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Abstract
In this paper, we prove the existence of a critical traveling wave solution for a delayed
diffusive SIR epidemic model with saturated incidence. Moreover, we establish the
nonexistence of traveling wave solutions with nonpositive wave speed for this model.
Our results solve some open problems left in the recent paper (Z. Xu in Nonlinear
Anal. 111:66–81, 2014).
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1 Introduction
In the past few decades, more research has focused on spatial propagation of communica-
ble diseases in mathematical epidemiology and more reaction-diffusion SIR models have
been proposed to describe the transmission of communicable diseases [1, 4, 6–9, 13, 19–
26, 29–31]. For most epidemic diseases models, the traveling wave solutions can describe
the phase transmission from a disease-free state to an infective state. The existence and
non-existence of the traveling wave solutions can predict whether or not the epidemic
disease transmits in the population and how fast it spreads geographically [2, 3, 10–14,
16–18, 25]. Recently, Xu [26] considered the following delayed diffusive SIR model:

⎧
⎪⎪⎨

⎪⎪⎩

∂
∂t S(t, x) = d1

∂2S(t,x)
∂x2 – βS(t,x)I(t–τ ,x)

1+αI(t–τ ,x) ,
∂
∂t I(t, x) = d2

∂2I(t,x)
∂x2 + βS(t,x)I(t–τ ,x)

1+αI(t–τ ,x) – γ I(t, x),
∂
∂t R(t, x) = d3

∂2R(t,x)
∂x2 + γ I(t, x),

(1.1)

where S(t, x), I(t, x), and R(t, x) denote the densities of the susceptible, infected, and re-
covered individuals at time t and location x, respectively. The constants di > 0 (i = 1, 2, 3)
are the diffusion rates, τ > 0 is the incubation period, β > 0 is the transmission coefficient,
and γ > 0 represents the recovery rate. The nonlinear incidence βSI

1+αI (α > 0) is called a
saturated incidence [5, 15, 30]. Since the third equation in (1.1) is decoupled with the
first two, the author studied the subsystem of (1.1) for S and I . In [26] he proved that if
R0 = βS0/γ > 1 and c > c∗ (c∗ is the critical wave speed), then the subsystem of (1.1) admits
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a traveling wave solution (S(x + ct), I(x + ct)) satisfying the wave system

⎧
⎪⎪⎨

⎪⎪⎩

d1S′′(ξ ) – cS′(ξ ) – βS(ξ )I(ξ–cτ )
1+αI(ξ–cτ ) = 0,

d2I ′′(ξ ) – cI ′(ξ ) + βS(ξ )I(ξ–cτ )
1+αI(ξ–cτ ) – γ I(ξ ) = 0,

S(–∞) = S0, S(∞) ∈ [0, S0), I(±∞) = 0,

(1.2)

where ξ = x + ct is the moving coordinate, c ∈ R is the wave speed, and S0 > 0 is a given
constant. On the other hand, he showed that if R0 < 1 and c ≥ 0 or R0 > 1 and c ∈ (0, c∗),
then the subsystem of (1.1) has no nontrivial and nonnegative traveling wave solutions.

Observing his results in [26], one can find that there exist some open problems listed as
follows:

(P1) Does the traveling wave solution of (1.1) exist if (i) R0 > 1 and c = c∗; (ii) R0 = 1
and c ∈R; (iii) R0 > 1 and c ≤ 0?

(P2) How does the R-component in (1.1) change?
As was discussed in [19], traveling wave solutions with the critical speed play an im-

portant role in the research of epidemic spread. However, it is challenging to investigate
the existence of critical traveling wave solutions. There has been some work on the exis-
tence of critical traveling wave solutions for diffusive epidemic systems [2, 7, 14, 19, 23,
25, 27, 28, 30]. In this paper, we solve problems (P1) and (P2). For our purpose, we need
the following lemma which is established in Lemma 3.1 of [26].

Lemma 1.1 Assume that R0 = βS0/γ > 1, and let

�(λ, c) := d2λ
2 – cλ – γ + βS0e–λcτ . (1.3)

Then there exist c∗ > 0 and λ∗ > 0 such that

�
(
λ∗, c∗) = d2

(
λ∗)2 – c∗λ∗ – γ + βS0e–λ∗c∗τ = 0 (1.4)

and

∂�(λ, c)
∂λ

∣
∣
∣
∣
(λ∗ ,c∗)

= 2d2λ
∗ – c∗ – βS0c∗τe–λ∗c∗τ = 0. (1.5)

Proof Due to R0 > 1, for every c > 0, at λ = 0, it is obvious to get that

�(0, c) = βS0 – γ > 0

∂�(λ, c)
∂λ

∣
∣
∣
∣
λ=0

= 2d2λ – c – βS0cτe–λcτ |λ=0 < 0,

∂2�(λ, c)
∂λ2

∣
∣
∣
∣
λ=0

= 2d2 + βS0(cτ )2e–λcτ |λ=0 > 0,

�(+∞, c) = +∞.
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For every λ > 0, we can get that

�(λ, 0) = d2λ
2 – γ + βS0 > 0,

∂�(λ, c)
∂c

= –λ – λβS0λτe–λcτ < 0, c > 0,

�(λ, +∞) = –∞.

Making full use of the above computations and the rough graphs of �(λ, c), we obtain the
desired results of this lemma. �

Now, we state our strategies and organization as follows. In Sect. 2, we state our results
and some remarks. In Sect. 3, we construct a pair of upper and lower solutions of the
wave system and apply Schauder’s fixed point theorem to derive the existence of a critical
traveling wave solution for (1.1). In addition, employing the subtle analysis and a limiting
approach, we obtain the asymptotic boundary conditions of the traveling wave solution
and its other properties. In Sect. 4, by contradictory arguments, we establish the non-
existence of the traveling wave solutions for the cases R0 = 1 and c ∈ R or R0 > 1 and
c ≤ 0. In Sect. 5, we make a brief conclusion.

2 Main results
Now we introduce the definition concerning critical traveling wave solutions of (1.1).

Definition 1 A critical traveling solution of (1.1) is a special solution in the form of
(S(ξ ), I(ξ ), R(ξ )) = (S(x + c∗t), I(x + c∗t), R(x + c∗t)), where ξ := x + c∗t and c∗ is the crit-
ical wave speed (see Lemma 1.1). Meanwhile, (S(ξ ), I(ξ ), R(ξ )) ∈ C2(R,R3) is the wave
profile that propagates in the one-dimension spatial domain at the constant critical wave
speed and connects the initial disease-free equilibrium (S(–∞), I(–∞), R(–∞)) to the final
disease-free equilibrium (S(∞), I(∞), R(∞)).

Next, we mainly consider the following critical wave system:

⎧
⎪⎪⎨

⎪⎪⎩

d1S′′(ξ ) – c∗S′(ξ ) – βS(ξ )I(ξ–c∗τ )
1+αI(ξ–c∗τ ) = 0,

d2I ′′(ξ ) – c∗I ′(ξ ) + βS(ξ )I(ξ–c∗τ )
1+αI(ξ–c∗τ ) – γ I(ξ ) = 0,

d3R′′(ξ ) – c∗R′(ξ ) + γ I(ξ ) = 0.

(2.1)

For all ξ ∈ R, we will show the existence and non-existence of the critical traveling wave
solution (S(ξ ), I(ξ ), R(ξ )) of (1.1) satisfying the asymptotic boundary conditions

(S, I, R)(–∞) = (S0, 0, 0), (S, I, R)(∞) = (ε0, 0, S0 – ε0), (2.2)

where ε0 is some constant and 0 ≤ ε0 < S0. Now we state our results.

Theorem 2.1 If R0 > 1 and c = c∗, then system (1.1) admits a critical traveling wave solu-
tion (S(ξ ), I(ξ ), R(ξ )) satisfying (2.2). Moreover,

(1) S(ξ ) > 0, I(ξ ) > 0, and R(ξ ) > 0 on R;
(2) S(–∞) = S0, I(–∞) = 0, R(–∞) = 0, and I(ξ ) = O(–ξeλ∗ξ ) as ξ → –∞;
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(3) S(ξ ) is strictly decreasing and R(ξ ) is strictly increasing on R; S(∞) = ε0 < S0,
I(∞) = 0 and R(∞) = S0 – ε0; S′(ξ ), I ′(ξ ), R′(ξ ), S′′(ξ ), I ′′(ξ ), R′′(ξ ) → 0 as ξ → ±∞;
γ

∫

R
I(ξ ) dξ = β

∫

R

S(ξ )I(ξ–c∗τ )
1+αI(ξ–c∗τ ) dξ = c∗(S0 – ε0);

(4) S(ξ ) < S0, I(ξ ) < 1
α

( βS0
γ

– 1), and R(ξ ) < (S0 – ε0) on R.

Theorem 2.2 Assume that R0 = 1 and c ∈R or R0 > 1 and c ≤ 0, then system (1.1) admits
no positive traveling wave solutions (S(ξ ), I(ξ ), R(ξ )) satisfying (2.2).

Remark 1 It is necessary to point out that in Theorems 2.1 and 2.2 we have solved open
problems (P1) and (P2). Our method adopted here can be used to improve the correspond-
ing results for super-critical traveling wave solutions in [26].

Remark 2 In order to address the change of the number for R-component in (1.1), we study
the three equations in (1) together, please refer to our construction of upper-lower solu-
tions. In Theorem 2.1, we proved the existence of the traveling wave solutions, meanwhile
we obtained a lot of nice properties of the traveling wave solutions for (1.1).

3 Proof of Theorem 2.1
3.1 Upper and lower solutions
First, we give the definition of upper and lower solutions of (2.1).

Definition 2 The pair of continuous functions (S̄(ξ ), Ī(ξ ), R̄(ξ )) and (S(ξ ), I(ξ ), R(ξ )) is
called a pair of upper and lower solutions for (2.1) if they satisfy

d1S̄′′(ξ ) – c∗S̄′(ξ ) –
βS̄(ξ )I(ξ – c∗τ )
1 + αI(ξ – c∗τ )

≤ 0, (3.1)

d2 Ī ′′(ξ ) – c∗ Ī ′(ξ ) +
βS̄(ξ )Ī(ξ – c∗τ )
1 + αĪ(ξ – c∗τ )

– γ Ī(ξ ) ≤ 0, (3.2)

d3R̄′′(ξ ) – c∗R̄′(ξ ) + γ Ī(ξ ) ≤ 0, (3.3)

d1S′′(ξ ) – c∗S′(ξ ) –
βS(ξ )Ī(ξ – c∗τ )
1 + αĪ(ξ – c∗τ )

≥ 0, (3.4)

d2I ′′(ξ ) – c∗I ′(ξ ) +
βS(ξ )I(ξ – c∗τ )
1 + αI(ξ – c∗τ )

– γ I(ξ ) ≥ 0, (3.5)

d3R′′(ξ ) – c∗R′(ξ ) + γ I(ξ ) ≥ 0 (3.6)

except for finitely many points of ξ on R.

For ξ ∈R, define the following nonnegative continuous functions:

S̄(ξ ) := S0,

S(ξ ) :=

⎧
⎨

⎩

S0(1 – σ –1
2 eσ2ξ ), ξ < ξ2,

0, ξ ≥ ξ2,

Ī(ξ ) :=

⎧
⎨

⎩

–L1ξeλ∗ξ , ξ < ξ1,
1
α

( βS0
γ

– 1), ξ ≥ ξ1,
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I(ξ ) :=

⎧
⎨

⎩

–L1ξeλ∗ξ – L2(–ξ ) 1
2 eλ∗ξ , ξ < ξ3,

0, ξ ≥ ξ3,

R̄(ξ ) := L3eσ1ξ , R(ξ ) := 0,

where λ∗ is defined in Lemma 1.1,

ξ1 = –
1
λ∗ , ξ2 =

lnσ2

σ2
, ξ3 = –

L2
2

L2
1

, L1 =
eλ∗

α

(
βS0

γ
– 1

)

,

and the constants σ1, σ2, L2, and L3 ∈R
+ are to be determined later. In the next lemma, we

will prove that (S̄(ξ ), Ī(ξ ), R̄(ξ )) and (S(ξ ), I(ξ ), R(ξ )) are a pair of upper and lower solutions
of (2.1).

Lemma 3.1 The function S̄(ξ ) satisfies the inequality

d1S̄′′(ξ ) – c∗S̄′(ξ ) –
βS̄(ξ )I(ξ – c∗τ )
1 + αI(ξ – c∗τ )

≤ 0

and the function R(ξ ) satisfies the inequality

d3R′′(ξ ) – c∗R′(ξ ) + γ I(ξ ) ≥ 0

for all ξ ∈R.

Proof By the definitions of S̄(ξ ), R(ξ ), and I(ξ ) on R, one can get

d1S̄′′(ξ ) – c∗S̄′(ξ ) –
βS̄(ξ )I(ξ – c∗τ )
1 + αI(ξ – c∗τ )

= –
βS0I(ξ – c∗τ )

1 + αI(ξ – c∗τ )
≤ 0 (3.7)

and

d3R′′(ξ ) – c∗R′(ξ ) + γ I(ξ ) = γ I(ξ ) ≥ 0, (3.8)

which completes the proof. �

Lemma 3.2 The function Ī(ξ ) satisfies the inequality

d2 Ī ′′(ξ ) – c∗ Ī ′(ξ ) +
βS̄(ξ )Ī(ξ – c∗τ )
1 + αĪ(ξ – c∗τ )

– γ Ī(ξ ) ≤ 0

for all ξ 	= ξ1.

Proof When ξ < ξ1, Ī(ξ ) = –L1ξeλ∗ξ , then it follows that

d2 Ī ′′(ξ ) – c∗ Ī ′(ξ ) +
βS̄(ξ )Ī(ξ – c∗τ )
1 + αĪ(ξ – c∗τ )

– γ Ī(ξ )

≤ d2 Ī ′′(ξ ) – c∗ Ī ′(ξ ) + βS0Ī
(
ξ – c∗τ

)
– γ Ī(ξ )

= –L1eλ∗ξ

[

�
(
λ∗, c∗) +

∂�

∂λ

(
λ∗, c∗)

]

= 0, ξ < ξ1.
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When ξ > ξ1, Ī(ξ – c∗τ ) < Ī(ξ ) = 1
α

( βS0
γ

– 1), we have that

d2 Ī ′′(ξ ) – c∗ Ī ′(ξ ) +
βS̄(ξ )Ī(ξ – c∗τ )
1 + αĪ(ξ – c∗τ )

– γ Ī(ξ )

=
βS̄(ξ )Ī(ξ – c∗τ )
1 + αĪ(ξ – c∗τ )

– γ Ī(ξ )

≤ βS0 Ī(ξ )
1 + αĪ(ξ )

– γ Ī(ξ ) = 0.

This is the end of the proof. �

Lemma 3.3 The function R̄(ξ ) satisfies the inequality

d3R̄′′(ξ ) – c∗R̄′(ξ ) + γ Ī(ξ ) ≤ 0

for all ξ ∈R.

Proof Choose a sufficiently large L3 > 0 and a sufficiently small σ1 ∈ (0, min{λ∗, c∗/d3})
such that

d3σ
2
1 – c∗σ1 – γ L1L3

–1ξe(λ∗–σ1)ξ < 0, ξ < ξ1 (3.9)

and

d3σ
2
1 – c∗σ1 +

γ

αL3

(
βS0

γ
– 1

)

e–σ1ξ < 0, ξ ≥ ξ1. (3.10)

When ξ < ξ1, I(ξ ) = –L1ξeλ∗ξ . Then, by using (3.9), we obtain that

d3R̄′′(ξ ) – c∗R̄′(ξ ) + γ Ī(ξ )

= d3σ1
2L3eσ1ξ – c∗L3σ1eσ1ξ + γ (–L1)ξeλ∗ξ

= L3eσ1ξ
[
d3σ1

2 – c∗σ1 – γ L1L3
–1ξe(λ∗–σ1)ξ ]

≤ 0, ξ < ξ1.

When ξ ≥ ξ1, Ī(ξ ) = 1
α

( βS0
γ

– 1). Using (3.10), we get that

d3R̄′′(ξ ) – c∗R̄′(ξ ) + γ Ī(ξ )

= d3σ1
2L3eσ1ξ – c∗L3σ1eσ1ξ +

γ

α

(
βS0

γ
– 1

)

= L3eσ1ξ

[

d3σ1
2 – c∗σ1 +

γ

αL3

(
βS0

γ
– 1

)

e–σ1ξ

]

≤ 0, ξ ≥ ξ1.

The proof of this lemma is finished. �
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Lemma 3.4 The function S(ξ ) satisfies the inequality

d1S′′(ξ ) – c∗S′(ξ ) –
βS(ξ )Ī(ξ – c∗τ )
1 + αĪ(ξ – c∗τ )

≥ 0

for all ξ 	= ξ2.

Proof Select σ2 to be small enough such that σ2 ∈ (0, min{λ∗, c∗/d1}), ξ2 < ξ1, and

–d1σ2 + c∗ + βL1
(
ξ – c∗τ

)(
1 – σ2

–1eσ2ξ
)
e(λ∗–σ2)ξ–λ∗c∗τ ≥ 0, ξ < ξ2. (3.11)

If ξ < ξ2, then S(ξ ) = S0(1 – σ –1
2 eσ2ξ ) and Ī(ξ ) = –L1ξeλ∗ξ . Utilizing (3.11), we deduce that

d1S′′(ξ ) – c∗S′(ξ ) –
βS(ξ )Ī(ξ – c∗τ )
1 + αĪ(ξ – c∗τ )

≥ d1S′′(ξ ) – c∗S′(ξ ) – βS(ξ )Ī
(
ξ – c∗τ

)

= –d1S0σ2eσ2ξ + c∗S0eσ2ξ + L1βS0
(
1 – σ –1

2 eσ2ξ
)(

ξ – c∗τ
)
eλ∗(ξ–c∗τ )

= S0eσ2ξ
[
–d1σ2 + c∗ + βL1

(
ξ – c∗τ

)(
1 – σ2

–1eσ2ξ
)
e(λ∗–σ2)ξ–λ∗c∗τ

]

≥ 0, ξ < ξ2.

If ξ > ξ2, then S(ξ ) = 0 and

d1S′′(ξ ) – c∗S′(ξ ) –
βS(ξ )Ī(ξ – c∗τ )
1 + αĪ(ξ – c∗τ )

= 0

holds naturally. �

Lemma 3.5 The function I(ξ ) satisfies the inequality

d2I ′′(ξ ) – c∗I ′(ξ ) +
βS(ξ )I(ξ – c∗τ )
1 + αI(ξ – c∗τ )

– γ I(ξ ) ≥ 0

for all ξ 	= ξ3.

Proof Choosing large enough L2 > 0 such that ξ3 < min{ξ2, –c∗τ } and recalling ξ2 < ξ1, then
for ξ < ξ3 we have that

S0
(
1 – σ2

–1eσ2ξ
)

< S0, (3.12)

I(ξ ) = I(ξ ) – L2(–ξ )
1
2 eλ∗ξ , (3.13)

1 + c∗τξ–1 > 0, (3.14)

and

1
16

L2
(
c∗τ

)2 – σ –1
2 L1(–ξ )

5
2 eσ2ξ – αL2

1(–ξ )
7
2 eλ∗(ξ–c∗τ ) ≥ 0. (3.15)
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From (3.13), for ξ < ξ3, we can get that

d2I ′′(ξ ) = d2I ′′(ξ ) + d2L2eλ∗ξ

[

λ∗(–ξ )– 1
2 –

(
λ∗)2(–ξ )

1
2 +

1
4

(–ξ )– 3
2

]

≥ d2I ′′(ξ ) + d2L2eλ∗ξ
[
λ∗(–ξ )– 1

2 –
(
λ∗)2(–ξ )

1
2
]

(3.16)

and

–c∗I ′(ξ ) – γ I(ξ ) = –c∗I ′(ξ ) – c∗L2

[
1
2

(–ξ )– 1
2 – λ∗(–ξ )

1
2

]

eλ∗ξ

– γ I(ξ ) + γ L2(–ξ )
1
2 eλ∗ξ . (3.17)

Using the inequality x
1+αx ≥ x(1 – αx) for x ≥ 0 and α > 0, we obtain from (3.12) that

βS(ξ )I(ξ – c∗τ )
1 + αI(ξ – c∗τ )

≥ βS(ξ )I
(
ξ – c∗τ

)[
1 – αI

(
ξ – c∗τ

)]

≥ βS(ξ )I
(
ξ – c∗τ

)
– αβS(ξ )

(
Ī
(
ξ – c∗τ

))2

≥ βS0
(
1 – σ –1

2 eσ2ξ
)[

Ī
(
ξ – c∗τ

)
– L2

(
–ξ + c∗τ

) 1
2 eλ∗(ξ–c∗τ )]

– αβS0L2
1ξ

2e2λ∗(ξ–c∗τ )

≥ βS0
[
Ī
(
ξ – c∗τ

)
– L2

(
–ξ + c∗τ

) 1
2 eλ∗(ξ–c∗τ )

+ σ –1
2 L1

(
ξ – c∗τ

)
eσ2ξ+λ∗(ξ–c∗τ ) – αL2

1ξ
2e2λ∗(ξ–c∗τ )] (3.18)

for ξ < ξ3. By Taylor’s formula, for ξ < ξ3, we have that

(
–ξ + c∗τ

) 1
2 ≤ (–ξ )

1
2 +

1
2

(–ξ )– 1
2 c∗τ –

1
8

(–ξ )– 3
2
(
c∗τ

)2 +
1

16
(–ξ )– 5

2
(
c∗τ

)3. (3.19)

From (3.12)–(3.19), (1.4), and (1.5), we deduce that

d2I ′′(ξ ) – c∗I ′(ξ ) +
βS(ξ )I(ξ – c∗τ )
1 + αI(ξ – c∗τ )

– γ I(ξ )

≥ d2I ′′(ξ ) + d2L2eλ∗ξ
[
λ∗(–ξ )– 1

2 –
(
λ∗)2(–ξ )

1
2
]

– c∗I ′(ξ ) – c∗L2

[
1
2

(–ξ )– 1
2 – λ∗(–ξ )

1
2

]

eλ∗ξ

– γ I(ξ ) + γ L2(–ξ )
1
2 eλ∗ξ + βS0

[
Ī
(
ξ – c∗τ

)
– L2

(
–ξ + c∗τ

) 1
2 eλ∗(ξ–c∗τ )

+ σ –1
2 L1

(
ξ – c∗τ

)
eσ2ξ+λ∗(ξ–c∗τ ) – αL2

1ξ
2e2λ∗(ξ–c∗τ )]

≥ –L1eλ∗ξ
[
ξ
(
d2

(
λ∗)2 – c∗λ∗ – γ + βS0e–λ∗c∗τ

)
+

(
2d2λ

∗ – c∗ – βS0c∗τe–λ∗c∗τ
)]

+ L1βS0
(
ξ – c∗τ

)
eλ∗(ξ–c∗τ ) – L2eλ∗ξ (–ξ )

1
2
[
d2

(
λ∗)2 – c∗λ∗ – γ + βS0e–λ∗c∗τ

]

+ L2βS0(–ξ )
1
2 eλ∗(ξ–c∗τ ) +

1
2

L2eλ∗ξ (–ξ )– 1
2
[
2d2λ

∗ – c∗ – βS0c∗τe–λ∗c∗τ
]
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+
1
2

L2βS0c∗τ (–ξ )– 1
2 eλ∗(ξ–c∗τ ) + βS0

[
Ī
(
ξ – c∗τ

)
– L2

(
–ξ + c∗τ

) 1
2 eλ∗(ξ–c∗τ )

+ σ –1
2 L1

(
ξ – c∗τ

)
eσ2ξ+λ∗(ξ–c∗τ ) – αL2

1ξ
2e2λ∗(ξ–c∗τ )]

≥ –L1eλ∗ξ

[

�
(
λ∗, c∗) +

∂�

∂λ

(
λ∗, c∗)

]

– L2eλ∗ξ (–ξ )
1
2
[
�

(
λ∗, c∗)]

+
1
2

L2eλ∗ξ (–ξ )
1
2

[
∂�

∂λ

(
λ∗, c∗)

]

+ βS0

{

L2eλ∗(ξ–c∗τ )
[

1
8

(–ξ )– 3
2
(
c∗τ

)2 –
1

16
(–ξ )– 5

2
(
c∗τ

)3
]

+ σ –1
2 L1ξeσ2ξ+λ∗(ξ–c∗τ ) – αL2

1ξ
2e2λ∗(ξ–c∗τ )

}

= βS0(–ξ )– 3
2 eλ∗(ξ–c∗τ )

[
1

16
L2

(
c∗τ

)2 – σ –1
2 L1(–ξ )

5
2 eσ2ξ – αL2

1(–ξ )
7
2 eλ∗(ξ–c∗τ )

]

+
1

16
βS0L2

(
c∗τ

)2(–ξ )– 3
2 eλ∗(ξ–c∗τ )(1 + c∗τξ–1)

≥ 0.

If ξ > ξ3, then I(ξ ) = 0, and the inequality

d2I ′′(ξ ) – c∗I ′(ξ ) +
βS(ξ )I(ξ – c∗τ )
1 + αI(ξ – c∗τ )

– γ I(ξ ) =
βS(ξ )I(ξ – c∗τ )
1 + αI(ξ – c∗τ )

≥ 0

holds trivially. The proof of this lemma is finished. �

3.2 Application of Schauder’s fixed point theorem
Introduce a functional space

Bμ

(
R,R3) :=

{
ϕ(ξ ) =

(
ϕ1(ξ ),ϕ2(ξ ),ϕ3(ξ )

) ∈ C
(
R,R3) : sup

ξ∈R

∣
∣ϕi(ξ )

∣
∣e–μ|ξ | < ∞, i = 1, 2, 3

}

equipped with the norm |ϕ|μ := max{supξ∈R |ϕi(ξ )|e–μ|ξ |, i = 1, 2, 3}, where μ ∈ (σ1,μ0) is a
constant and μ0 is also a constant that will be specified later. Define a cone by

S :=

⎧
⎪⎨

⎪⎩

(
S(ξ ), I(ξ ), R(ξ )

) ∈ Bμ

(
R,R3)

∣
∣
∣
∣
∣
∣
∣

S(ξ ) ≤ S(ξ ) ≤ S̄(ξ ),
I(ξ ) ≤ I(ξ ) ≤ Ī(ξ ),
R(ξ ) ≤ R(ξ ) ≤ R̄(ξ )

⎫
⎪⎬

⎪⎭
.

It is easy to see that S is nonempty, bounded, closed, and convex in Bμ(R,R3). Choosing
a constant m to be satisfied m > max{α–1β ,β} and noting that β > γ , one can get that:

H1[S, I, R](ξ ) := mS(ξ ) –
βS(ξ )I(ξ – c∗τ )
1 + αI(ξ – c∗τ )

is increasing with respect to S and decreasing with respect to I ;

H2[S, I, R](ξ ) :=
βS(ξ )I(ξ – c∗τ )
1 + αI(ξ – c∗τ )

+ (m – γ )I(z)
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is increasing in both S and I ;

H3[S, I, R](ξ ) := mR(ξ ) + γ I(ξ )

is increasing in both I and R. For any (S, I, R) ∈ S , define a nonlinear operator M :=
(M1,M2,M3) on the space Bμ(R,R3) by

Mi[S, I, R](ξ ) :=
1
Λi

{∫ ξ

–∞
eri1(ξ–η)Hi[S, I, R](η) dη +

∫ ∞

ξ

eri2(ξ–η)Hi[S, I, R](η) dη

}

,

where

ri1 =
c∗ –

√
(c∗)2 + 4mdi

2di
, ri2 =

c∗ +
√

(c∗)2 + 4mdi

2di
, Λi = di(ri2 – ri1)

for i = 1, 2, 3. Note that any fixed point of M is a solution of (2.1).

Lemma 3.6 M(S) ⊂ S .

Proof Clearly, (M1[S, I, R](ξ ),M2[S, I, R](ξ ),M3[S, I, R](ξ )) ∈ Bμ(R,R3) for any
(S, I, R) ∈ S . Then, by the monotonicity of Hi (i = 1, 2, 3), we need to prove that

S(ξ ) ≤M1[S, Ī, R](ξ ) ≤M1[S, I, R](ξ ) ≤M1[S̄, I, R](ξ ) ≤ S̄(ξ ), (3.20)

I(ξ ) ≤M2[S, I, R](ξ ) ≤M2[S, I, R](ξ ) ≤M2[S̄, Ī, R](ξ ) ≤ Ī(ξ ), (3.21)

R(ξ ) ≤M3[S, I, R](ξ ) ≤M3[S, I, R](ξ ) ≤M3[S, Ī, R̄](ξ ) ≤ R̄(ξ ) (3.22)

for any (S, I, R) ∈ S .
Proof of (3.20). Using (3.1) and S̄(ξ ) = S0, we derive that

M1[S̄, I, R](ξ )

=
1

Λ1

{∫ ξ

–∞
er11(ξ–η)H1[S̄, I, R](η) dη +

∫ ∞

ξ

er12(ξ–η)H1[S̄, I, R](η) dη

}

≤ 1
Λ1

{∫ ξ

–∞
er11(ξ–η)[mS̄(η) + c∗S̄′(η) – d1S̄′′(η)

]
dη

+
∫ ∞

ξ

er12(ξ–η)[mS̄(η) + c∗S̄′(η) – d1S̄′′(η)
]

dη

}

=
mS0

Λ1

[∫ ξ

–∞
er11(ξ–η) dη +

∫ ∞

ξ

er12(ξ–η) dη

]

= S0, ξ ∈R.

It follows from (3.4) that

M1[S, Ī, R](ξ )

=
1

Λ1

{∫ ξ

–∞
er11(ξ–η)H1[S, Ī, R](η) dη +

∫ ∞

ξ

er12(ξ–η)H1[S, Ī, R](η) dη

}
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≥ 1
Λ1

{∫ ξ

–∞
er11(ξ–η)[mS(η) + c∗S′(η) – d1S′′(η)

]
dη

+
∫ ∞

ξ

er12(ξ–η)[mS(η) + c∗S′(η) – d1S –′′ (η)
]

dη

}

= S(ξ ) +
er11(ξ–ξ2)[S′(ξ2 + 0) – S′(ξ2 – 0)]

r12 – r11

≥ S(ξ ), ξ 	= ξ2.

By the continuity of both M1[S, Ī, R](ξ ) and S(ξ ) on R, we get that

M1[S, Ī, R](ξ ) ≥ S(ξ ), ξ ∈R.

Proof of (3.21). From (3.2) and (3.5), we get that

M2[S̄, Ī, R](ξ )

=
1

Λ2

{∫ ξ

–∞
er21(ξ–η)H2[S̄, Ī, R](η) dη +

∫ ∞

ξ

er22(ξ–η)H2[S̄, Ī, R](η) dη

}

≤ 1
Λ2

{∫ ξ

–∞
er21(ξ–η)[mĪ(η) + c∗ Ī ′(η) – d2 Ī ′′(η)

]
dη

+
∫ ∞

ξ

er22(ξ–η)[mĪ(η) + c∗ Ī ′(η) – d2 Ī ′′(η)
]

dη

}

= Ī(ξ ) +
er21(ξ–ξ1)[Ī ′(ξ1 + 0) – Ī ′(ξ1 – 0)]

r22 – r21

≤ Ī(ξ ), ξ 	= ξ1,

and

M2[S, I, R](ξ )

=
1

Λ2

{∫ ξ

–∞
er21(ξ–η)H2[S, I, R](η) dη +

∫ ∞

ξ

er22(ξ–η)H2[S, I, R](η) dη

}

≥ 1
Λ2

{∫ ξ

–∞
er21(ξ–η)[mI(η) + c∗I ′(η) – d2I ′′(η)

]
dη

+
∫ ξ3

ξ

er22(ξ–η)[mI(η) + c∗I ′(η) – d2I ′′(η)
]

dη

}

= Ī(ξ ) +
er21(ξ–ξ3)[Ī ′(ξ3 + 0) – Ī ′(ξ3 – 0)]

r22 – r21

≥ I(ξ ), ξ 	= ξ3.

Using the continuity of both M2[S̄, Ī, R](ξ ), M2[S, I, R](ξ ), Ī(ξ ) and I(ξ ) on R, we obtain

M2[S̄, Ī, R](ξ ) ≤ Ī(ξ ), M2[S, I, R](ξ ) ≥ I(ξ ), ξ ∈R.
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Proof of (3.22). From (3.3), (3.6), and the expressions of R̄(ξ ) and R(ξ ), we deduce that

M3[S, Ī, R̄](ξ )

=
1

Λ3

{∫ ξ

–∞
er31(ξ–η)H3[S, Ī, R̄](η) dη +

∫ ∞

ξ

er32(ξ–η)H3[S, Ī, R̄](η) dη

}

≤ 1
Λ3

{∫ ξ

–∞
er31(ξ–η)[mR̄(η) + c∗R̄′(η) – d3R̄′′(η)

]
dη

+
∫ ∞

ξ

er32(ξ–η)[mR̄(η) + c∗R̄′(η) – d3R̄′′(η)
]

dη

}

= R̄(ξ ), ξ ∈R,

and

M3[S, I, R](ξ )

=
1

Λ3

{∫ ξ

–∞
er31(ξ–η)H3[S, I, R](η) dη +

∫ ∞

ξ

er32(ξ–η)H3[S, I, R](η) dη

}

≥ 1
Λ3

{∫ ξ

–∞
er31(ξ–η)[mR(η) + c∗R′(η) – d3R′′(η)

]
dη

+
∫ ∞

ξ

er32(ξ–η)[mR(η) + c∗R′(η) – d3R′′(η)
]

dη

}

= R(ξ ), ξ ∈R.

The proof of this lemma is finished. �

Lemma 3.7 The operator M := (M1,M2,M3) is completely continuous with respect to
the norm | · |μ in Bμ(R,R3).

Proof First, we show that M is continuous with respect to the norm | · |μ in Bμ(R,R3).
For any Ψ1 = (S1, I1, R1) ∈ S and Ψ2 = (S2, I2, R2) ∈ S , we derive that

∣
∣H1(S1, I1, R1)(ξ ) – H1(S2, I2, R2)(ξ )

∣
∣e–μ|ξ |

≤
(

m +
β

α

)
∣
∣S1(ξ ) – S2(ξ )

∣
∣e–μ|ξ | + βS0

∣
∣I1

(
ξ – c∗τ

)
– I2

(
ξ – c∗τ

)∣
∣e–μ|ξ |

≤
(

m +
β

α

)

|S1 – S2|μ + βS0eμc∗τ |I1 – I2|μ

≤ l|Ψ1 – Ψ2|μ,
∣
∣H2(S1, I1, R1)(ξ ) – H2(S2, I2, R2)(ξ )

∣
∣e–μ|ξ |

≤ β

α
|S1 – S2|μ +

(
m + βS0eμc∗τ – γ

)|I1 – I2|μ
≤ l|Ψ1 – Ψ2|μ,
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and

∣
∣H3(S1, I1, R1)(ξ ) – H3(S2, I2, R2)(ξ )

∣
∣e–μ|ξ |

≤ m|R1 – R2|μ + γ |I1 – I2|μ
≤ l|Ψ1 – Ψ2|μ,

where l = m + β

α
+ γ + βS0eμc∗τ . Then, choosing μ ∈ (σ2, –ri1), we have that

∣
∣Mi[S1, I1, R1](ξ ) – Mi[S2, I2, R2](ξ )

∣
∣e–μ|ξ |

≤ 1
Λi

∣
∣Hi(S1, I1, R1) – Hi(S2, I2, R2)

∣
∣
μ

[∫ ξ

–∞
eri1(ξ–η)eμ|η|–μ|ξ | dη

+
∫ ∞

ξ

eri2(ξ–η)eμ|η|–μ|ξ | dη

]

≤ l
Λi

|Ψ1 – Ψ2|μ
[∫ ξ

–∞
eri1(ξ–η)eμ|η–ξ | dη +

∫ ∞

ξ

eri2(ξ–η)eμ|η–ξ | dη

]

=
l(2μ + ri1 – ri2)

di(ri2 – ri1)(ri2 – μ)(ri1 + μ)
|Ψ1 – Ψ2|μ, i = 1, 2, 3,

which implies that M is continuous with respect to the norm | · |μ in Bμ(R,R3).
Now we turn to proving that M is compact with respect to the norm | · |μ in Bμ(R,R3).

For any (S, I, R) ∈ S , we deduce for ξ ∈ R that

∣
∣
∣
∣
dM1[S, I, R](ξ )

dξ

∣
∣
∣
∣

=
∣
∣
∣
∣

r11

Λ1

∫ ξ

–∞
er11(ξ–η)H1[S, I, R](η) dη +

r12

Λ1

∫ ∞

ξ

er12(ξ–η)H1[S, I, R](η) dη

∣
∣
∣
∣

≤ –
r11

Λ1

∫ ξ

–∞
er11(ξ–η)H1[S, I, R](η) dη +

r12

Λ1

∫ ∞

ξ

er12(ξ–η)H1[S, I, R](η) dη

≤ –
r11mS0

Λ1

∫ ξ

–∞
er11(ξ–η) dη +

r12mS0

Λ1

∫ ∞

ξ

er12(ξ–η) dη

=
2mS0

Λ1
, (3.23)

∣
∣
∣
∣
dM2[S, I, R](ξ )

dξ

∣
∣
∣
∣ =

∣
∣
∣
∣

r21

Λ2

∫ ξ

–∞
er21(ξ–η)H2[S, I, R](η) dη

+
r22

Λ2

∫ ∞

ξ

er22(ξ–η)H2[S, I, R](η) dη

∣
∣
∣
∣

≤ –
r21

Λ2

∫ ξ

–∞
er21(ξ–η)H2[S, I, R](η) dη

+
r22

Λ2

∫ ∞

ξ

er22(ξ–η)H2[S, I, R](η) dη

≤ –
r21(m + βS0 – γ )Ī

Λ2

∫ ξ

–∞
er21(ξ–η) dη
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+
r22(m + βS0 – γ )Ī

Λ2

∫ ∞

ξ

er22(ξ–η) dη

=
2(m + βS0 – γ )Ī

Λ2
, (3.24)

and
∣
∣
∣
∣
dM3[S, I, R](ξ )

dξ

∣
∣
∣
∣ =

∣
∣
∣
∣

r31

Λ3

∫ ξ

–∞
er31(ξ–η)H3[S, I, R](η) dη

+
r32

Λ3

∫ ∞

ξ

er32(ξ–η)H3[S, I, R](η) dη

∣
∣
∣
∣

≤ –
r31

Λ3

∫ ξ

–∞
er31(ξ–η)(mL3eσ1η + γ Ī

)
dη

+
r32

Λ3

∫ ∞

ξ

er32(ξ–η)(mL3eσ1η + γ Ī
)

dη

≤ mL3|2r31r32 – σ1(r31 + r32)|
Λ3|(σ1 – r31)(σ1 – r32)| eσ1ξ +

2γ Ī
Λ3

. (3.25)

It follows from Lemma 3.6 that |M1[S, I, R](ξ )| + |M2[S, I, R](ξ )| + |M3[S, I, R](ξ )| ≤ S0 +
Ī + L3eσ1ξ on R. Recall that μ > σ1. Then, for any ε > 0, there is a sufficiently large number
N > 0 such that

{∣
∣M1[S, I, R](ξ )

∣
∣ +

∣
∣M2[S, I, R](ξ )

∣
∣ +

∣
∣M3[S, I, R](ξ )

∣
∣
}

e–μ|ξ |

≤ (
S0 + Ī + L3eσ1ξ

)
e–μ|ξ |

< (S0 + Ī)e–μN + L3e(σ1–μ)N

< ε, |ξ | > N . (3.26)

Utilizing (3.23)–(3.25) and Arzerà–Ascoli theorem, we can select finite elements in M(S)
such that they are a finite ε-net of M(S)(ξ ) on [–N , N] with the supremum norm, a finite
ε-net of M(S)(ξ ) on R with the norm | · |μ (see (3.26)). Thus M is compact with respect
to the norm | · |μ in Bμ(R,R3). The proof of this lemma is completed. �

By Lemma 3.6, Lemma 3.7, and Schauder’s fixed point theorem, we deduce that the
operator M has a fixed point (S(ξ ), I(ξ ), R(ξ )) ∈ S , which is a solution of the system

⎧
⎪⎪⎨

⎪⎪⎩

d1S′′(ξ ) – c∗S′(ξ ) – βS(ξ )I(ξ–c∗τ )
1+αI(ξ–c∗τ ) = 0,

d2I ′′(ξ ) – c∗I ′(ξ ) + βS(ξ )I(ξ–c∗τ )
1+αI(ξ–c∗τ ) – γ I(ξ ) = 0,

d3R′′(ξ ) – c∗R′(ξ ) + γ I(ξ ) = 0.

(3.27)

Based on the above analysis, we have the following results.

Proposition 3.1 If R0 > 1 and c = c∗, then system (1.1) admits a traveling wave solution
(S(ξ ), I(ξ ), R(ξ )) such that

S(ξ ) ≤ S(ξ ) ≤ S̄(ξ ), I(ξ ) ≤ I(ξ ) ≤ Ī(ξ ), R(ξ ) ≤ R(ξ ) ≤ R̄(ξ ), ξ ∈ R. (3.28)
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3.3 Properties of the critical traveling wave solutions
In this section, we focus on some properties of the critical traveling wave solution of (2.1),
that is, the proof of the four properties in Theorem 2.1.

Proof (1) By contradiction, suppose that I(ξ̂ ) = 0 for some ξ̂ ∈ R. Then there are two con-
stants a, b ∈ R such that a < ξ3 ≤ b and a < ξ̂ < b, which implies that I(ξ ) attains its mini-
mum in (a, b). It follows from the second equation in (3.27) that –d2I ′′(ξ )+c∗I ′(ξ )+γ I(ξ ) ≥
0 for ξ ∈ [a, b]. By the strong maximum principle, we deduce that I(ξ ) ≡ 0 for ξ ∈ [a, b],
which contradicts the fact that I(ξ ) ≥ I–(ξ ) > 0 for ξ ∈ [a, ξ3). Thus, I(ξ ) > 0 on R. Simi-
larly, one can obtain S(ξ ) > 0 on R. Assume that R(ξ̃ ) = 0 for some ξ̃ ∈ R, then R′(ξ̃ ) = 0
and R′′(ξ̃ ) ≥ 0. We infer from the third equation in (3.28) that I(ξ̃ ) ≤ 0, which contradicts
the positiveness of I(ξ ) on R. This implies that R(ξ ) > 0 on R.

(2) From (3.28), we get

S0
(
1 – σ –1

2 eσ2ξ
) ≤ S(ξ ) ≤ S0,

[
–L1ξ – L2(–ξ )

1
2
]
eλ∗ξ ≤ I(ξ ) ≤ –L1ξeλ∗ξ ,

0 ≤ R(ξ ) ≤ L3eσ1ξ , ξ ∈R.

Then using the squeeze rule yields that

S(–∞) = S0, I(–∞) = 0, R(–∞) = 0 and I(ξ ) = O
(
–ξeλ∗ξ

)
(3.29)

as ξ → –∞.
(3) Since S(ξ ) and I(ξ ) are uniformly bounded on R, we have from the first two equations

in (3.27) that

⎧
⎨

⎩

S(ξ ) = 1
Λ1

{∫ ξ

–∞ er11(ξ–η)H1[S, I, R](η) dη +
∫ ∞
ξ

er12(ξ–η)H1[S, I, R](η) dη},
I(ξ ) = 1

Λ2
{∫ ξ

–∞ er21(ξ–η)H2[S, I, R](η) dη +
∫ ∞
ξ

er22(ξ–η)H2[S, I, R](η) dη},
(3.30)

where

H1[S, I, R](η) = mS(η) –
βS(η)I(η – c∗τ )
1 + αI(η – c∗τ )

and

H2[S, I, R](η) =
βS(η)I(η – c∗τ )
1 + αI(η – c∗τ )

+ (m – γ )I(η).

Using L’Hôpital rule in (3.30) gives

S′(±∞) = 0 and I ′(±∞) = 0. (3.31)

Integrating the first equation in (3.27) from –∞ to ξ and using (3.29) and (3.31), we have
that

β

∫ ξ

–∞
S(η)I(η – c∗τ )
1 + αI(η – c∗τ )

dη = c∗[S(ξ ) – S0
]

– d1S′(ξ ) ≤ c∗S0 – d1S′(ξ ), ξ ∈R. (3.32)
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Again, integrating the second equation in (3.27) from –∞ to ξ and utilizing (3.29), (3.31),
and (3.32), we get that

γ

∫ ξ

–∞
I(η) dη = d2I ′(ξ ) – c∗I(ξ ) + β

∫ ξ

–∞
S(η)I(η – c∗τ )
1 + αI(η – c∗τ )

dη

≤ d2I ′(ξ ) + β

∫ ξ

–∞
S(η)I(η – c∗τ )
1 + αI(η – c∗τ )

dη

≤ d2I ′(ξ ) + c∗S0 – d1S′(ξ ), ξ ∈R.

Then, by the virtue of (3.31), we further obtain
∫

R
I(ξ ) dξ < ∞, which together with the

boundedness of I ′(ξ ) on R (see (3.31)) implies that

I(∞) = 0. (3.33)

It follows from the first equation in (3.27) that

[
e– c∗

d1
ξ S′(ξ )

]′ =
β

d1
e– c∗

d1
ξ S(ξ )I(ξ – c∗τ )

1 + αI(ξ – c∗τ )
. (3.34)

Integrating (3.34) from ξ to ∞, utilizing S′(∞) = 0 and S(ξ ), I(ξ ) > 0 on R, we deduce

S′(ξ ) = –
β

d1

∫ ∞

ξ

e
c∗
d1

(ξ–η) S(η)I(η – c∗τ )
1 + αI(η – c∗τ )

dη < 0, (3.35)

which means that S(ξ ) is strictly decreasing on R. This together with S(ξ ) > 0 on R gives
that the limit S(∞) exists and S(∞) := ε0 < S0. Moreover, an integration of the first equa-
tion in (3.27) over R gives

β

∫ ∞

–∞
S(ξ )I(ξ – c∗τ )
1 + αI(ξ – c∗τ )

dξ = c∗(S0 – ε0), (3.36)

where we have used (3.29) and (3.31). Another integration of the second equation in (3.27)
over R yields

γ

∫ ∞

–∞
I(ξ ) dξ = β

∫ ∞

–∞
S(ξ )I(ξ – c∗τ )
1 + αI(ξ – c∗τ )

dξ , (3.37)

since I(±∞) = I ′(±∞) = 0. Solving the third equation in (3.27) and using R(–∞) = 0 lead
to

R(ξ ) = Ce
c∗
d3

ξ +
γ

c∗

∫ ξ

–∞
I(η) dη +

γ

c∗

∫ +∞

ξ

e
c∗
d3

(ξ–η)I(η) dη,

where C is a constant of integration. Since R(ξ ) ≤ L3eσ1ξ and σ1 < c∗/d3 (see the proof of
Lemma 3.4), we obtain

R(ξ ) =
γ

c∗

∫ ξ

–∞
I(η) dη +

γ

c∗

∫ ∞

ξ

e
c∗
d3

(ξ–η)I(η) dη. (3.38)
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We infer from (3.36)–(3.38) and L’Hôpital’s rule that

R(∞) =
γ

c∗

∫ ∞

–∞
I(ξ ) dξ = S0 – ε0. (3.39)

Differentiating (3.38) with respect to ξ and using I(ξ ) > 0 on R, we have

R′(ξ ) =
γ

d3

∫ ∞

ξ

e
c∗
d3

(ξ–η)I(η) dη > 0, (3.40)

which means that R(ξ ) is strictly increasing on R. Combining (3.40), I(±∞) = 0, and
L’Hôpital’s rule yields

R′(±∞) = 0. (3.41)

Note from (3.29), (3.31), (3.32), (3.39), and (3.41) that

S′′(±∞) = 0, I ′′(±∞) = 0, and R′′(±∞) = 0. (3.42)

(4) Since S(ξ ) is strictly decreasing and R(ξ ) is strictly increasing on R, we obtain S(ξ ) <
S0 and R(ξ ) < S0 for ξ ∈ R. Now we claim that I(ξ ) < 1

α
( βS0

γ
– 1) on R. For contradiction,

we assume that I(ξ́ ) = 1
α

( βS0
γ

– 1) for some ξ́ ∈ R, which results in I ′(ξ́ ) = 0 and I ′′(ξ́ ) ≤ 0.
By the second equation in (3.27) and S(ξ́ ) < S0, we deduce that

0 = d2I ′′(ξ́ ) – c∗I ′(ξ́ ) +
βS(ξ́ )I(ξ́ – c∗τ )
1 + αI(ξ́ – c∗τ )

– γ I(ξ́ )

≤ βS(ξ́ )I(ξ́ – c∗τ )
1 + αI(ξ́ – c∗τ )

– γ I(ξ́ )

<
βS0
α

( βS0
γ

– 1)

1 + ( βS0
γ

– 1)
–

γ

α

(
βS0

γ
– 1

)

= 0,

leading to a contradiction. Thus I(ξ ) < 1
α

( βS0
γ

– 1) on R. The proof is completed. �

4 Proof of Theorem 2.2
This proof is based on the contradictory argument. Suppose that the pair of continuous
positive functions (S(ξ ), I(ξ ), R(ξ )) (ξ ∈R) is a solution of the wave system of (1.1)

⎧
⎪⎪⎨

⎪⎪⎩

d1S′′(ξ ) – cS′(ξ ) – βS(ξ )I(ξ–cτ )
1+αI(ξ–cτ ) = 0,

d2I ′′(ξ ) – cI ′(ξ ) + βS(ξ )I(ξ–cτ )
1+αI(ξ–cτ ) – γ I(ξ ) = 0,

d3R′′(ξ ) – cR′(ξ ) + γ I(ξ ) = 0,

(4.1)

satisfying the asymptotic boundary conditions

(S, I, R)(–∞) = (S0, 0, 0), (S, I, R)(∞) = (ε, 0, S0 – ε), (4.2)

where c ∈ R is the wave speed. The proof of Theorem 2.2 is divided into two cases: the
one is R0 = 1 and c ∈ R; the other one is R0 > 1 and c ≤ 0.
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4.1 Case 1: R0 = 1 and c ∈ R

From the second equation of (4.1), we get

I(ξ ) =
β

d2(λ+ – λ–)

[∫ ξ

–∞
eλ–(ξ–η) S(η)I(η – cτ )

1 + αI(η – cτ )
dη

+
∫ ∞

ξ

eλ+(ξ–η) S(η)I(η – cτ )
1 + αI(η – cτ )

dη

]

, (4.3)

where

λ– =
c –

√
c2 + 4d2γ

2d2
and λ+ =

c +
√

c2 + 4d2γ

2d2
.

Applying L’Hôpital rule in (4.3) yields I ′(±∞) = 0. Then, integrating the second equation
in (4.1) over R and using R0 = 1, that is, βS0 = γ , we obtain

γ

∫ ∞

–∞
I(ξ ) dξ = β

∫ ∞

–∞
S(ξ )I(ξ – cτ )
1 + αI(ξ – cτ )

dξ . (4.4)

By
∫

R
I(ξ ) dξ =

∫

R
I(ξ – cτ ) dξ and supξ∈R S(ξ ) ≤ S0 and (4.4), we have

0 = γ

∫ ∞

–∞
I(ξ ) dξ – β

∫ ∞

–∞
S(ξ )I(ξ – cτ )
1 + αI(ξ – cτ )

dξ

= γ

∫ ∞

–∞
I(ξ ) dξ – β

∫ ∞

–∞
S(ξ + cτ )I(ξ )

1 + αI(ξ )
dξ

≥ β

∫ ∞

–∞

(
S0 – S(ξ + cτ )

)
I(ξ ) dξ

≥ 0,

which leads to

β

∫ ∞

–∞

(
S0 – S(ξ + cτ )

)
I(ξ ) dξ = 0. (4.5)

By a similar argument as that in (3.35) and the fact supξ∈R S(ξ ) ≤ S0, we get from (4.5) that

(
S0 – S(ξ + cτ )

)
I(ξ ) = 0, ξ ∈R, (4.6)

which together with I(ξ ) > 0 implies that

S(ξ ) = S0, ξ ∈R. (4.7)

A contradiction appears. The proof is completed.

4.2 Case 2: R0 > 1 and c ≤ 0
Due to S(–∞) = S0 and I(–∞) = 0, we have

lim
ξ→–∞

βS(ξ )
1 + αI(ξ – cτ )

= βS0.
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Then there exists a sufficiently small constant ξ ∗ < 0 such that

βS(ξ )
1 + αI(ξ – cτ )

>
βS0 + γ

2
, ξ < ξ ∗.

Thus, from the second equation in (3.27), we obtain

cI ′(ξ ) = d2I ′′(ξ ) +
βS(ξ )I(ξ – cτ )
1 + αI(ξ – cτ )

– γ I(ξ )

≥ d2I ′′(ξ ) +
βS0 + γ

2
(
I(ξ – cτ ) – I(ξ )

)
+

βS0 – γ

2
I(ξ ), ξ < ξ ∗. (4.8)

By the integrability of I(ξ ) on R, we can define

Q(ξ ) :=
∫ ξ

–∞
I(x) dx, ξ ∈R. (4.9)

Since I(ξ ) > 0 in R, one can see that Q(ξ ) is strictly increasing on R. Integrating (4.8) from
–∞ to ξ (ξ < ξ ∗) and using I(–∞) = 0 and I ′(–∞) = 0 yield that

cI(ξ ) ≥ d2I ′(ξ ) +
βS0 + γ

2
(
Q(ξ – cτ ) – Q(ξ )

)
+

βS0 – γ

2
Q(ξ ), ξ < ξ ∗. (4.10)

Integrating (4.10) from –∞ to ξ , for ξ < ξ ∗, we get that

cQ(ξ ) ≥ d2I(ξ ) +
βS0 + γ

2

∫ ξ

–∞

(
Q(x – cτ ) – Q(x)

)
dx +

βS0 – γ

2

∫ ξ

–∞
Q(x) dx. (4.11)

Noting that c ≤ 0, τ > 0, and Q(ξ ) is strictly increasing in R, we obtain from (4.11) that

0 ≥ cQ(ξ )

≥ d2I(ξ ) +
βS0 + γ

2

∫ ξ

–∞

(
Q(x – cτ ) – Q(x)

)
dx +

βS0 – γ

2

∫ ξ

–∞
Q(x) dx

> 0, ξ < ξ ∗. (4.12)

A contradiction occurs. The proof is finished.

5 Conclusion
In this paper we have solved the open problems raised in the introduction, which are dif-
ferent from those in [26]. In the proof of the existence of critical traveling waves, we con-
structed a new pair of upper and lower solutions, which was an innovation of the paper.
Then we mainly used the contradictory arguments and subtle analysis to establish the
non-existence of traveling wave solutions for the cases: (i) R0 = 1 and c ∈ R; (ii) R0 > 1
and c ≤ 0. In order to address the change of the number for R-component in (1.1), we
study the three equations together, which is helpful to describe the whole transmission
behavior of the epidemic model. In Theorem 2.1, we obtained a lot of nice properties of
the traveling wave solutions for (1.1). Our method adopted here can be used to improve
the corresponding results for super-critical traveling wave solutions in [26] and also be
helpful to the study of critical traveling wave solutions.
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