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Abstract
This paper deals with some existence, uniqueness, and Ulam stability results for a
coupled implicit Caputo fractional q-difference system in Banach and generalized
Banach spaces. Some applications are made of some fixed point theorems for the
existence and uniqueness of solutions. Next we prove that our problem is generalized
Ulam–Hyers–Rassias stable. Some illustrative examples are given in the last section.
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1 Introduction
Fractional differential equations have recently been applied in various areas of engineer-
ing, mathematics, physics, and other applied sciences [44]. For some fundamental results
in the theory of fractional calculus and fractional differential equations, we refer the reader
to the monographs [4–6, 33, 42, 47], the paper [46], and the references therein. Recently,
considerable attention has been given to the existence of solutions of initial and boundary
value problems for fractional differential equations with Caputo fractional derivative [5].
Implicit fractional differential equations were analyzed by many authors (see, for instance,
[4, 5, 22, 23, 34, 43] and the references therein). Considerable attention has been given to
the study of the Ulam stability of functional differential and integral equations; one can
see the monograph [6], the papers [3, 17–20, 28, 29, 31, 32, 39–41], and the references
therein.

Fractional q-difference equations initiated at the beginning of the nineteenth century
[10, 24] and received significant attention in recent years [21, 26]. Some interesting de-
tails about initial and boundary value problems of q-difference and fractional q-difference
equations can be found in [7–9, 12–16, 25, 27, 35] and the references therein.

In [1, 2], Abbas et al. considered some existence results for some coupled fractional
differential systems in generalized Banach spaces.
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In this paper we discuss the existence and Ulam–Hyers–Rassias stability of solutions for
the following coupled implicit fractional q-difference system:

⎧
⎨

⎩

(cDα1
q u1)(t) = f1(t, u1(t), u2(t), (cDα1

q u1)(t)),

(cDα2
q u2)(t) = f2(t, u1(t), u2(t), (cDα2

q u2)(t)),
t ∈ I := [0, T], (1)

with the initial conditions

(
u1(0), u2(0)

)
= (u01, u02), (2)

where q ∈ (0, 1), T > 0, αi ∈ (0, 1], fi : I × R × R × R → R, i = 1, 2, are given continuous
functions, and cDαi

q is the Caputo fractional q-difference derivative of order αi, i = 1, 2.
Next, we discuss the existence and uniqueness of solutions for problem (1)–(2) in gen-

eralized Banach spaces, where fi : I ×R
3m → R

m, i = 1, 2, are given continuous functions,
R

m, m ∈ N
∗, is the Euclidian Banach space with a suitable norm ‖ · ‖. This paper initi-

ates the study of implicit coupled Caputo fractional q-difference systems in Banach and
generalized Banach spaces.

2 Preliminaries
Consider the Banach space C(I) := C(I,R) of continuous functions from I into R equipped
with the usual supremum (uniform) norm

‖u‖∞ := sup
t∈I

∣
∣u(t)

∣
∣.

As usual, L1(I) denotes the space of measurable functions v : I → R which are Lebesgue
integrable with the norm

‖v‖1 =
∫ T

0

∣
∣v(t)

∣
∣dt.

Let us recall some definitions and properties of fractional q-calculus. For a ∈R, we set

[a]q =
1 – qa

1 – q
.

The q-analogue of the power (a – b)n is

(a – b)(0) = 1, (a – b)(n) =
n–1∏

k=0

(
a – bqk), a, b ∈R, n ∈N.

In general,

(a – b)(α) = aα

∞∏

k=0

(
a – bqk

a – bqk+α

)

, a, b,α ∈R.

Definition 2.1 ([30]) The q-gamma function is defined by

Γq(ξ ) =
(1 – q)(ξ–1)

(1 – q)ξ–1 , ξ ∈R – {0, –1, –2, . . .}.
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Notice that the q-gamma function satisfies Γq(1 + ξ ) = [ξ ]qΓq(ξ ).

Definition 2.2 ([30]) The q-derivative of order n ∈ N of a function u : I → R is defined
by (D0

qu)(t) = u(t),

(Dqu)(t) :=
(
D1

qu
)
(t) =

u(t) – u(qt)
(1 – q)t

, t �= 0, (Dqu)(0) = lim
t→0

(Dqu)(t),

and

(
Dn

qu
)
(t) =

(
DqDn–1

q u
)
(t), t ∈ I, n ∈ {1, 2, . . .}.

Set It := {tqn : n ∈N} ∪ {0}.

Definition 2.3 ([30]) The q-integral of a function u : It →R is defined by

(Iqu)(t) =
∫ t

0
u(s) dqs =

∞∑

n=0

t(1 – q)qnf
(
tqn),

provided that the series converges.

We note that (DqIqu)(t) = u(t), while if u is continuous at 0, then

(IqDqu)(t) = u(t) – u(0).

Definition 2.4 ([11]) The Riemann–Liouville fractional q-integral of order α ∈ R+ :=
[0,∞) of a function u : I →R is defined by (I0

q u)(t) = u(t), and

(
Iα

q u
)
(t) =

∫ t

0

(t – qs)(α–1)

Γq(α)
u(s) dqs, t ∈ I.

Lemma 2.5 ([37]) For α ∈R+ := [0,∞) and λ ∈ (–1,∞), we have

(
Iα

q (t – a)(λ))(t) =
Γq(1 + λ)

Γ (1 + λ + α)
(t – a)(λ+α), 0 < a < t < T .

In particular,

(
Iα

q 1
)
(t) =

1
Γq(1 + α)

t(α).

Definition 2.6 ([38]) The Riemann–Liouville fractional q-derivative of order α ∈R+ of a
function u : I →R is defined by (D0

qu)(t) = u(t), and

(
Dα

q u
)
(t) =

(
D[α]

q I[α]–α
q u

)
(t), t ∈ I,

where [α] is the integer part of α.
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Definition 2.7 ([38]) The Caputo fractional q-derivative of order α ∈ R+ of a function
u : I →R is defined by (CD0

qu)(t) = u(t), and

(CDα
q u

)
(t) =

(
I[α]–α

q D[α]
q u

)
(t), t ∈ I.

Lemma 2.8 ([38]) Let α ∈ R+. Then the following equality holds:

(
Iα

q
CDα

q u
)
(t) = u(t) –

[α]–1∑

k=0

tk

Γq(1 + k)
(
Dk

qu
)
(0).

In particular, if α ∈ (0, 1), then

(
Iα

q
CDα

q u
)
(t) = u(t) – u(0).

From the above lemma, and in order to define the solution for problem (1)–(2), we con-
clude the following lemma.

Lemma 2.9 Let f : I × R
3m → R

m such that fi(·, ui, vi, wi) ∈ C(I) for each ui, vi, wi ∈ R
m.

Then problem (1)–(2) is equivalent to the problem of obtaining the solutions of the integral
equation

gi(t) = fi
(
t, u01 +

(
Iα1

q g1
)
(t), u02 +

(
Iα2

q g2
)
(t), gi(t)

)
, i = 1, 2,

and if gi(·) ∈ C(I) is the solution of this equation, then

ui(t) = u0i +
(
Iαi

q gi
)
(t).

3 Existence and Ulam stability results
In this section, we are concerned with the existence stability of solutions of system (1)–(2).
We denote by C := C(I) × C(I) the Banach space with the norm

∥
∥(u, v)

∥
∥
C = ‖u‖∞ + ‖v‖∞.

Definition 3.1 By a solution of problem (1)–(2) we mean a coupled function (u, v) ∈ C
that satisfies the system

⎧
⎨

⎩

(cDα1
q u)(t) = f1(t, u(t), v(t), (cDα1

q u)(t)),

(cDα2
q v)(t) = f2(t, u(t), v(t), (cDα2

q v)(t))

on I and the initial condition (u(0), v(0)) = (u01, u02).

Now, we consider the Ulam stability for system (1)–(2). Let ε > 0 and Φ : I → R+ be a
continuous function. We consider the following inequalities:

⎧
⎨

⎩

|(cDα1
q u)(t) – f1(t, u(t), v(t), (cDα1

q u)(t))| ≤ ε,

|(cDα2
q v)(t) – f2(t, u(t), v(t), (cDα2

q v)(t))| ≤ ε,
t ∈ I; (3)
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⎧
⎨

⎩

|(cDα1
q u)(t) – f1(t, u(t), v(t), (cDα1

q u)(t))| ≤ Φ(t)

|(cDα2
q v)(t) – f2(t, u(t), v(t), (cDα2

q v)(t))| ≤ Φ(t),
t ∈ I; (4)

⎧
⎨

⎩

|(cDα1
q u)(t) – f1(t, u(t), v(t), (cDα1

q u)(t))| ≤ εΦ(t)

|(cDα2
q v)(t) – f2(t, u(t), v(t), (cDα2

q v)(t))| ≤ εΦ(t),
t ∈ I. (5)

Set

∣
∣
(
u(t), v(t)

)∣
∣ :=

∣
∣u(t)

∣
∣ +

∣
∣v(t)

∣
∣.

Definition 3.2 ([5, 40]) System (1)–(2) is Ulam–Hyers stable if there exists a real number
cf1,f2 > 0 such that, for each ε > 0 and for each solution (u1, v1) ∈ C of inequalities (3), there
exists a solution (u, v) ∈ C(I) of (1)–(2) with

∣
∣
(
u1(t) – u(t), v1(t) – v(t)

)∣
∣ ≤ εcf1,f2 , t ∈ I.

Definition 3.3 ([5, 40]) System (1)–(2) is generalized Ulam–Hyers stable if there exists
cf1,f2 : C(R+,R+) with cfi (0) = 0, i = 1, 2, such that, for each ε > 0 and for each solution
(u1, v1) ∈ C of inequalities (3), there exists a solution (u, v) ∈ C of (1)–(2) with

∣
∣
(
u1(t) – u(t), v1(t) – v(t)

)∣
∣ ≤ cf1,f2 (ε), t ∈ I.

Definition 3.4 ([5, 40]) System (1)–(2) is Ulam–Hyers–Rassias stable with respect to Φ

if there exists a real number cf1,f2,Φ > 0 such that, for each ε > 0 and for each solution
(u1, v1) ∈ C of inequalities (5), there exists a solution (u, v) ∈ C of (1)–(2) with

∣
∣
(
u1(t) – u(t), v1(t) – v(t)

)∣
∣ ≤ εcf1,f2,ΦΦ(t), t ∈ I.

Definition 3.5 ([5, 40]) System (1)–(2) is generalized Ulam–Hyers–Rassias stable with
respect to Φ if there exists a real number cf1,f2,Φ > 0 such that, for each solution (u1, v1) ∈ C
of inequalities (4), there exists a solution (u, v) ∈ C of (1)–(2) with

∣
∣
(
u1(t) – u(t), v1(t) – v(t)

)∣
∣ ≤ cf1,f2,ΦΦ(t), t ∈ I.

Remark 3.6 It is clear that
(i) Definition 3.2 ⇒ Definition 3.3,

(ii) Definition 3.4 ⇒ Definition 3.5,
(iii) Definition 3.4 for Φ(·) = 1 ⇒ Definition 3.2.

One can have similar remarks for inequalities (3) and (5).

Theorem 3.7 (Schauder’s fixed point theorem) Let X be a Banach space, D be a bounded
closed convex subset of X, and T : D → D be a compact and continuous map. Then T has
at least one fixed point in D.

The following hypotheses will be used in the sequel:
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(H1) There exist functions pi, di, ri ∈ C(I, [0,∞)), i = 1, 2, with ri(t) < 1 such that

∣
∣fi(t, u, v, w)

∣
∣ ≤ pi(t) + di(t) min

(|u|, |v|) + ri(t)|w|

for each t ∈ I and u, v, w ∈ R;
(H2) There exists λΦ > 0 such that, for each t ∈ I , we have

(
Iαi

q Φ
)
(t) ≤ λΦΦ(t), i = 1, 2.

Set

Li :=
Tαi

Γq(1 + αi)
,

p∗
i = sup

t∈I
pi(t), d∗

i = sup
t∈I

di(t), r∗
i = sup

t∈I
ri(t), Φ∗ = sup

t∈I
Φ(t).

Theorem 3.8 Assume that hypothesis (H1) holds. If

r∗
1 + r∗

2 – r∗
1r∗

2 +
(
1 – r∗

2
)
L1d∗

1 +
(
1 – r∗

1
)
L2d∗

2 < 1, (6)

then system (1)–(2) has at least one solution defined on I . Moreover, if hypothesis (H2) holds,
then system (1)–(2) is generalized Ulam–Hyers–Rassias stable.

Proof Define the operators Ni : C(I) → C(I), i = 1, 2, by

(N1u)(t) = u01 +
(
Iα1

q g1
)
(t), t ∈ I, (7)

and

(N2v)(t) = u02 +
(
Iα2

q g2
)
(t), t ∈ I, (8)

where gi ∈ C(I) such that

gi(t) = f
(
t, u(t), v(t), gi(t)

)
.

Consider the continuous operator N : C → C defined by

(
N(u, v)

)
(t) =

(
(N1u)(t), (N2v)(t)

)
. (9)

Set

R ≥ (1 – r∗
1)(1 – r∗

2)(|u01| + |u02|) + (1 – r∗
2)L1p∗

1 + (1 – r∗
1)L2p∗

2
1 – r∗

1 – r∗
2 + r∗

1r∗
2 – (1 – r∗

2)L1d∗
1 – (1 – r∗

1)L2d∗
2

,

and consider the closed and convex ball BR = {u ∈ C : ‖(u, v)‖C ≤ R}.
Let u ∈ BR. Then, for each t ∈ I , we have

∣
∣(N1u)(t)

∣
∣ ≤ |u01| +

∫ t

0

(t – qs)(α1–1)

Γq(α1)
∣
∣g1(s)

∣
∣dqs
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and

∣
∣(N2v)(t)

∣
∣ ≤ |u02| +

∫ t

0

(t – qs)(α2–1)

Γq(α2)
∣
∣g2(s)

∣
∣dqs.

By using (H1), for each t ∈ I , we have

∣
∣gi(t)

∣
∣ ≤ pi(t) + di(t) min

(∣
∣u(t)

∣
∣,

∣
∣v(t)

∣
∣
)

+ ri(t)
∣
∣gi(t)

∣
∣

≤ p∗
i + d∗

i R + r∗
i
∣
∣gi(t)

∣
∣.

Thus

∣
∣gi(t)

∣
∣ ≤ p∗

i + d∗
i R

1 – r∗
i

.

Hence

∥
∥N1(u)

∥
∥∞ ≤ |u01| +

L1(p∗
1 + d∗

1R)
1 – r∗

1

and

∥
∥N2(v)

∥
∥∞ ≤ |u02| +

L2(p∗
2 + d∗

2R)
1 – r∗

2
.

This implies that

∥
∥N(u, v)

∥
∥
C =

∥
∥N1(u)

∥
∥∞ +

∥
∥N2(v)

∥
∥∞

≤ |u01| + |u02| +
2∑

i=1

Li(p∗
i + d∗

i R)
1 – r∗

i

≤ R.

This proves that N maps the ball BR into BR. We shall show that the operator N : BR → BR

is continuous and compact. The proof will be given in several steps.
Step 1: N is continuous.
Let {un}n∈N and {vn}n∈N be two sequences such that (un, vn) → (u, v) in BR. Then, for

each t ∈ I , we have

∣
∣(N1un)(t) – (N1u)(t)

∣
∣ ≤

∫ t

0

(t – qs)(α1–1)

Γq(α1)
∣
∣
(
g1n(s) – g1(s)

)∣
∣dqs

and

∣
∣(N2vn)(t) – (N2v)(t)

∣
∣ ≤

∫ t

0

(t – qs)(α2–1)

Γq(α2)
∣
∣
(
g2n(s) – g2(s)

)∣
∣dqs,

where gin, gi ∈ C(I), i = 1, 2, such that

gin(t) = fi
(
t, un(t), vn(t), gin(t)

)
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and

gi(t) = fi
(
t, u(t), v(t), gi(t)

)
.

Since (un, vn) → u as n → ∞ and fi are continuous functions, we get

gin(t) → gi(t) as n → ∞ for each t ∈ I.

Thus

∥
∥N1(un) – N1(u)

∥
∥∞ ≤ p∗

1 + d∗
1R

1 – r∗
1

‖g1n – g1‖∞ → 0 as n → ∞

and

∥
∥N2(vn) – N2(v)

∥
∥∞ ≤ p∗

2 + d∗
2R

1 – r∗
2

‖g2n – g2‖∞ → 0 as n → ∞.

Hence

∥
∥N(un, vn) – N(u, v)

∥
∥
C → 0 as n → ∞.

Step 2: N(BR) is bounded. This is clear since N(BR) ⊂ BR and BR is bounded.
Step 3: N maps bounded sets into equicontinuous sets in BR.
Let t1, t2 ∈ I such that t1 < t2, and let (u, v) ∈ BR. Then we have

∣
∣(Niu)(t1) – (Niu)(t2)

∣
∣ ≤

∫ t1

0

|(t2 – qs)(αi–1) – (t1 – qs)(αi–1)|
Γq(αi)

∣
∣gi(s)

∣
∣dqs

+
∫ t2

t1

|(t2 – qs)(αi–1)|
Γq(αi)

∣
∣gi(s)

∣
∣dqs,

where gi ∈ C(I) such that gi(t) = f (t, u(t), v(t), gi(t)). Hence

∣
∣(N1u)(t1) – (N1u)(t2)

∣
∣ ≤ p∗

1 + d∗
1R

1 – r∗
1

∫ t1

0

|(t2 – qs)(α1–1) – (t1 – qs)(α1–1)|
Γq(α1)

dqs

+
p∗

1 + d∗
1R

1 – r1∗
∫ t2

t1

|(t2 – qs)(α1–1)|
Γq(α1)

dqs

→ 0 as t1 → t2,

and

∣
∣(N2v)(t1) – (N2v)(t2)

∣
∣ ≤ p∗

2 + d∗
2R

1 – r∗
2

∫ t1

0

|(t2 – qs)(α2–1) – (t1 – qs)(α2–1)|
Γq(α2)

dqs

+
p∗

2 + d∗
2R

1 – r2∗
∫ t2

t1

|(t2 – qs)(α2–1)|
Γq(α2)

dqs

→ 0 as t1 → t2.
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As a consequence of the above three steps with the Arzelá–Ascoli theorem, we can con-
clude that N : BR → BR is continuous and compact. From an application of Theorem 3.7,
we deduce that N has at least a fixed point (u, v) which is a solution of our system (1)–(2).

Step 4: Generalized Ulam–Hyers–Rassias stability.
Let (u1, v1) be a solution of inequality (4), and let us assume that (u, v) is a solution of

system (1)–(2). Thus, we have

(
u(t), v(t)

)
= (u01 +

(
Iα1

q g1
)
(t), u02 +

(
Iα2

q g2
)
(t),

where gi ∈ C(I), i = 1, 2, such that gi(t) = f (t, u(t), v(t), gi(t)).
From inequality (4) for each t ∈ I , we have

∣
∣u1(t) – u01 –

(
Iα1

q g1
)
(t)

∣
∣ ≤ (

Iα1
q Φ

)
(t)

and

∣
∣v1(t) – u02 –

(
Iα2

q g2
)
(t)

∣
∣ ≤ (

Iα2
q Φ

)
(t).

From hypotheses (H1) and (H2), for each t ∈ I , we have

∣
∣u(t) – u1(t)

∣
∣ ≤ ∣

∣u(t) – u01 –
(
Iα1

q g1
)
(t) +

(
Iα1

q (g1 – g2)
)
(t)

∣
∣

≤ (
Iα1

q Φ
)
(t) +

∫ t

0

(t – qs)(α1–1)

Γq(α1)
(∣
∣g1(s)

∣
∣ +

∣
∣g2(s)

∣
∣
)

dqs

≤ (
Iα1

q Φ
)
(t) +

p∗
1 + d∗

1
1 – r∗

1

(
Iα1

q Φ
)
(t)

≤ λφΦ(t) + 2λφ

p∗
1 + d∗

1
1 – r∗

1
Φ(t)

≤
[

1 + 2
p∗

1 + d∗
1

1 – r∗
1

]

λφΦ(t)

:= cf1,ΦΦ(t).

Also, we get

∣
∣v(t) – v1(t)

∣
∣ ≤

[

1 + 2
p∗

2 + d∗
2

1 – r∗
2

]

λφΦ(t)

:= cf2,ΦΦ(t).

Thus

∣
∣
(
u(t), v(t)

)
–

(
u1(t), v1(t)

)∣
∣ =

∣
∣u(t) – u1(t)

∣
∣ +

∣
∣v(t) – v1(t)

∣
∣

≤
[

λφ

2∑

i=1

(

1 + 2
p∗

i + d∗
i

1 – r∗
i

)]

Φ(t)

:= cf1,f2,ΦΦ(t).

Hence, problem (1)–(2) is generalized Ulam–Hyers–Rassias stable. �
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4 Results in generalized Banach spaces
Now, we are concerned with the existence and uniqueness results of the coupled system
(1)–(2) in generalized Banach spaces.

Let C be the Banach space of all continuous functions v from I into R
m with the supre-

mum (uniform) norm

‖v‖C := sup
t∈I

∥
∥v(t)

∥
∥.

By L∞(I,R+) we denote the Banach space of measurable functions from I into R+ which
are essentially bounded.

Let x, y ∈R
m with x = (x1, x2, . . . , xm), y = (y1, y2, . . . , ym).

By x ≤ y we mean xi ≤ yi, i = 1, . . . , m. Also,

|x| =
(|x1|, |x2|, . . . , |xm|),

max(x, y) =
(
max(x1, y1), max(x2, y2), . . . , max(xm, ym)

)
,

and

R
m
+ =

{
x ∈R

m : xi ∈R+, i = 1, . . . , m
}

.

If c ∈ R, then x ≤ c means xi ≤ c, i = 1, . . . , m.

Definition 4.1 Let X be a nonempty set. By a vector-valued metric on X we mean a map
d : X × X →R

m with the following properties:
(i) d(x, y) ≥ 0 for all x, y ∈ X , and if d(x, y) = 0, then x = y;

(ii) d(x, y) = d(y, x) for all x, y ∈ X ;
(iii) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X .

We call the pair (X, d) a generalized metric space with

d(x, y) :=

⎛

⎜
⎜
⎜
⎜
⎝

d1(x, y)
d2(x, y)

...
dm(x, y)

⎞

⎟
⎟
⎟
⎟
⎠

.

Notice that d is a generalized metric space on X if and only if di, i = 1, . . . , m, are metrics
on X.

Definition 4.2 ([45]) A square matrix of real numbers is said to be convergent to zero
if and only if its spectral radius ρ(M) is strictly less than 1. In other words, this means
that all the eigenvalues of M are in the open unit disc, i.e., |λ| < 1 for every λ ∈ C with
det(M – λI) = 0, where I denotes the unit matrix of Mm×m(R).

Example 4.3 The matrix A ∈ M2×2(R) defined by

A =

(
a b
c d

)
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converges to zero in the following cases:
(1) b = c = 0, a, d > 0, and max{a, d} < 1.
(2) c = 0, a, d > 0, a + d < 1, and –1 < b < 0.
(3) a + b = c + d = 0, a > 1, c > 0, and |a – c| < 1.

Definition 4.4 Let (X, d) be a generalized metric space. An operator N : X → X is said to
be contractive if there exists a matrix M convergent to zero such that

d
(
N(x), N(y)

) ≤ Md(x, y) for all x, y ∈ X.

In the sequel we will make use of the following fixed point theorems in generalized Ba-
nach spaces.

Theorem 4.5 [36] Let (X, d) be a complete generalized metric space and N : X → X be a
contractive operator with Lipschitz matrix M. Then N has a unique fixed point x0, and for
each x ∈ X, we have

d
(
Nk(x), x0

) ≤ Mk(M)–1d
(
x, N(x)

)
for all k ∈N.

For n = 1, we recover the classical Banach contraction fixed point result.

Theorem 4.6 ([36]) Let X be a generalized Banach space, D ⊂ E be a nonempty closed
convex subset of E, and N : D → D be a continuous operator with relatively compact range.
Then N has at least a fixed point in D.

The following hypotheses will be used in the sequel.
(H01) There exist continuous functions pi, di, li : I →R+, i = 1, 2, such that li < 1 and

∥
∥fi(t, u1, v1, w1) – fi(t, u2, v2, w2)

∥
∥

≤ pi(t)‖u1 – u2‖ + di(t)‖v1 – v2‖ + li(t)‖w1 – w2‖

for a.e. t ∈ I and each ui, vi, wi ∈R
m, i = 1, 2.

(H02) There exist continuous functions Ki, Pi, Di, Li : I →R+, i = 1, 2, such that

∥
∥fi(t, u, v, w)

∥
∥ ≤ Ki(t) + Pi(t)‖u‖ + Di(t)‖v‖ + Li(t)‖w‖

for a.e. t ∈ I and each u, v, w ∈ R
m, i = 1, 2.

Set

p∗
i := sup

t∈I
pi(t), d∗

i := sup
t∈I

di(t), l∗i := sup
t∈I

li(t), K∗
i := sup

t∈I
Ki(t),

P∗
i := sup

t∈I
Pi(t), D∗

i := sup
t∈I

Di(t), L∗
i := sup

t∈I
Li(t),

and


i :=
Tαi

Γq(1 + αi)
, i = 1, 2.
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The space C2 := C × C is a generalized Banach space with the norm

∥
∥(u1, u2)

∥
∥

C2 :=
(‖u1‖C ,‖u2‖C

)
.

Definition 4.7 By a solution of problem (1)–(2) we mean a coupled continuous function
(u, v) ∈ C2 satisfying initial condition (2) and system (1) on I .

First, we prove an existence and uniqueness result for coupled system (1)–(2) by using
Banach’s fixed point theorem type in generalized Banach spaces.

Theorem 4.8 Assume that hypothesis (H01) holds. If the matrix

M :=

⎛

⎝


1p∗
1

1–l∗1

1d∗

1
1–l∗1


2p∗
2

1–l∗2

2d∗

2
1–l∗2

⎞

⎠

converges to 0, then coupled system (1)–(2) has a unique solution.

Proof From Lemma 2.9, we can define the operators N1, N2 : C2 → C by

(
Ni(u1, u2)

)
(t) = u0i +

(
Iαi

q gi
)
(t), i = 1, 2, t ∈ I, (10)

where gi(·) ∈ C(I), with

gi(t) = fi
(
t, u1(t), u2(t), gi(t)

)

= fi
(
t, u01 +

(
Iα1

q g1
)
(t), u02 +

(
Iα2

q g2
)
(t), gi(t)

)
, i = 1, 2.

Consider the operator N : C2 → C2 defined by

(
N(u1, u2)

)
(t) =

((
N1(u1, u2)

)
(t),

(
N2(u1, u2)

)
(t)

)
. (11)

Clearly, the fixed points of the operator N are solutions of coupled system (1)–(2). We
show that N satisfies all the conditions of Theorem 4.5.

For each (u1, u2), (v1, v2) ∈ C2 and t ∈ I , we have

∥
∥
(
Ni(u1, u2)

)
(t) –

(
Ni(v1, v2)

)
(t)

∥
∥ ≤

∫ t

0

(t – qs)(α–i)

Γq(αi)
∥
∥gi(s) – hi(s)

∥
∥dqs, (12)

where gi(·), hi(·) ∈ C(I), i = 1, 2, with

gi(t) = fi
(
t, u1(t), u2(t), gi(t)

)

= fi
(
t, u01 +

(
Iα1

q g1
)
(t), u02 +

(
Iα2

q g2
)
(t), gi(t)

)

and

hi(t) = fi
(
t, v1(t), v2(t), hi(t)

)

= fi
(
t, u01 +

(
Iα1

q h1
)
(t), u02 +

(
Iα2

q h2
)
(t), hi(t)

)
.
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From hypothesis (H01), we have

∥
∥gi(t) – hi(t)

∥
∥ = pi(t)

∥
∥u1(t) – v1(t)

∥
∥ + di(t)‖u2 – v2‖ + li(t)‖gi – hi‖.

Then

∥
∥gi(t) – hi(t)

∥
∥ = pi(t)

∥
∥u1(t) – v1(t)

∥
∥ + di(t)

∥
∥u2(t) – v2(t)

∥
∥ + li(t)

∥
∥gi(t) – hi(t)

∥
∥.

Thus

‖gi – hi‖C = p∗
i ‖u1 – v1‖C + i∗1‖u2 – v2‖C + l∗i ‖gi – hi‖C .

This implies that

(
1 – l∗i

)‖gi – hi‖C = p∗
i ‖u1 – v1‖C + d∗

i ‖u2 – v2‖C .

Hence

‖gi – hi‖C =
p∗

i
1 – l∗i

‖u1 – v1‖C +
d∗

i
1 – l∗i

‖u2 – v2‖C .

From (12), we get

∥
∥
(
Ni(u1, u2)

)
–

(
Ni(v1, v2)

)∥
∥

C ≤
∫ t

0

(t – qs)(αi–1)

Γq(αi – 1)
∥
∥gi(s) – hi(s)

∥
∥dqs

≤ 
ip∗
i

1 – l∗i
‖u1 – v1‖C +


id∗
i

1 – l∗i
‖u2 – v2‖C .

Consequently,

d
((

N(u1, u2)
)
,
(
N(v1, v2)

)) ≤ Md
(
(u1, u2), (v1, v2)

)
,

where

d
(
(u1, u2), (v1, v2)

)
=

(
‖u1 – v1‖C

‖u2 – v2‖C

)

.

Since the matrix M converges to zero, then Theorem 4.5 implies that coupled system (1)–
(2) has a unique solution. �

Now, we prove an existence result for coupled system (1)–(2) by using Schauder’s fixed
point theorem type in a generalized Banach space.

Theorem 4.9 Assume that hypothesis (H02) holds. Then coupled system (1)–(2) has at
least one solution.

Proof Let N : C2 → C2 be the operator defined in (11). We show that N satisfies all the
conditions of Theorem 4.6. The proof will be given in several steps.
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Step 1. N is continuous.
Let {(u1n, u2n)}n be a sequence such that (u1n, u2n) → (u1, u2) ∈ C2 as n → ∞. For any

i = 1, 2 and each t ∈ I , we have

∥
∥
(
Ni(u1n, u2n)

)
(t) –

(
Ni(u1, u2)

)
(t)

∥
∥ ≤

∫ t

0

(t – qs)(αi–1)

Γq(αi – 1)
∥
∥gin(s) – gi(s)

∥
∥dqs,

where gi(·), gin(·) ∈ C(I), i = 1, 2, with

gi(t) = fi
(
t, u1(t), u2(t), gi(t)

)

= fi
(
t, u01 +

(
Iα1

q g1
)
(t), u02 +

(
Iα2

q g2
)
(t), gi(t)

)

and

gin(t) = fi
(
t, u1n(t), u2n(t), gin(t)

)

= fi
(
t, u01 +

(
Iα1

q g1n
)
(t), u02 +

(
Iα2

q g2n
)
(t), gin(t)

)
.

From (H02), we have

‖gin – gi‖C ≤ P∗
i

1 – L∗
i
‖u1n – u1‖C +

D∗
i

1 – L∗
i
‖u2n – u2‖C .

Thus,

∥
∥
(
Ni(u1n, u2n)

)
(t) –

(
Ni(u1, u2)

)
(t)

∥
∥ ≤ 
iP∗

i
1 – L∗

i
‖u1n – u1‖C +


iD∗
i

1 – L∗
i
‖u2n – u2‖C

→ 0 as n → ∞.

Hence, we get

∥
∥Ni(u1n, u2n) – Ni(u1, u2)

∥
∥

C → 0 as n → ∞.

Consequently,

∥
∥N(u1n, u2n) – N(u1, u2)

∥
∥

C2

:=
(∥
∥N1(u1n, u2n) – N1(u1, u2)

∥
∥

C ,
∥
∥N2(u1n, u2n) – N2(u1, u2)

∥
∥

C

)

→ (0, 0) as n → ∞.

Finally, N is continuous.
Step 2. N maps bounded sets into bounded sets in C2.
Set

h∗
i := sup

t∈I
hi(t), k∗

i := sup
t∈I

ki(t), l∗i := sup
t∈I

li(t).

Let R > 0 and set

BR :=
{

(μ,ν) ∈ C2 : ‖μ‖C ≤ R,‖ν‖C ≤ R
}

.
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For any i = 1, 2 and each (u, v) ∈ BR and t ∈ I , we have

∥
∥
(
Ni(u1, u2)

)
(t)

∥
∥ ≤

∫ t

0

(t – qs)(αi–1)

Γq(αi – 1)
∥
∥gi(s)

∥
∥dqs,

where gi(·),∈ C(I), i = 1, 2, with

gi(t) = fi
(
t, u1(t), u2(t), gi(t)

)

= fi
(
t, u01 +

(
Iα1

q g1
)
(t), u02 +

(
Iα2

q g2
)
(t), gi(t)

)
.

Since

‖gi‖C ≤ P∗
i

1 – L∗
i
‖u1‖C +

D∗
i

1 – L∗
i
‖u2‖C ,

we get

∥
∥Ni(u1, u2)

∥
∥

C ≤ 
iP∗
i

1 – L∗
i
‖u1‖C +


iD∗
i

1 – L∗
i
‖u2‖C .

Thus,

∥
∥Ni(u1, u2)

∥
∥

C ≤ R
iP∗
i

1 – L∗
i

+
R
iD∗

i
1 – L∗

i
:= Mi.

Hence,

∥
∥
(
N(u, v)

)∥
∥

C2 ≤ (M1, M2) := M.

Step 3. N maps bounded sets into equicontinuous sets in C2.
Let BR be the ball defined in Step 2. For each t1, t2 ∈ I with t1 ≤ t2 and any (u, v) ∈ BR and

i = 1, 2, we have

∥
∥
(
Ni(u1, u2)

)
(t1) –

(
Ni(u1, u2)

)
(t2)

∥
∥

≤
∫ t1

0

(t1 – qs)(αi–1)

Γq(αi – 1)
∥
∥gi(s)

∥
∥dqs –

∫ t2

0

(t2 – qs)(αi–1)

Γq(αi – 1)
∥
∥gi(s)

∥
∥dqs,

where gi(·),∈ C(I), i = 1, 2, with

gi(t) = fi
(
t, u1(t), u2(t), gi(t)

)

= fi
(
t, u01 +

(
Iα1

q g1
)
(t), u02 +

(
Iα2

q g2
)
(t), gi(t)

)
.
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Thus,

∥
∥
(
Ni(u1, u2)

)
(t1) –

(
Ni(u1, u2)

)
(t2)

∥
∥

≤
(

RP∗
i

1 – L∗
i

+
RD∗

i
1 – L∗

i

)∫ t1

0

|(t2 – qs)(αi–1) – (t1 – qs)(αi–1)|
Γq(α1)

dqs

+
(

RP∗
i

1 – L∗
i

+
RD∗

i
1 – L∗

i

)∫ t2

t1

|(t2 – qs)(αi–1)|
Γq(αi)

dqs

→ 0 as t1 → t2.

Hence,

∥
∥
(
N(u1, u2)

)
(t1) –

(
N(u1, u2)

)
(t2)

∥
∥

=
(∥
∥
(
N1(u1, u2)

)
(t1) –

(
N1(u1, u2)

)
(t2)

∥
∥,

∥
∥
(
N2(u1, u2)

)
(t1) –

(
N2(u1, u2)

)
(t2)

∥
∥
)

→ (0, 0) as t1 → t2.

As a consequence of steps 1 to 3 together with Theorem 4.6, we can conclude that N has
at least one fixed point in BR which is a solution of our coupled system (1)–(2). �

5 Examples
Example 1 Consider the following coupled system of implicit fractional 1

4 -difference
equation:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(cD
1
2
1
4

u)(t) = f1(t, u(t), v(t), (cD
1
2
1
4

u)(t)),

(cD
1
2
1
4

v)(t) = f2(t, u(t), v(t), (cD
1
2
1
4

v)(t)),

(u(0), v(0)) = (1, 2),

t ∈ [0, 1], (13)

where
⎧
⎨

⎩

f1(t, x, y, z) = ct2

1+|x|+|y|+|z| (e
–7 + 1

et+5 )(t2 + xt2 + z),

f2(t, x, y, z) = ct2

et+5(1+|x|+|y|+|z|) (et + ty + z);
t ∈ (0, 1],

and c > 0. Hypothesis (H1) is satisfied with

p1(t) = d1(t) =
(

e–7 +
1

et+5

)

ct4,

r1(t) =
(

e–7 +
1

et+5

)

ct2, p2(t) =
ct2

et+4 , d2 =
ct3

et+5 , r2(t) =
ct2

et+5 .

Also, condition (6) is satisfied. Indeed,

r∗
1 + r∗

2 – r∗
1r∗

2 +
(
1 – r∗

2
)
L1d∗

1 +
(
1 – r∗

1
)
L2d∗

2 < 1

implies the inequality

(2 + 3L)e–10c2 – 3(1 + L)e–5c + 1 > 0,
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with

L :=
2

Γ 1
4

( 1
2 )

,

which is satisfied for all c ∈R+ because

� = 9(1 + L)2e–10 – 4(2 + 3L)e–10 =
(
1 + 6L + 9L2)e–10 > 0,

and (2 + 3L)e–10 > 0. For example, if we take c = 1, we can see that

r∗
1 + r∗

2 – r∗
1r∗

2 +
(
1 – r∗

2
)
L1d∗

1 +
(
1 – r∗

1
)
L2d∗

2 = 3e–5(1 + L) – e–10(2 + 3L) < 1.

Hence, Theorem 3.8 implies that system (13) has at least a solution defined on [0, 1].
On the other hand, hypothesis (H2) is satisfied with Φ(t) = t2. Indeed, for each t ∈ (0, 1],

there exists a real number 0 < ε < 1 such that ε < t ≤ 1, and

(
Iα

q Φ
)
(t) ≤ t2

ε2(1 + q + q2)

≤ 1
ε2 Φ(t)

= λΦΦ(t).

Consequently, problem (13) is generalized Ulam–Hyers–Rassias stable.

Example 2 Consider now the following coupled system of implicit fractional 1
4 -difference

equations:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(cD
1
2
1
4

u)(t) = f1(t, u(t), v(t), (cD
1
2
1
4

u)(t)),

(cD
1
2
1
4

v)(t) = f2(t, u(t), v(t), (cD
1
2
1
4

v)(t)),

(u(0), v(0)) = (1, 2),

t ∈ [0, 1], (14)

where
⎧
⎨

⎩

f1(t, x, y, z) = ct2

1+|x|+|y|+|z| (e
–7 + 1

et+5 )(xt2 + z),

f2(t, x, y, z) = ct2

et+5(1+|x|+|y|+|z|) (ty + z);
t ∈ (0, 1],

and c > 0. Hypothesis (H01) is satisfied with

p1(t) =
(

e–7 +
1

et+5

)

ct4, d1(t) = 0,

l1(t) =
(

e–7 +
1

et+5

)

ct2, p2(t) = 0, d2 =
ct3

et+5 , l2(t) =
ct2

et+5 .

Also, with a good choice of the constant c, the matrix

M :=

⎛

⎝


1p∗
1

1–l∗1
0

0 
2d∗
2

1–l∗2

⎞

⎠
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converges to 0. Hence, Theorem 4.8 implies that system (14) has a unique solution defined
on [0, 1].

6 Conclusion
We have provided sufficient conditions for the existence, uniqueness, and Ulam stability
of the solutions of two classes of coupled implicit Caputo fractional q-difference systems
with initial conditions. Suitable fixed point theorems have been used. As illustration, we
have presented two examples.
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