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Abstract
In the present paper, starting with the Black–Scholes equations, whose solutions are
the values of European options, we describe the exponential jump-diffusion model of
Levy process type. Here, a jump-diffusion model for a single-asset market is
considered. Under this assumption the value of a European contingency claim
satisfies a general “partial integro-differential equation” (PIDE). With a combined
compact difference (CCD) scheme for the spatial discretization, a high-order method
is proposed for solving exponential jump-diffusion models. The method is sixth-order
accurate in space and second-order accurate in time. A known analytical solution to
the model is used to evaluate the performance of the numerical scheme.

MSC: 65M06; 65M12; 47G20; 91B28

Keywords: Black–Scholes equation; Combined compact difference (CCD);
Jump-diffusion model; Option pricing

1 Introduction
The investigation of problems related to finance has been one of the major fields of re-
search and studies in recent decades, and due to its widespread applications in financial
institutions and industries, there has been a noticeable change and growth in this field.
Since the beginning of the twentieth century, a variety of option pricing models have been
introduced, among them the Black–Scholes model is the most important and popular one
[1–4]. Unfortunately, the Black–Scholes model is based on the assumption that the price
movements have no jumps and is governed by the Brownian motion, which is inconsistent
with empirical evidences. Nevertheless, this assumption can be relaxed and replaced by a
more realistic one which accepts that the price movements follow a Poisson or Levy pro-
cess with jumps [5–7]. Based on this new assumption, a model can be derived but a closed
form of its analytical solution can be found only under the boundary conditions of Euro-
pean options. Thus, for other boundary conditions, in particular boundary conditions for
American options, numerical tools must be applied [8–12].

There might be many numerical techniques that can be applied for the exponential
jump-diffusion models, but the most popular one is the finite difference method. This
is because its implementation is simple and its rate of convergence can be improved [13,
14]. On the other hand, this technique has some weaknesses, for example, it might not be
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stable and the points on its related grid must be located in specified locations. However,
one can overcome these weaknesses by using the methods for which no grid is needed (i.e.,
methods in which radial basis functions or spectral basis functions are used). d’Halluin,
Forsyth, and Labahn [15] and d’Halluin, Forsyth, and Vetzal [16] proposed an implicit
method of the Crank–Nicolson type combined with a penalty method for pricing Amer-
ican options under the Merton model. In [15] the authors showed that the fixed point it-
eration at each time step converges to the solution of a linear system of discrete penalized
equations. Also, Kwon and Lee [17] proposed a method constructed on three-time levels,
and the operator splitting method was used to treat the American constraints. These nu-
merical methods use iterative techniques to solve resulting linear systems involving dense
coefficient matrices. Recently, many numerical methods have been applied successfully
for solving financial problems (see, e.g., [18–23]).

Nowadays, due to the creation of complex problems, in particular in financial mathe-
matics, classical methods are not able to produce reasonable results in a satisfactory com-
putational time. For decreasing computational time, some authors have proposed exploit-
ing parallel programming [24]. On the other hand, applying some higher-order but simple
methods, such as combined compact difference (CCD) method, is becoming more inter-
esting. In 1998, Chu and Fan [25] proposed a CCD method for solving 1D and 2D steady
convection-diffusion equations. This method is an implicit three-point scheme, and its ac-
curacy is sixth-order of local truncated approximation [25]. For solving partial differential
equations (PDEs) by the CCD scheme, the first- and second-order derivatives are com-
puted together with the function values of unknowns at grid points. We refer the reader
to [26–28] for further discussions.

For the sake of completeness, first of all, we review the Black–Scholes integro model,
governed by the Poisson process, and its analytic solution for specific boundary condi-
tions that evaluate the prices of special options. Then, by changing some of the variables
that transform the Black–Scholes integro model into an integro-diffusion model, we pre-
pare the ground to solve the model numerically. After that, we develop a compact finite
difference method, which leads to a triple coefficient matrices, to solve exponential jump-
diffusion models. To do this, we first explain and then define our CCD algorithm for solv-
ing PIDEs, which we implement using the jump-diffusion model. In this paper, we show
that our new model is convergent and its rate of convergence is quite reasonable and high,
and it is stable. Finally, after solving our model, we discuss its numerical results and its ap-
plications in reasonably estimating different kinds of options prices. The rest of the paper
is organized as follows. In Sect. 2, we introduce exponential jump-diffusion models and
option pricing problems for European and American options. In Sect. 3, we derive our
CCD scheme. The von Neumann stability analysis is carried out for the proposed CCD
method in Sect. 4. In Sect. 5, numerical experiments are conducted to show the perfor-
mance of the presented method. The paper ends with a brief conclusion in Sect. 6.

2 Exponential jump-diffusion model
First, let us consider time period dt, and let S satisfy the following stochastic differential
equation:

dS = μ(t)S dt + σ (t)S dW +
(
q(t) – 1

)
S dN , (1)
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where μ(t) = r(t)–dt –λ(t)κ(t) is the drift rate, σ (t) is the volatility, dW is the increment of
a continuous-time stochastic process, called a standard Brownian process, dN is a Poisson
process, and r is the continuously compounded risk-free interest rate. κ(t) = E[q(t) – 1]
that depends on t is identically independent distributed random variable representing the
expected relative jump size. Actually, any κ(t) that belongs to an interval (–1,∞) for all t
and q(t) – 1 is an impulse function producing a jump from S to Sq(t). It is important that
dN = 0 with probability 1 – λdt and dN = 1 with probability λdt, where λ is the Poisson
arrival intensity, which is the expected number of “events” or “arrivals” that occur per unit
time. For more information, we refer to [17].

Now, let us consider a case when dN = 0 in (1), then the given equation will be equivalent
to the usual stochastic process of “geometric Brownian motion” assumed in the Black–
Scholes models. If the Poisson event occurs, then equation (1) can be written as

dS
S

� q(t) – 1. (2)

In this case the function q(t) – 1 is an impulse function producing a jump from S to Sq(t).
After that, we consider V (S, t) as the contingent claim depending on the asset price S and
time t. Let in equation (1) dt = 0. Then the following backward-in-time partial integro-
differential equation may be solved to determine v(x, τ ) = V (S, τ ):

vτ =
1
2
σ 2vxx +

(
r – λκ –

1
2
σ 2

)
vx + λ

∫ ∞

–∞
v(z, τ )f (z – x) dz

– (λ + r)v, (τ , x) ∈ [0, T] × (–∞,∞), (3)

where x = log(S), τ = T – t, and T is the expiry time of the contingent claim. In the Merton
model the density function f of a normal distribution is given by

f (x) =
1

√
2πη2

e– (x–ν)2
2η2 ,

where ν is the mean and η2 is the variance of the jump size probability distribution. It is
possible to present the expectation operator in the form E[q(t)] = exp(ν + η2

2 ), i.e., κ(τ ) =
E[q(τ ) – 1] = exp(ν + η2

2 ) – 1. Also we can divide the integral term into two parts as follows:

∫

R

v(z, τ )f (z – x) dz =
∫

[–b,b]
v(z, τ )f (z – x) dz +

∫

R\[–b,b]
v(z, τ )f (z – x) dz.

Let us define Φ(τ , x, b) =
∫
R\[–b,b] v(z, τ )f (z – x) dz. In the case of the Merton model,

Φ(τ , x, b) = Sex+ν+ η2
2 N

(
x – b + ν + η2

η

)
– Ke–rτ N

(
x – b + ν

η

)
,

where N(y) = 1√
2π

∫ y
–∞ e– x2

2 dx and K is a strike price. In the case of European options, the
payoff functions of the call and put options are as follows:

CE = max
(
0, Sex – K

)
, PE = max

(
0, K – Sex).
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The asymptotic behavior of the European option when S = 0 or S → ∞ is similar to the
Black–Scholes PDE.

American options have the important additional feature that early exercise is permitted
at any time during the life of the option. American options can be exercised at any time
before expiry. Formally, the value of an American call option is

V (0, K) = max
{

e–rτ (exSτ – K
)+ : 0 ≤ τ ≤ T

}

since the payoff at 0 ≤ τ ≤ T is max(0, (exSτ – K)). Also we have

CA(τ , K) ≥ CE(τ , K), PA(τ , K) ≥ PE(τ , K).

By the chain rule and the following new constants

α = –
r – λκ – 1

2σ 2

σ 2 , β = –
1
2
σ 2α2 – (λ + r),

the transformed Eq. (3) turns into a simpler form

uτ =
1
2
σ 2uxx + λ

∫ ∞

–∞
u(z, τ )g(z – x) dz, (τ , x) ∈ [0, T] × (–∞,∞), (4)

where u(x, τ ) = e–αx–βτ v(x, τ ) and g(x) = eαxf (x).

3 Construction of the method
In order to discretize (4), we first truncate the domain R to a bounded interval [–b, b] and
generate uniform grid points on the truncated region [0, T] × [–b, b]. For given integers
M, N > 0, let h = 2b

M and k = T
N . The grid points for this situation are (xj, τn), where xj =

–b + jh for j = 0, 1, . . . , M and τn = nk for n = 0, 1, . . . , N . Using the Taylor expansion at xj,
j = 1, 2, . . . , M – 1, we can write

uj±1 = uj ± hu′
j +

h2

2
u′′

j ± h3

6
u′′′

j +
h4

24
u(4)

j ± h5

120
u(5)

j +
h6

720
u(6)

j + O
(
h7). (5)

Here, uj = u(xj, ·), u′
j = ux(xj, ·), u′′

j = uxx(xj, ·), and so on. Using (5), two sets of equations
are obtained readily:

⎧
⎪⎪⎨

⎪⎪⎩

uj+1–uj–1
2h = u′

j + h2

6 u′′′
j + h4

120 u(5)
j + O(h6),

u′
j+1+u′

j–1
2 = u′

j + h2

2 u′′′
j + h4

24 u(5)
j + O(h6),

u′′
j+1 – u′′

j–1 = 2hu′′′
j + h3

3 u(5)
j + O(h5),

(6)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

uj+1–2uj+uj–1
h2 = u′′

j + h2

12 u(4)
j + h4

360 u(6)
j + O(h6),

u′
j+1–u′

j–1
2h = u′′

j + h2

6 u(4)
j + h4

120 u(6)
j + O(h6),

u′′
j+1+u′′

j–1
2 = u′′

j + h2

2 u(4)
j + h4

24 w(6)
j + O(h6).

(7)
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From (6) and (7), for j = 1, . . . , M – 1, we can extract

u′
j =

15
16h

[uj+1 – uj–1] –
7

16
[
u′

j+1 + u′
j–1

]
+

h
16

[
u′′

j+1 – u′′
j–1

]
+ O

(
h6),

u′′
j =

3
h2 [uj+1 – 2uj + uj–1] –

9
8h

[
u′

j+1 – u′
j–1

]
+

1
8
[
u′′

j+1 + u′′
j–1

]
+ O

(
h6).

(8)

In order to keep three-point structure at the two boundary points x0 and xM , a pair of
one-sided CCD schemes are represented as follows (see [25]):

⎧
⎨

⎩
14u′

0 + 16u′
1 + 2hu′′

0 – 4hu′′
1 + 1

h (31u0 – 32u1 + u2) = 0,

14u′
M + 16u′

M–1 – 2hu′′
M + 4hu′′

M–1 – 1
h (31uM – 32uM–1 + uM–2) = 0,

(9)

and
⎧
⎨

⎩
u′

0 + 2u′
1 – hu′′

1 + 1
2h (7u0 – 8u1 + u2) = 0,

u′
M + 2u′

M–1 + hu′′
M–1 – 1

2h (7uM – 8uM–1 + uM–2) = 0.
(10)

On the other hand, Eq. (4) at the intermediate point τn+ 1
2

with the central finite difference
scheme can be written as

un+1 – un

k
=

σ 2

2
(uxx)n+1/2 + λΓ n+1/2 + O

(
k2)

=
σ 2

4
[
(uxx)n+1 + (uxx)n] +

λ

2
[
Γ n+1 + Γ n] + O

(
k2), (11)

where Γ n =
∫ ∞

–∞ u(z, τn)g(z – x) dz. Equation (11) can be rewritten as follows:

un+1 –
kσ 2

4
(uxx)n+1 –

kλ

2
Γ n+1 = un +

kσ 2

4
(uxx)n +

kλ

2
Γ n + O

(
k2). (12)

Using the composite Boole’s rule on [–b, b], the following approximation formula for j =
1, . . . , M – 1 can be derived:

∫ ∞

–∞
u(z, τn)g(z – xj) dz = Γ n

j + Φ(τn, xj, b) + O
(
h6),

where

Γ n
j =

2h
45

(
7un

0gj0 + 32un
1gj1 + 12un

2gj2 + 32un
3gj3 + 7un

4gj4

+ 7un
4gj4 + 32un

5gj5 + 12un
6gj6 + 32un

7gj7 + 7un
8gj8 + · · ·

+ 7un
M–4gj,M–4 + 32un

M–3gj,M–3 + 12un
M–2gj,M–2

+ 32un
M–1gj,M–1 + 7un

Mgj,M
)
, (13)

in which un
j � u(xj, τn) and gjl = g(xl – xj). Φ(τn, xj, b) is usually negligible and can be ig-

nored. Assuming vn
j � ux(xj, τn) and wn

j � uxx(xj, τn), from Eqs. (8), (9), (10), and (12), the
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following coupled scheme can be deduced:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un+1
j – kσ 2

4 wn+1
j – kλ

2 Γ n+1
j = un

j + kσ 2

4 wn
j + kλ

2 Γ n
j ,

– 15
16h [un+1

j+1 – un+1
j–1 ] + 7

16 [vn+1
j+1 + 16

7 vn
j + vn+1

j–1 ] – h
16 [wn+1

j+1 – wn+1
j–1 ] = 0,

3
h2 [un+1

j+1 – 2un+1
j + un+1

j–1 ] – 9
8h [vn+1

j+1 – vn+1
j–1 ] + 1

8 [wn+1
j+1 – 8wn+1

j + wn+1
j–1 ] = 0,

14vn+1
0 + 16vn+1

1 + 2hwn+1
0 – 4hwn+1

1 + 1
h (31un+1

0 – 32un+1
1 + un+1

2 ) = 0,

14vn+1
M + 16vn+1

M–1 – 2hwn+1
M + 4hwn+1

M–1 – 1
h (31un+1

M – 32un+1
M–1 + un+1

M–2) = 0,

vn+1
0 + 2vn+1

1 – hwn+1
1 + 1

2h (7un+1
0 – 8un+1

1 + un+1
2 ) = 0,

vn+1
M + 2vn+1

M–1 + hwn+1
M–1 – 1

2h (7un+1
M – 8un+1

M–1 + un+1
M–2) = 0.

(14)

4 Stability analysis
In this section, we investigate the stability analysis of the present scheme using the von
Neumann method. At grid node (j, n), let

un
j = ξneijω, vn

j = ηneijω, wn
j = μneijω, (15)

where i =
√

–1 and ξn, ηn, and μn are amplitudes at time level n, and w is the phase angle.

Lemma 1 It can be deduced that ηn = ξnC2
hC1

i and μn = ξnC3
h2C1

, where

C1 = 20 cosω + 2cos2ω + 23,

C2 = 9 sinω(cosω + 4),

C3 = 3
(
8 cosω + 11cos2ω – 19

)
.

Proof Substituting (15) into the first and second relations of (8), we can write

⎧
⎨

⎩

7
16ηneijω(eiω + e–iω) + ηneijω – h

16μneijω(eiω – e–iω) = 15
16hξneijω(eiω – e–iω),

9
8hηneijω(eiω – e–iω) – 1

8μneijω(eiω + e–iω) + μneijω = 3
h2 ξneijω(eiω + e–iω – 2).

Using Euler’s formulae eiω + e–iω = 2 cosω and eiω – e–iω = 2i sinω, we obtain

⎧
⎨

⎩
(1 + 7

8 cosω)ηn – ( ih
8 sinω)μn = ( i15

8h sinω)ξn,

( i9
4h sinω)ηn + (1 – 1

4 cosω)μn = 6
h2 (cosω – 1)ξn.

By solving the above sets of equations, we have

ηn =
9ξn sinω(cosω + 4)

h(20 cosω + 2cos2ω + 23)
i =

ξnC2

hC1
i,

μn =
3ξn(8 cosω + 11cos2ω – 19)
h2(20 cosω + 2cos2ω + 23)

=
ξnC3

h2C1
. �

Theorem 1 The proposed CCD method is unconditionally stable.
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Proof Using (15), we can rewrite the first relation of (14) as follows:

ξn+1eijω –
kσ 2

4
μn+1eijω –

kλ

2
Γ n+1

j

= ξneijω +
kσ 2

4
μneijω +

kλ

2
Γ n

j

or

ξ –
kσ 2μn+1

4ξn –
kλΓ n+1

j

2ξneijω = 1 +
kσ 2μn

4ξn +
kλΓ n

j

2ξneijω .

Using (13) and Lemma 1, it can be deduced that

ξ =
4 + Θσ 2 C3

C1
+ ( 4h

45
∑M

l=0 clei(l–j)ωgjl)λΘh2

4 – Θσ 2 C3
C1

– ( 4h
45

∑M
l=0 clei(l–j)ωgjl)λΘh2

,

where c0, . . . , cM are the weights or coefficients of Bool’s quadrature (13) and Θ = k/h2. It
is obvious that if there is no jump, i.e., λ = 0, then ξ = ξ0, where

ξ0 =
4 + Θσ 2 C3

C1

4 – Θσ 2 C3
C1

and |ξ | = |ξ0| ≤ 1 since one can easily check that –10 < C3
C1

≤ 0. Otherwise, if |g(·)| ≤ C,
then

∣
∣∣
∣∣
4h
45

M∑

l=0

clei(l–j)ωgjl

∣
∣∣
∣∣
≤ 128

45
C(2b + 1),

and obviously, when Θ is kept fixed and h, k → 0, then ξ → ξ0; and therefore the proposed
CCD method is unconditionally stable. �

5 Numerical results
In this section, we present the numerical results of the CCD method for European and
American options. For the numerical experiments, we choose the initial stock price S0 = K
and the truncated domain [–1.5, 1.5] of the log price. Accuracy of the scheme is measured
by using the norm infinity L∞ = ‖ua – ue‖∞, where ua and ue stand for the approximate
and exact solutions, respectively. Equation (3) has an analytical solution given by Merton’s
formula

V (S, τ ) =
∞∑

m=0

e–θτ (θτ )m

m!
CBS(τ , S, K , rm,σm), (16)

where θ = λ(1+κ), rm = r –λκ + m ln(1+κ)
τ

, σ 2
m = σ 2 + mη2

τ
, and CBS denotes the Black–Scholes

value of a call. See [7] for further information.
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5.1 European options
In this section, we consider the parameters described in Sect. 2 for price European option
as follows [17]:

σ = 0.15, T = 0.25, r = 0.05, η = 0.45, ν = –0.9, K = 100.

As the first numerical example for the European option, we compare the approximate
solutions generated by the CCD method and the exact solution under the Merton model
without jumps (λ = 0) in Table 1 with setting M = 128 and N = 25. In Table 2, numerical
solutions for the European call options obtained by the present method at different asset
values are presented and compared with the exact solution and the well-known Crank–
Nicolson (CN) method. Since the error of the proposed method is of order O(k2 + h6), in
Table 3 we set initially N = 25 and M = 128 for put options and then increase them by a
factor of 8 and 2, respectively.

In Table 4, we check the validity of Theorem 1 by using a numerical example to price
European option for λ = 0. In this case, we reduce the h and k so that Θ = k/h2 stays
constant, and we observe that the stability of the method is established.

Table 1 A comparison between the approximate solution and the exact solution corresponding to
the European call options under the Merton model with λ = 0

S Approximate solution Exact solution L∞ error

90 0.36577 0.36646 6.9931e–04
100 3.63286 3.63507 2.2097e–03
110 11.50600 11.50588 1.2608e–04

Table 2 A comparison between the approximate solution and the exact solution corresponding to
the European call options under the Merton model with λ = 0.1

K S CN CCD Exact L∞ (CN) L∞ (CCD)

100 90 0.54524 0.52751 0.52764 1.7602e–02 1.2718e–04
130 32.28254 32.28218 32.28218 3.6643e–04 4.5527e–06
170 71.96107 71.96065 71.96065 4.1983e–04 2.3599e–06

Table 3 Order of convergence for the European put options under the Merton model by the CCD
method with λ = 0.1 and S = 30

(M,N) (128, 25) (256, 200) (512, 1600) (1024, 12800)

E = L∞ error 1.1753e-04 3.4297e–06 5.9131e–08 9.2704e–10
R = E(M,N)

E(2M,8N) – 34.2681 58.0014 63.7844
Order = log2 R – 5.0988 5.8580 5.9941

Table 4 Check the validity of Theorem 1 for the European call options under the Merton model:
λ = 0, T = 1 and S = 30

(h, k) E = L∞ error

(0.15, 0.1) 8.5571e–05
(0.075, 0.025) 3.0810e–06
(0.0375, 0.0063) 2.4753e–07
(0.0187, 0.0016) 9.1614e–09
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Figure 1 European call option prices versus stock prices. Exact and numerical solutions of European call
options for S ∈ [60, 130] and λ = 0.1 (up) and the distribution of absolute error (down)

The curves of the numerical and exact solutions and the distribution of absolute error
are plotted in Fig. 1, which indicates that our numerical solutions are in good agreement
with the exact solution.

5.2 American options
In this section, we perform several numerical simulations to evaluate the prices of Amer-
ican options under the Merton model. We used the CCD method, which leads to linear
systems involving tridiagonal matrices. It is important to create a highly accurate test so-
lution, because there is no analytical solution for the value of an American option. The
“exact” option value was computed using the data in [16]. We price an American put op-
tion with the following parameters:

σ = 0.15, T = 0.25, r = 0.05,

η = 0.45, ν = –0.9, K = 100,
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Table 5 Values of American put options obtained by the CCD method under the Merton model. The
reference values are 10.003822 at S = 90, 3.241251 at S = 100, and 1.419803 at S = 110 [16]. The
truncated domain is [–1.5, 1.5] and λ = 0.1, M = 128, and N = 25

S Method [17] CCD method European put L∞ ([17]) L∞(CCD)

90 10.000196 10.0038730 9.28542 3.6e–03 5.1e–05
100 3.231112 3.241153 3.14903 1.1e–02 9.8e–05
110 1.417464 1.419681 1.40119 2.3e–03 1.2e–04

Table 6 Order of convergence of the CCD method for American put options under the Merton
model with λ = 0.1

(M,N) (32, 10) (64, 80) (128, 640) (256, 5120)

E = L∞ 4.0571e–02 1.8523e–03 5.7864e–05 1.1350e–6
R = E(M,N)

E(2M,8N) – 21.9030 32.0113 50.9815
Order = log2 R – 4.4531 5.001 5.6719

Figure 2 American call option prices versus stock prices. Initial condition and numerical solution under the
Merton jump-diffusion model for American call options at various states of economy

which are also used by Kwon and Lee [17]. In [17], an implicit method with three-time
levels has been used. In Table 5, we present the numerical results obtained by using the
CCD algorithm. The reference values evaluated by d’Halluin, Forsyth, and Vetzal [16] are
with six digits after the decimal point.

To show that the method has sixth-order convergence, we initially set M = 32 and N = 10
for put options, then increase them by a factor of 2 and 8, respectively, in Table 6. We use
the reference value 10.003822 at S = 90 [16].

In Fig. 2, the initial conditions for American call option are plotted at various states of
economy, i.e., λ = 0.1, 0.3, 0.5, 0.7. In Fig. 3, the price of American put option is plotted as
a function of time and stock prices.

6 Conclusions
We have offered a compact difference method for pricing options when the underlying as-
set process follows a regime-switching jump-diffusion model. This model is more efficient
than other models because of its efficiency and high accuracy. To support the model, we
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Figure 3 American call option prices versus asset prices. Price of option at various states of economy as a
function of stock price and time for American call options under the Merton jump-diffusion model. (up) First
state of economy (λ = 0.3). (center) Second state of economy (λ = 0.5). (down) Third state of economy
(λ = 0.7) with M = 50, N = 10, and S = 70

have prepared several numerical examples to show that the suggested algorithm computes
accurate values in comparison to the test solution. This method is shown to be second-
and sixth-order accurate in time and space, respectively.
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