. Optimal control existence is given in Sect.6. In Sect.7, analytical results are
veri“ed through numerical simulations. In Sect.8, concluding remarks are presented.

2 Model formulation
The whole population is divided into ten heterogeneous compartments, namely low-risk
susceptibles, high-risk susceptibles, vaccinated, exposed, quarantined, symptomatic indi-
viduals at early stage, symptomatic people at later stage, hospitalized, treated, and recov-
ered denoted bySL(t), SH(t), P(t), L(t), Q(t), I1(t), I2(t), H(t), T(t), andR(t) at any timet,
respectively. Thus the total human population can be written as

N(t) = SL(t) + SH(t) + P(t) + L(t) + Q(t) + I1(t) + I2(t) + H(t) + T(t) + R(t).

Pregnant ladies, juveniles, health care workers, elderly, and other immune-compromised
individuals are considered as high-risk susceptibles and the remaining population has
been thought to be at low risk to get infected by swine ”u. Flow diagram of model (1)
is shown in Fig.1.

We have the accompanying system of nonlinear ODEs to portray our problem:

dSL

dt
= π …πp …λSL …σLSL …μSL,

dSH

dt
= πp …θHλSH …σHSH …μSH ,

dP
dt

= σLSL + σHSH …θPλP …μP,
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dL
dt

= λ(SL + θHSH + θPP) … (α + β1 + μ)L,

dQ
dt

= β1L … (μ + η)Q,

dI1

dt
= αL … (τ1 + γ + μ)I1,

(1)

dI2

dt
= γ I1 … (τ2 + ψ + φI2 + μ + δ)I2,

dH
dt

= ψI2 + ηQ … (φH + μ + θ1δ)H,

dT
dt

= τ1I1 + τ2I2 … (φT + μ)T ,

dR
dt

= φI2I2 + φHH + φT T …μR,

where •λŽ, the infection rate, is given by

λ = β
η1L + ηQ + I1 + η2I2 + η3H + η4T

N
. (2)

In (2), β is the compelling contact rate, and the re“nement parameters 0≤ ηi < 1 (i ∈
{1,2,3,4}) describe the supposed reduction of infectiousness of exposed, symptomatic in-

dividuals at later stage, hospitalized, and treated individuals, respectively, in relation to the

symptomatically-infected (infectious) individuals in theI1 class. Similarly, 0≤ η < 1 rep-

resents the assumed depreciation of virulence of quarantined individuals in connection to

people in theI1 class.

Susceptible individuals who are at low risk are reduced by infection (at the rateλ), vac-

cination (at a rateσL), and natural death (at a rateμ). Similarly high-risk susceptible indi-

viduals are reduced by infection (at the rateθHλ), vaccination (at a rateσH ), and natural

death (at a rateμ). The parameterθH > 1 represents the supposition that the people which

are at high risk are more sensitive to get tainted as compared to the people which are at

low risk. We assume that people in all epidemiological compartments are expected to suf-

fer same natural death rateμ, whereas disease-induced death rates of individuals in theI2

class and the hospitalized class areδ andθ1δ (0 <θ1 < 1), respectively.

Vaccinated individuals can become tainted at a decreased rateθPλ, where 1 …θP (0 <

θP < 1) is the adequacy of the antiviral in averting infection. Latently-infected individuals

(E) are produced at the rateλ and reduced by the formation of clinical indications of the

malady (at a rateα) and quarantined (at a rateβ1). Latent individuals move to the symp-

tomatic initial level of infection I1, and afterward with the rateγ they move toI2, which

is the later class of infectious. People in classesI1 and I2 respectively get the medication

at ratesτ1 and τ2. Infected individualsI2 are hospitalized at the rateψ and quarantined

individuals at the rateη. Recovery rates ofI2, hospitalized, and treated individuals areφI2,

φH , andφT , respectively. We consider that recovered individuals are permanently immune

against re-infection withH1N1. Parameters along with numerical values are described in

Table1.
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Table 1 Description of the model parameters and nominal values

Parameters Explanation Value Ref

π Human birth rate 1,119,5831
80∗365 [25]

1
μ Average lifespan of humans 80*365 [25]
p Part of high-risk susceptible individuals 0.4 [25]
β E�ectual contact rate for spreading H1N1 in”uenza 0.9 [25]
σL Cure rate of low-risk susceptible individualsby using antiviral drugs 0.3 [26]
σH The rate at which high-risk susceptible individuals get cured by

using antiviral drugs
0.5 [26]

α Rate at which latent individuals become infected 1/1.9 [26]
τ1 Medication rate of individuals at the early stage of infection 1/5 [26]
τ2 Medication rate of individuals at the later stage of infection 1/3 [26]
φI2 Cure rate of symptomatic infectious individuals at the later stage 1/5 [26]
φT Cure rate of treated individuals 1/3 [26]
η1 Re“nement parameter (see text) 0.1 [26]
η2 Re“nement parameter (see text) 1/2 [26]
η3 Re“nement parameter (see text) 1.2 [26]
η4 Re“nement parameter (see text) 1 [26]
θH Re“nement parameter for infection rate of high risk 1.2 [26]
1 …θP Drug e�cacy against infection 0.5 [26]
ψ Hospitalized rate of individuals in theI2 class 0.5 [26]
γ Progression rate fromI1 to I2 classes 0.06 [26]
δ It denotes the rate at which the people in classI2 die 1/100 [26]
θ1δ It denotes the rate at which the people in classH die 1/100 [26]

3 Analysis of themodel
3.1 Basic properties
All the mentioned parameters in model (1) are nonnegative because it deals with human

population. It can be easily proved that the closed setD = {(SL,SH ,P,L,Q,I1,I2,H,T ,R) ∈
R10

+ : N ≤ π
μ
} is positively-invariant and attracting with respect to model (1).

3.2 Disease-free equilibrium and its stability
The disease-free equilibrium (DFE) of system (1) is given by

ε0 =
(
S∗

L,S∗
H ,P∗,L∗,Q∗,I∗

1,I∗
2,H∗,T∗,R∗)

=
(

S∗
L,S∗

H ,
σLS∗

L + σHS∗
H

μ
, 0, 0, 0, 0,0,0,0

)
, (3)

with S∗
L = π (1…P)

σL+μ
andS∗

H = πP
σH +μ

.

Following the notation given in [27], the nonnegative matrixF consisting of the new

infection terms and the matrixV of the progression terms involved in model (1) are given,

respectively, by

F =

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

βη1Ω βηΩ βΩ βη2Ω βη3Ω βη4Ω

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

,
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V =

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

K1 0 0 0 0 0

…β1 K 0 0 0 0

…α 0 K2 0 0 0

0 0 …γ K3 0 0

0 …η 0 …ψ K4 0

0 0 …τ1 …τ2 0 K5

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

,

whereK1 = α +β1 +μ, K = μ+η, K2 = τ1 +γ +μ, K3 = τ2 +ψ +φI2 +μ+ δ, K4 = φH +μ+θ1δ,

K5 = φT + μ, andΩ =
S∗

L+θH S∗
H +θPP∗

N∗ .

It pursues the control reproduction number, signi“ed byRC = ρ(FV …1), which is given

as follows:

RC = ρ
(
FV …1)

=
Ωβ

K1

(
η1 +

α

K2
+

β1η

K
+ αγ

η2

K2K3
+

η4

K2K3K5
(αγ τ2 + ατ1K3)

+
1
K

η3

K2K3K4
(Kαγψ + ηβ1K2K3)

)
,

where ρ denotes the overwhelming eigenvalue in the absolute value ofFV …1. Utilizing

Theorem 2 in [27], the accompanying outcome is set up as follows.

Lemma 3.1 The DFE of model (1), given by (3), is locally-asymptotically stable (LAS) if
RC < 1 and unstable if RC > 1.

The control reproduction numberRC represents the average number of new cases gen-

erated by a primary infectious individual in a population where some susceptible individu-

als receive antiviral prophylaxis. Lemma (3.1) shows that, forRC <1, the H1N1 pandemic

can be removed from the population if the basin of attraction of DFE(ε0) contains the

initial sub-populations. Global stability of the DFE is proved in the following theorem to

ensure that illness can be destroyed totally if the control reproduction number is less than

one.

Theorem 3.2 The DFE, ε0, of model (1) is GAS in D if RC ≤ R∗ = Ω
θH

.

Proof Consider the Lyapunov function

G(t) = g1L + gQ + g2I1 + g3I2 + g4H + g5T ,

where

g1 = η1K2K3K4K5 + αK3k4K5 + αγ η2K4K5 + αγ τ2η4K4 + ατ1η4K3K4

+ αγψη3K5 +
β1ηK2K3K4K5

K
+ η3ηβ1

K5K2K3

K
,

g =
ηη3K1K2K3K5

K
+ η

K1K2K3K4K5

K
,

g2 = γ τ2η4K1K4 + γψη3K1K5 + γ η2K1K4K5 + τ1η4K1K3K4 + K1K3K4K5,
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g3 = η2K1K2K4K5 + ψη3K1K2K5 + τ2η4K1K2K4,

g4 = η3K1K2K3K5,

g5 = η4K1K2K3K4.

The time derivative ofG(t) is given by

G′(t) = g1L′ + gQ′ + g2I ′
1 + g3I ′

2 + g4H ′ + g5T ′

= g1
(
λ(SL + θHSH + θPP) …K1L

)
+ g(β1L …KQ) + g2(αL …K2I1) + g3(γ I1 …K3I2)

+ g4(ψI2 + ηQ …K4H) + g5(τ1I1 + τ2I2 …K5T)

=
(

η1K2K3K4K5 + αK3K4K5 + αγ η2K4K5 + αγ τ2K4η4 + ατ1K3K4η4 + αγψη3K5

+
β1ηK2K3K4k5

K
+ η3ηβ1

K5

K
K2K3

)
λ(SL + θHSH + θPP)

…K1K2K3K4K5(η1L + ηQ + I1 + η2I2 + η3H + η4T)

≤ g1λθHN …K1K2K3K4K5
λN
β

≤ K1K2K3K4K5
λN
β

(
RC

R∗ … 1
)

.

Thus G′(t) ≤ 0 if RC ≤ R∗ andG′(t) = 0 if and only if L = Q = I1 = I2 = H = T = 0. Moreover,
the greatest compact invariant set in{(SL,SH ,P,L,Q,I1,I2,H,T ,R) ∈ D : G′ = 0} is the sin-
gleton set{ε0}. According to LaSalle•s invariance principle [28], every solution to system
(1) converges toε0, ast → ∞. Hence the DFE is globally asymptotically stable. �

3.3 Endemic equilibrium and its stability
In this section, the existence of endemic equilibrium (EE) for system (1) (that is, equilibria
where the infected classes are taken nonzero) and its stability are established. Let

E1 =
(
S∗∗

L ,S∗∗
H ,P∗∗,L∗∗,Q∗∗,I∗∗

1 ,I∗∗
2 ,H∗∗,T∗∗,R∗∗)

be EE of model (1). Further, suppose that

λ∗∗ =
β(η1L∗∗ + ηQ∗∗ + I∗∗

1 + η2I∗∗
2 + η3H∗∗ + η4T∗∗)

N∗∗

denotes the infection force at the steady-state. By simplifying the model at steady-state,
we have

S∗∗
L =

π …pip
λ∗∗ + σL + μ

,

S∗∗
H =

πp
θHλ∗∗ + σH + μ

,

P∗∗ = π
((1 …p)θHσL + pσH)λ∗∗ + (1 …p)σL(σH + μ) + pσH(σL + μ)

Q
,

L∗∗ =
λ∗∗(πθPθHλ∗∗2 + m1λ

∗∗ + m2)
K1Q

,
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Q∗∗ =
λ∗∗β1(πθPθHλ∗∗2 + m1λ

∗∗ + m2)
K1KQ

, (4)

I∗∗
1 =

αλ∗∗(πθPθHλ∗∗2 + m1λ
∗∗ + m2)

K1K2Q
,

I∗∗
2 =

γαλ∗∗(πθPθHλ∗∗2 + m1λ
∗∗ + m2)

K1K2K3Q
,

H∗∗ =
αγψλ∗∗(πθPθHλ∗∗2 + m1λ

∗∗ + m2)
K1k2K3K4Q

+
λ∗∗ηβ1(πθPθHλ∗∗2 + m1λ

∗∗ + m2)
K1KK4Q

,

T∗∗ =
τ1αλ∗∗(πθPθHλ∗∗2 + m1λ

∗∗ + m2)
K1K2K5Q

+
τ2γαλ∗∗(πθPθHλ∗∗2 + m1λ

∗∗ + m2)
K1K2K3K5Q

,

where

Q =
(
λ∗∗ + σL + μ

)(
θHλ∗∗ + σH + μ

)(
θPλ∗∗ + μ

)
,

m1 = π
{
(1 …p)

[
μθH + (σH + μ)θP

]
+ pθH

[
μ + (σL + μ)θP

]
+ θPA

}
,

m2 = π
{
(1 …p)(σH + μ)μ + pθH(σL + μ)μ + θPB

}
,

A = (1 …p)θHσL + pσH ,

B = (1 …p)σL(σH + μ) + pσH(σL + μ).

Using (4) in the expression ofλ∗∗, we get

a0λ
∗∗3 + b0λ

∗∗2 + c0λ
∗∗ + d0 = 0, (5)

where

a0 = A1A8,

b0 = πθHθP

(
1 …

RC

Ω

)
+ πpθP(1 …θH) + A2A8,

c0 = π(1 …p)
(
θP(σH + μ) + μθH

){
1 …

RC

Ω

}
+ πp

(
θP(μ + σL + μ)

){
1 …

θHRC

Ω

}

+ πA7

(
1 …

θPRC

Ω

)
+ A3A8,

d0 = π(1 …p)(σH + μ)
{
μ

(
1 …

RC

Ω

)
+ σL

(
1 …θP

RC

Ω

)}

+ πP(σL + μ)
{
μ

(
1 …θH

RC

Ω

)
+ σH

(
1 …θP

RC

Ω

)}
,

A1 = πθHθP,

A2 = π
{
(1 …p)

[
μθH + (σH + μ)θP

]
+ pθH

[
μ + (σL + μ)θP

]
+ θPA

}
,

A3 = π
{
(1 …p)(σH + μ)μ + pθH(σL + μ)μ + θPB

}
,

A7 = (1 …p)θHσL + pσH ,

A8 =
1

K1
+

β1

K1K
+

α

K1K2
+

γα

K1K2K3
+

αγψ

K1K2K3K4
+

ηβ1

K1KK4
+

τ1α

K1K2K5
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+
τ2γα

K1K2K3K5
+

γαφI2
μK1K2K3

+
φHαγψ

μK1K2K3K4
+

φHηβ1

μK1KK4
+

φTτ1α

μK1K2K5

φTτ2γα

μK1K2K3K5
.

It can be easily veri“ed that coe�cients of Eq. (5) are positive whenRC
Ω

< 1
θH

, then by

Descarte•s rule of sign, there is no positive root. WhenRC
Ω

> 1
θP

, all the coe�cients of Eq. (5)

are positive other thand0, thus in this case, the sign changes only once. Hence, we conclude

the above discussion as follows.

Theorem 3.3 If RC
Ω

> 1
θP

, then there exists one and only one EE for system (1). However, in
the case of RC

Ω
< 1

θH
, no EE exists.

Now, the global stability of EE calculated for model (1) is given for the exceptional situ-

ation where the disease-induced fatality is negligible. It is noted that the settingδ = 0 im-

pliesN → π
μ

ast → ∞. UsingN = π
μ

givesλ = β2(η1L + ηQ + I1 + η2I2 + η3H + η4T), where

β2 = β
μ

π
. Consider the accompanying change of variables:SL

S∗
L

= x1, SH
S∗

H
= x2, P

P∗ = x3, L
L∗ =

x4, Q
Q∗ = x5, I1

I∗1
= x6, I2

I∗2
= x7, H

H∗ = x8, T
T∗ = x9, R

R∗ = x10.

The Lyapunov function for the sub-framework comprising the initial nine equations of

(1) is as follows:

L(t) = a1(x1 … 1 …log x1) + a2(x2 … 1 …log x2) + a3(x3 … 1 …log x3)

+ a4(x4 … 1 …log x4) + a5(x5 … 1 …log x5) + a6(x6 … 1 …log x6)

+ a7(x7 … 1 …log x7) + a8(x8 … 1 …log x8) + a9(x9 … 1 …log x9),

whereai (i = 1,2, . . . , 9) are constants and their values are found later. Now, di�erentiating

L w.r.t. time along the solutions of (1), we have

L′ = a1
π

S∗
L

(1 …p)
(

2 …
1
x1

…x1

)
+ a1β2η1L∗(x1 + x4 …x1x4 … 1)

+ a1β2I∗
1(x1 + x6 …x1x6 … 1) +a1β2η2I∗

2(x1 + x7 …x1x7 … 1)

+ a1β2ηQ∗(x1 + x5 …x1x5 … 1) +a1β2η3H∗(x1 + x8 …x1x8 … 1)

+ a1β2η4T∗(x1 + x9 …x1x9 … 1) +a2
πp
S∗

H

(
2 …

1
x2

…x2

)

+ a2β2η1L∗θH(x2 + x4 …x2x4 … 1)

+ a2β2I∗
1θH(x2 + x6 …x2x6 … 1) +a2β2η2I∗

2θH(x2 + x7 …x2x7 … 1)

+ a2β2ηQ∗θH(x2 + x5 …x2x5 … 1) +a2β2η3H∗θH(x2 + x8 …x2x8 … 1)

+ a2β2η4T∗θH(x2 + x9 …x2x9 … 1) +a3σH
S∗

H
P∗

(
x2 …x3 …

x2

x3
+ 1

)

+ a3σL
S∗

L
P∗

(
x1 …x3 …

x1

x3
+ 1

)

+ a3β2η1L∗θP(x3 + x4 …x3x4 … 1) +a3β2I∗
1θP(x3 + x6 …x3x6 … 1)

+ a3β2η2I∗
2θP(x3 + x7 …x3x7 … 1) +a3β2ηQ∗θP(x3 + x5 …x3x5 … 1)

+ a3β2η3H∗θP(x3 + x8 …x3x8 … 1) +a3β2η4T∗θP(x3 + x9 …x3x9 … 1)
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+ a4β2η1S∗
L(x1x4 …x4 …x1 + 1) + a4β2η1θPP∗(x3x4 …x4 …x3 + 1)

+ a4β2η1θHS∗
H(x2x4 …x4 …x2 + 1) + a4β2I∗

1
S∗

L
L∗

(
x1x6 …x4 …

x1

x4
x6 + 1

)

+ a4β2θHI∗
1

S∗
H

L∗

(
x2x6 …x4 …

x2

x4
x6 + 1

)
+ a4β2η2I∗

2
S∗

L
L∗

(
x1x7 …x4 …

x1

x4
x7 + 1

)

+ a4β2θP
I∗
1

L∗ P∗
(

x3x6 …x4 …
x3

x4
x6 + 1

)
+ a4ηβ2

S∗
L

L∗ Q∗
(

x1x5 …x4 …
x1

x4
x5 + 1

)

+ a4β2η3S∗
L

H∗

L∗

(
x1x8 …x4 …

x1

x4
x8 + 1

)
+ a4β2η4

S∗
L

L∗ T∗
(

x1x9 …x4 …
x1

x4
x9 + 1

)

+ a4ηβ2θH
S∗

H
L∗ Q∗

(
x2x5 …x4 …

x2

x4
x5 + 1

)

+ a4β2η3θHS∗
H

H∗

L∗

(
x2x8 …x4 …

x2

x4
x8 + 1

)

+ a4β2η4θH
S∗

H
L∗ T∗

(
x2x9 …x4 …

x2

x4
x9 + 1

)

+ a4β2η2θHI∗
2

S∗
H

L∗

(
x2x7 …x4 …

x2

x4
x7 + 1

)

+ a4ηβ2
θP

L∗ P∗Q∗
(

x3x5 …x4 …
x3

x4
x5 + 1

)

+ a4β2η3θP
H∗

L∗ P∗
(

x3x8 …x4 …
x3

x4
x8 + 1

)

+ a4β2η4
θP

L∗ P∗T∗
(

x3x9 …x4 …
x3

x4
x9 + 1

)

+ a4β2η2θP
I∗
2

L∗ P∗
(

x3x7 …x4 …
x3

x4
x7 + 1

)

+ a5β1
L∗

Q∗

[
x4 …x5 …

x4

x5
+ 1

]
+ a6

α

I∗
1

L∗
[

x4 …x6 …
x4

x6
+ 1

]

+ a7γ
I∗
1

I∗
2

[
x6 …x7 …

x6

x7
+ 1

]

+ a8

[
η

H∗ Q∗
(

x5 …x8 …
x5

x8
+ 1

)
+ ψ

I∗
2

H∗

(
x7 …x8 …

x7

x8
+ 1

)]

+ a9

[
τ1

I∗
1

T∗

(
x6 …x9 …

x6

x9
+ 1

)
+ τ2

I∗
2

T∗

(
x7 …x9 …

x7

x9
+ 1

)]
.

In order to “nd the values ofai (i = 1, 2, . . . , 9), putting the coe�cients ofx1,x2,x3,x4,x5,x6,

x7,x8,x9,x1x4,x1x5,x1x6,x1x7,x1x8,x1x9,x2x4,x2x5,x2x6,x2x7,x2x8,x2x9,x3x4,x3x5,x3x6,x3

x7,x3x8,x3x9 equal to zero, we get

a1 = a4
S∗

L
L∗ , a2 = a4

S∗
H

L∗ , a3 = a4
P∗

L∗ ,

a5 =
Q∗

β1L∗

(
a1β2ηQ∗ + a2β2ηQ∗θH + a3β2ηQ∗θP + a8

η

H∗ Q∗
)

,

a6 =
I∗
1

αL∗

(
a1β2I∗

1 + a2β2I∗
1θH + a3β2I∗

1θP + a7γ
I∗
1

I∗
2

+ a9τ1
I∗
1

T∗

)
,
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a7 =
I∗
2

γ I∗
1

(
a1β2η2I∗

2 + a2β2η2I∗
2θH + a3β2η2I∗

2θP + a8ψ
I∗
2

H∗ + a9τ2
I∗
2

T∗

)
,

a8 =
1

( η

H∗ Q∗ + ψ
I∗2
H∗ )

(
a1β2η3H∗ + a2β2η3H∗θH + a3β2η3H∗θP

)
,

a9 =
1

(τ1
I∗1
T∗ + τ2

I∗2
T∗ )

(
a1β2η4T∗ + a2β2η4T∗θH + a3β2η4T∗θP

)
.

Now

L′ = a1
π

S∗
L

(1 …p)
(

1 …
1
x1

)
+ a1(μ + σL) + a2

πp
S∗

H

(
1 …

1
x2

)
+ a2(σH + μ)

+ a3σH
S∗

H
P∗

(
1 …

x2

x3

)
+ a3σL

S∗
L

P∗

(
1 …

x1

x3

)
+ a3μ + a4β2η1S∗

L + a4β2η1θPP∗

+ a4β2η1θHS∗
H + a4β2I∗

1
S∗

L
L∗

(
1 …

x1

x4
x6

)
+ a4β2θHI∗

1
S∗

H
L∗

(
1 …

x2

x4
x6

)

+ a4β2η2I∗
2

S∗
L

L∗

(
1 …

x1

x4
x7

)
+ a4β2θP

I∗
1

L∗ P∗
(

1 …
x3

x4
x6

)
+ a4ηβ2

S∗
L

L∗ Q∗
(

1 …
x1

x4
x5

)

+ a4β2η3S∗
L

H∗

L∗

(
1 …

x1

x4
x8

)
+ a4β2η4

S∗
L

L∗ T∗
(

1 …
x1

x4
x9

)

+ a4ηβ2θH
S∗

H
L∗ Q∗

(
1 …

x2

x4
x5

)
+ a4β2η3θHS∗

H
H∗

L∗

(
1 …

x2

x4
x8

)

+ a4β2η4θH
S∗

H
L∗ T∗

(
1 …

x2

x4
x9

)
+ a4β2η2θHI∗

2
S∗

H
L∗

(
1 …

x2

x4
x7

)

+ a4ηβ2
θP

L∗ P∗Q∗
(

1 …
x3

x4
x5

)

+ a4β2η3θP
H∗

L∗ P∗
(

1 …
x3

x4
x8

)
+ a4β2η4

θP

L∗ P∗T∗
(

1 …
x3

x4
x9

)

+ a4β2η2θP
I∗
2

L∗ P∗
(

1 …
x3

x4
x7

)

+ a5β1
L∗

Q∗

[
1 …

x4

x5

]
+ a6

α

I∗
1

L∗
[
1 …

x4

x6

]
+ a7γ

I∗
1

I∗
2

[
1 …

x6

x7

]

+ a8

[
η

H∗ Q∗
(

1 …
x5

x8

)
+ ψ

I∗
2

H∗

(
1 …

x7

x8

)]

+ a9

[
τ1

I∗
1

T∗

(
1 …

x6

x9

)
+ τ2

I∗
2

T∗

(
1 …

x7

x9

)]

= P(x1,x2, . . . ,x9).

Let us construct the following function to show thatL′ ≤ 0 in D, which is a positively

invariant region:

U (x1,x2, . . . ,x9) =
15∑

k=1

Uk(x1,x2, . . . ,x9),
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where

U1 = d1

(
3 …

1
x1

…
x1

x4
x6 …

x4

x6

)
,

U2 = d2

(
4 …

1
x2

…
x2

x3
…

x3

x4
x6 …

x4

x6

)
,

U3 = d3

(
4 …

x1

x3
…

1
x1

…
x3

x4
x5 …

x4

x5

)
,

U4 = d4

(
4 …

x1

x4
x9 …

1
x1

…
x4

x6
…

x6

x9

)
,

U5 = d5

(
4 …

x1

x4
x7 …

1
x1

…
x4

x6
…

x6

x7

)
,

U6 = d6

(
3 …

x2

x4
x6 …

1
x2

…
x4

x6

)
,

U7 = d7

(
3 …

x1

x4
x5 …

1
x1

…
x4

x5

)
,

U8 = d8

(
4 …

x1

x4
x8 …

1
x1

…
x5

x8
…

x4

x5

)
,

U9 = d9

(
3 …

x2

x4
x5 …

1
x2

…
x4

x5

)
,

U10 = d10

(
5 …

x2

x4
x8 …

x7

x8
…

1
x2

…
x6

x7
…

x4

x6

)
,

U11 = d11

(
6 …

x3

x4
x8 …

x2

x3
…

1
x2

…
x7

x8
…

x6

x7
…

x4

x6

)
,

U12 = d12

(
6 …

x3

x4
x9 …

x2

x3
…

1
x2

…
x7

x9
…

x6

x7
…

x4

x6

)
,

U13 = d13

(
5 …

x3

x4
x7 …

x2

x3
…

1
x2

…
x6

x7
…

x4

x6

)
,

U14 = d14

(
5 …

x2

x4
x9 …

1
x2

…
x7

x9
…

x6

x7
…

x4

x6

)
,

U15 = d15

(
4 …

x2

x4
x7 …

1
x2

…
x6

x7
…

x4

x6

)
.

Comparison of the same terms betweenP(x1,x2,x3,x4,x5,x6,x7,x8,x9) and

15∑

k=1

Uk(x1,x2,x3,x4,x5,x6,x7,x8,x9)

yields the following equations:

d1 = a4β2I∗
1

S∗
L

L∗ , d2 = a4β2θP
I∗
1

L∗ P∗, d3 = a4ηβ2
θP

L∗ P∗Q∗,

d4 = a4β2η4
S∗

L
L∗ T∗, d5 = a4β2η2I∗

2
S∗

L
L∗ ,

d6 = a4β2θHI∗
1

S∗
H

L∗ , d7 = a4ηβ2
S∗

L
L∗ Q∗, d8 = a4β2η3S∗

L
H∗

L∗ ,
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d9 = a4ηβ2θH
S∗

H
L∗ Q∗, d10 = a4β2η3θHS∗

H
H∗

L∗ ,

d11 = a4β2η3θP
H∗

L∗ P∗, d12 = a4β2η4
θP

L∗ P∗T∗, d13 = a4β2η2θP
I∗
2

L∗ P∗,

d14 = a4β2η4θH
S∗

H
L∗ T∗, d15 = a4β2η2θHI∗

2
S∗

H
L∗ .

Thus

L′ = a4β2I∗
1

S∗
L

L∗

(
3 …

1
x1

…
x1

x4
x6 …

x4

x6

)
+ a4β2θP

I∗
1

L∗ P∗
(

4 …
1
x2

…
x2

x3
…

x3

x4
x6 …

x4

x6

)

+ a4ηβ2
θP

L∗ P∗Q∗
(

4 …
x1

x3
…

1
x1

…
x3

x4
x5 …

x4

x5

)

+ a4β2η4
S∗

L
L∗ T∗

(
4 …

x1

x4
x9 …

1
x1

…
x4

x6
…

x6

x9

)

+ a4β2η2I∗
2

S∗
L

L∗

(
4 …

x1

x4
x7 …

1
x1

…
x4

x6
…

x6

x7

)
+ a4β2θHI∗

1
S∗

H
L∗

(
3 …

x2

x4
x6 …

1
x2

…
x4

x6

)

+ a4ηβ2
S∗

L
L∗ Q∗

(
3 …

x1

x4
x5 …

1
x1

…
x4

x5

)
+ a4β2η3S∗

L
H∗

L∗

(
4 …

x1

x4
x8 …

1
x1

…
x5

x8
…

x4

x5

)

+ a4ηβ2θH
S∗

H
L∗ Q∗

(
3 …

x2

x4
x5 …

1
x2

…
x4

x5

)

+ a4β2η3θHS∗
H

H∗

L∗

(
5 …

x2

x4
x8 …

x7

x8
…

1
x2

…
x6

x7
…

x4

x6

)

+ a4β2η3θP
H∗

L∗ P∗
(

6 …
x3

x4
x8 …

x2

x3
…

1
x2

…
x7

x8
…

x6

x7
…

x4

x6

)

+ a4β2η4
θP

L∗ P∗T∗
(

6 …
x3

x4
x9 …

x2

x3
… …

1
x2

…
x7

x9
…

x6

x7
…

x4

x6

)

+ a4β2η2θP
I∗
2

L∗ P∗
(

5 …
x3

x4
x7 …

x2

x3
…

1
x2

…
x6

x7
…

x4

x6

)

+ a4β2η4θH
S∗

H
L∗ T∗

(
5 …

x2

x4
x9 …

1
x2

…
x7

x9
…

x6

x7
…

x4

x6

)

+ a4β2η2θHI∗
2

S∗
H

L∗

(
4 …

x2

x4
x7 …

1
x2

…
x6

x7
…

x4

x6

)
.

Since the arithmetic mean is greater than or equal to the geometric mean, we have1
x1

+
x1
x4

x6 + x4
x6

≥ 3, 1
x2

+ x2
x3

+ x3
x4

x6 + x4
x6

≥ 4, x1
x3

+ 1
x1

+ x3
x4

x5 + x4
x5

≥ 4, x1
x4

x9 + 1
x1

+ x4
x6

+ x6
x9

≥ 4, x1
x4

x7 +
1

x1
+ x4

x6
+ x6

x7
≥ 4, x2

x4
x6 + 1

x2
+ x4

x6
≥ 3, x1

x4
x5 + 1

x1
+ x4

x5
≥ 3, x1

x4
x8 + 1

x1
+ x5

x8
+ x4

x5
≥ 4, x2

x4
x5 + 1

x2
+ x4

x5
≥

3, x2
x4

x8 + x7
x8

+ 1
x2

+ x6
x7

+ x4
x6

≥ 5, x3
x4

x8 + x2
x3

+ 1
x2

+ x7
x8

+ x6
x7

+ x4
x6

≥ 6, x3
x4

x9 + x2
x3

+ 1
x2

+ x7
x9

+ x6
x7

+ x4
x6

≥
6, x3

x4
x7 + x2

x3
+ 1

x2
+ x6

x7
+ x4

x6
≥ 5, x2

x4
x9 + 1

x2
+ x7

x9
+ x6

x7
+ x4

x6
≥ 5, x2

x4
x7 + 1

x2
+ x6

x7
+ x4

x6
≥ 4.

In this manner, we haveL′ ≤ 0 in D. The equalityL′ = 0 exists if and only if{xi = 1,i =

1,2, . . . , 9}. That is, SL = S∗
L,SH = S∗

H ,P = P∗,L = L∗,Q = Q∗,I1 = I∗
1,I2 = I∗

2,H = H∗,T = T∗

in D. The maximal compact invariant set in{(SL,SH ,P,L,Q,I1,I2,H,T ,R) ∈ D : L′ = 0} is

•E1Ž wheneverRC > 1. By LaSalle•s invariance principle [28], •E1Ž is globally asymptotically

stable forRC > 1.
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Figure 2 Sensitivity ofRC with respect to model parameters

4 Sensitivity analysis
The main thing for an infectious disease is to study its capability to enter a population. To

check which variables are in charge of the expanse and existence of disease, we carry out

the sensitivity analysis ofRC w.r.t. di�erent parameters involved inRC . It helps us in con-

trolling the disease. We computed the sensitivity indices of the reproduction numberRC

with respect to the model parameters given in Table1. The sensitivity of the reproduction

number RC is shown in Fig.2.

From Fig.2, it is observed that sensitive parameters areη3,β, (1 …θP),τ1, andθH . Param-

etersη3,β, (1…θP) are directly proportional toRC andτ1 andθH are inversely proportional.

It can be easily seen that by increasing (decreasing) the values ofη3,β, (1 …θP) by 10%, the

values ofRC increase (decrease) by almost 11%, 10%, and 9%, respectively. Similarly, by

increment (reduction) in the values ofτ1 andθH by 10%, reduction (increment) of almost

6% and 5% occurs in the values ofRC , respectively. It means that we should focus on the

isolation of hospitalized and infectious people. Sensitive parameterτ1 indicates that the

more the people will be treated at an early stage, the less the infection will spread.

5 Optimal control
Control strategies include prevention, vaccination or antiviral drugs, quarantine, and

treatment. To estimate the e�ect of controlling strategies, we modify our model as fol-

lows:

dSL

dt
= π(1 …p) … (1 …u1)λSL …σLSL …r2u2SL …μSL,

dSH

dt
= πp … (1 …u1)θHλSH …σHSH …r2u2SH …μSH ,

dP
dt

= (σLSL + σHSH) + r2u2(SL + SH) … (1 …u1)θPλP …μP,

dL
dt

= (1 …u1)λ(SL + θHSH + θPP) … (α + μ)L …β1L …r3u3L,

dQ
dt

= β1L + r3u3L … (μ + η)Q,

dI1

dt
= αL …τ1I1 … (γ + μ)I1,

(6)
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dI2

dt
= γ I1 …r4u4I2 … (τ2 + ψ + φI2 + μ + δ)I2,

dH
dt

= ψI2 + ηQ … (φH + μ + θ1δ)H,

dT
dt

= τ1I1 + τ2I2 + r4u4I2 … (φT + μ)T ,

dR
dt

= φI2I2 + φHH + φT T …μR.

The parameter u1(t) represents the awareness campaign of using the medical mask

through the media transmission to reduce the force of infection,u2(t) portrays the vacci-

nation or usage of antiviral drugs,u3(t) represents the quarantine of exposed individuals,

and u4(t) denotes the treatment of infectious people. To inspect the optimal level of en-

deavors required to control the disease, we de“ne the objective functionalJ . It helps to

limit the number of infectious as well as minimize the cost of applied controlsu1,u2,u3,

andu4. One has

J(u1,u2,u3,u4) =
∫ T

0

(

f1L + f2Q + f3I1 + f4I2 +
1
2

4∑

i=1

Biu2
i

)

dt,

where f1, f2, f3, and f4 represent the positive weights. The number of infected people and

cost of controlsu1(t),u2(t),u3(t), andu4(t) are reduced with the aid of the above mentioned

objective functional. For this, we “nd an optimal controlu∗
1,u∗

2,u∗
3, andu∗

4 such that

J
(
u∗

1,u∗
2,u∗

3,u∗
4

)
= min

{
J(u1,u2,u3,u4), (u1,u2,u3,u4) ∈ U

}
,

where

U =
{
(u1,u2,u3,u4)|ui(t) ∈ [0, 1]and ui(t)

is Lebesgue measurable on [0, 1],i = 1,2,3,4
}

is the control set. This OC problem is solved using Pontryagin•s maximum principle [29]

along with the derivation of necessary conditions.

6 Existence of an optimal control
Optimal control existence can be proved through a well-known classical result: according

to [30], we have to check the following hypotheses:

(H1) The set consisting of controls and state variables is nonempty.
(H2) The admissible control set U is convex and closed.
(H3) R.H.S of system (6) is bounded by a linear function in the state and control.
(H4) The objective functional J has a convex integrand on U . This integrand is bounded

below by c1(|u1|2 + |u2|2)
β
2 …c2, where c1,c2 > 0 and β > 1.

The existence of solutions of ODEs (6) is established by using the result given by Lukes

([31], Th. 9.2.1, p. 182). In this way, we con“rm the above hypotheses. (H1) is satis“ed

because the coe�cients are bounded. The boundedness of solutions shows that (H2) has

been satis“ed by the control set. Since the solutions are bounded and we have bilinearity
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of the system inu1,u2,u3,u4, hence R.H.S of (6) ful“lls hypothesis (H3). The last condition

is also satis“ed as the integrand of objective functional is convex.

f1L + f2Q + f3I1 + f4I2 +
1
2

4∑

i=1

Biui
2 ≥ c1

(
4∑

i=1

|ui|2
) β

2

…c2,

wheref1, f2, f3, f4,B1,B2,B3,B4,c1,c2 > 0 andβ > 1. Hence we have the following theorem.

Theorem 6.1 For U = {(u1,u2,u3,u4)|0 ≤ ui(t) ≤ 1,i = 1,2,3,4,and t ∈ [0,T ]} subject to
Eqs. (6) having the initial conditions and

J =
∫ T

0

(

f1L + f2Q + f3I1 + f4I2 +
1
2

4∑

i=1

Biu2
i

)

dt,

there is an optimal control u = (u∗
1,u∗

2,u∗
3,u∗

4) such that J(u∗
1,u∗

2,u∗
3,u∗

4) = min{J(u1,u2,u3,

u4) : (u1,u2,u3,u4) ∈ U}.

For the solution of system (6), its Lagrangian and Hamiltonian have to be de“ned. Its

Lagrangian is

L(L,Q,I1,I2,u1,u2,u3,u4) = f1L + f2Q + f3I1 + f4I2 +
1
2

(
B1u2

1 + B2u2
2 + B3u2

3 + B4u2
4

)
.

We have to set up the minimal value of the Lagrangian. For this purpose, we construct the

Hamiltonian H for the OC problem as follows:

Let us takeX = (SL,SH ,P,L,Q,I1,I2,H,T ,R), U = (u1,u2,u3,u4), andλ = (λ1,λ2, . . . ,λ10),

then we have

H(X,U,λ)

= f1L + f2Q + f3I1 + f4I2 +
1
2

(
B1u2

1 + B2u2
2 + B3u2

3 + B4u2
4

)

+ λ1
(
π(1 …p) … (1 …u1)λSL …σLSL …r2u2SL …μSL

)

+ λ2
(
πp … (1 …u1)θHλSH …σHSH …r2u2SH …μSH

)

+ λ3
(
(σLSL + σHSH) + r2u2(SL + SH) … (1 …u1)θPλP …μP

)

+ λ4
(
(1 …u1)λ(SL + θHSH + θPP) … (α + μ)L …β1L …r3u3L

)

+ λ5
(
β1L + r3u3L … (μ + η)Q

)
+ λ6

(
αL …τ1I1 … (γ + μ)I1

)

+ λ7
(
γ I1 …r4u4I2 … (τ2 + ψ + φI2 + μ + δ)I2

)
+ λ8

(
ψI2 + ηQ … (φH + μ + θ1δ)H

)

+ λ9
(
τ1I1 + τ2I2 + r4u4I2 … (φT + μ)T

)
+ λ10(φI2I2 + φHH + φT T …μR).

6.1 The optimality system
We apply Pontryagin•s maximum principle [14] for “nding the necessary conditions for

the OC. It is discussed as follows:
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There exists a nontrivial vector functionλ(t) = (λ1(t),λ2(t), . . . ,λ10(t)) provided (u∗
1,u∗

2,
u∗

3,u∗
4) is an optimal solution of the OC problem. This function satis“es the following con-

ditions. The state equation is

dx
dt

=
∂

∂λ

(
H

(
t,u∗

1,u∗
2,λ(t)

))
,

the condition of optimality is given by

∂

∂u
(
H

(
t,u∗

1,u∗
2,u∗

3,u∗
4,λ(t)

))
= 0,

and the equation containing the adjoint variables is given by

dλ

dt
= …

∂

∂x
(
H

(
t,u∗

1,u∗
2,u∗

3,u∗
4,λ(t)

))
.

Now, essential conditions are applied to the HamiltonianH.

Theorem 6.2 For the optimal controls u∗
1,u∗

2,u∗
3,u∗

4 and solutions ŜL, ŜH , P̂, L̂,Q̂, Î1, Î2,Ĥ,
T̂ ,R̂ of the corresponding state system (6), there are adjoint variables λ1,λ2, . . . ,λ10 satisfy-
ing the following equations:

dλ1

dt
= (λ1 …λ4)(1 …u1)λ + (λ1 …λ3)r2u2 + λ1μ …λ3σL,

dλ2

dt
= (λ2 …λ4)(1 …u1)λθH + (λ2 …λ3)σH + (λ2 …λ3)r2u2 + λ2μ,

dλ3

dt
= (λ3 …λ4)(1 …u1)λθP + λ3μ,

dλ4

dt
= …f1 + (λ4 …λ6)α + (λ4 …λ5)β1 + (λ4 …λ5)r3u3 + λ4μ,

dλ5

dt
= …f2 + λ5μ + (λ5 …λ8)η,

dλ6

dt
= …f3 + (λ6 …λ9)τ1 + (λ6 …λ7)γ + λ6μ,

dλ7

dt
= …f4 + (λ7 …λ9)r4u4 + (λ7 …λ9)τ2 + (λ7 …λ8)ψ + (λ7 …λ10)φI2 + λ7(μ + δ),

dλ8

dt
= (λ8 …λ10)φH + λ8(μ + θ1δ),

dλ9

dt
= (λ9 …λ10)φT + λ9μ,

dλ10

dt
= λ10μ,

with transversality conditionsλ1(T) = λ2(T) = · · · = λ10(T) = 0. Additionally, u∗
1,u∗

2,u∗
3,u∗

4

are given by

u∗
1 =

(λ4 …λ1)λSL + (λ4 …λ2)θHλSH + (λ4 …λ3)θPλP
B1

,

u∗
2 =

(λ1 …λ3)r2SL + (λ2 …λ3)r2SH

B2
,
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u∗
3 =

λ4r3L …λ5r3L
B3

,

u∗
4 =

(λ7 …λ9)r4I
B4

.

Proof Hamiltonian H is used for determining the adjoint equations and transversality
conditions. Let us considerSL = ŜL,SH = ŜH ,P = P̂,L = L̂,Q = Q̂,I1 = Î1,I2 = Î2,H = Ĥ,T =
T̂ ,R = R̂, and di�erentiating H w.r.t. (SL,SH ,P,L,Q,I1,I2,H,T ,R), we obtain

dλ1

dt
= (λ1 …λ4)(1 …u1)λ + (λ1 …λ3)r2u2 + λ1μ …λ3σL,

dλ2

dt
= (λ2 …λ4)(1 …u1)λθH + (λ2 …λ3)σH + (λ2 …λ3)r2u2 + λ2μ,

dλ3

dt
= (λ3 …λ4)(1 …u1)λθP + λ3μ,

dλ4

dt
= …f1 + (λ4 …λ6)α + (λ4 …λ5)β1 + (λ4 …λ5)r3u3 + λ4μ,

dλ5

dt
= …f2 + λ5μ + (λ5 …λ8)η,

dλ6

dt
= …f3 + (λ6 …λ9)τ1 + (λ6 …λ7)γ + λ6μ,

dλ7

dt
= …f4 + (λ7 …λ9)r4u4 + (λ7 …λ9)τ2 + (λ7 …λ8)ψ + (λ7 …λ10)φI2 + λ7(μ + δ),

dλ8

dt
= (λ8 …λ10)φH + λ8(μ + θ1δ),

dλ9

dt
= (λ9 …λ10)φT + λ9μ,

dλ10

dt
= λ10μ,

with transversality conditionsλ1(T) = λ2(T) = · · · = λ10(T) = 0. With the help of control
spaceU and conditions of optimality, we can write

u∗
1 =

(λ4 …λ1)λSL + (λ4 …λ2)θHλSH + (λ4 …λ3)θPλP
B1

,

u∗
2 =

(λ1 …λ3)r2SL + (λ2 …λ3)r2SH

B2
,

u∗
3 =

λ4r3L …λ5r3L
B3

,

u∗
4 =

(λ7 …λ9)r4I
B4

. �

7 Numerical simulations
In this section, the model is solved numerically. The values of weight constants in the
objective functional aref1 = 1,f2 = 5,f3 = 10,f4 = 8,B1 = 3,B2 = 7,B3 = 8,B4 = 9. Other pa-
rameter values are given in Table1. It is observed that the numerical outcomes are in
great concurrence with the obtained hypothetical outcomes. Figure3 demonstrates that
the population approaches DFE whenRC is less than 1, while Fig.4 demonstrates that
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Figure 3 The population approaches DFE whenRC = 0.238

Figure 4 The population approaches EE whenRC = 1.4

the population approaches EE when the reproductive number exceeds unity evenδ 	= 0. It
means that the conditionδ = 0 is the weaker condition for the global stability of endemic
equilibrium. We also numerically investigated the in”uence of applied control strategies
on the spread of swine ”u in a population. Individuals having no control are represented
by red lines in the graphs, while blue lines indicate the individuals with control. In Fig.5,
we observed that the endemic level ofL(t) (latent individuals),Q(t) (quarantined individu-
als),I1(t) (symptomatic individuals at initial stage),I2(t) (symptomatic individuals at later
stage), andH(t) (hospitalized individuals) is reduced by applying these control strategies.

8 Conclusions
The deterministic model of swine in”uenza pandemic is rigorously analyzed in this arti-
cle. The model consists of ten mutually exclusive compartments. It is shown that disease-
free equilibrium is globally asymptotically stable wheneverRC ≤ R∗ = Ω

θh
. The existence of

unique endemic equilibrium is proved forRc
Ω

> 1
θP

, and its global stability is computed ana-
lytically whenδ = 0. Numerically, it is shown that the population approaches the endemic
level even ifδ 	= 0. Sensitivity analysis suggests that the parametersβ,η3,τ1 greatly in”u-
ence the control reproduction number. Optimal control problem is analyzed. It consists
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Figure 5 The plots represent the population with and without control

of four controls: the awareness campaign of using the medical mask through the media

transmission to reduce the force of infection, vaccination or the use of antiviral drugs,

the quarantine of exposed individuals, and the treatment of infectious people. Graphical

results verify the usefulness of these control measures.
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