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Abstract
In this article, the authors apply the Lie symmetry approach and the modified
(G′/G)-expansion method for seeking the solutions of time-dependent coupled
KdV–Burgers equation. Using suitable similarity transformations, the time-dependent
coupled KdV–Burgers equation is reduced to a system of nonlinear ordinary
differential equations. Further, the reduced system of nonlinear ordinary differential
equations for the coupled KdV equation is solved with the help of the modified
(G′/G)-expansion method to obtain soliton solutions which are expressed by
hyperbolic functions, trigonometric functions, and rational functions.
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1 Introduction
The construction and study of solutions for nonlinear partial differential equations (PDEs)
are important, mainly because they are used as solutions of the models which explain
complex physical phenomena in different fields of engineering and sciences, mainly in
fluid mechanics, solid-state physics, plasma physics, plasma wave, and chemical physics.
One such nonlinear PDE is the celebrated Korteweg–de Vries–Burgers equation [1–3].
The equation describes the mathematical modeling of liquid flow in a bubble and the liquid
flow in an elastic pipeline [4]. It was derived in fluid mechanics to describe shallow water
waves in a rectangular channel [5, 6] and plays an important role in plasma physics [7, 8].

Various methods [9–12] have been utilized to discover solutions of physical models de-
scribed by PDEs. Among these methods, the Lie symmetry method, also called Lie group
method, is one of the most dominant methods to establish exact solutions of nonlinear
PDEs. It is based on the study of the invariance under one-parameter Lie group of point
transformations [13–16]. A few but important contributions are in [17–22]. Thus, with
the applications of Lie’s method, one can reduce nonlinear PDEs to the system of ordi-
nary differential equations (ODEs) or at least reduce the number of independent vari-
ables. The obtained reduced ODEs are then used to find the invariant solution (exact so-
lutions) of the nonlinear partial differential equations. Sometimes, in the procedure of
reducing partial differential equations to ordinary differential equations, highly nonlinear
equations, which are difficult to solve analytically, occurred. This is the main drawback
in the traditional Lie group method. Therefore, in the quest of exact solutions of reduced

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13662-019-2429-1
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-019-2429-1&domain=pdf
mailto:vikasmath81@gmail.com


Alqahtani and Kumar Advances in Difference Equations        (2019) 2019:493 Page 2 of 16

nonlinear ODEs, various powerful methods are available in the literature such as the in-
verse scattering transform [23], truncated Painleve expansion [24], Jacobi elliptic function
expansion [25], the F-expansion [26], the exp-function expansion method [27], (G′/G)-
expansion method [28–31], and so on, but there is no unified method that can be used
to deal with all types of nonlinear equations. The (G′/G)-expansion method has its own
advantages: it is direct, concise, elementary, i.e., the general solutions of the second order
linear ODE have been well known for the researchers, and effective, i.e.,it can be used for
many other nonlinear PDEs, for instance the Burgers equation [32], KdV–Burgers equa-
tion [33]. Motivated by the reason above, we have used the modified (G′/G)-expansion
method for soliton solutions of the reduced ODEs.

In this paper, we consider the variable coefficients version of the coupled KdV–Burgers
equation [34–36]

ut + τ1(t)uux + τ2(t)wxx + τ3(t)uxxx = 0,

wt + κ1(t)wwx + κ2(t)wxx + κ3(t)uxxx = 0,
(1.1)

where τi(t) and κi(t), i = 1, 2, 3, are arbitrary time-dependent coefficients. We consider
equation (1.1) for soliton solutions by using the Lie symmetry analysis and the modified
(G′/G)-expansion method.

The paper is organized as follows. Section 2 is dedicated to some basics of Lie classi-
cal method for equation (1.1), and we fix the notations. Further in this section we de-
rive the symmetries and admissible forms of the coefficients that admit the classical sym-
metry group corresponding to each member of the optimal system of subalgebras. Sec-
tion 3 presents the reduced ODEs with the application of the modified (G′/G)-expansion
method, and new soliton solutions of equation (1.1) are originated, which are expressed by
hyperbolic functions, trigonometric functions, and rational functions. Some final remarks
are specified in Sect. 4.

2 Lie symmetric reduction
Consider one-parameter Lie group of transformations for equation (1.1) as follows:

(
x∗, t∗, u∗, w∗) =

(
eεΓ x, eεΓ t, eεΓ u, eεΓ w

)
, (2.1)

which is generated by a vector field of the form

Γ = X(x, t, u, w)
∂

∂x
+ T(x, t, u, w)

∂

∂t
+ U(x, t, u, w)

∂

∂u
+ W (x, t, u, w)

∂

∂w
(2.2)

such that u∗(x∗, t∗) and w∗(x∗, t∗) are a solution of (1.1) whenever u(x, t) and w(x, t) are a
solution of (1.1). Also eεΓ is denoted by the Lie series

∑∞
k=0

εk

k! Γ
k with Γ k = Γ Γ k–1 and

Γ 0 = 1.
To discover the symmetries of equation (1.1), the infinitesimal invariance condition for

the vector field (2.2) is given by the following relation:

Ut + τ1(t)Uux + τ1(t)Uxu + τ ′
1(t)Tuux + τ2(t)Wxx + τ ′

2(t)Twxx

+ τ3(t)Uxxx + τ ′
3(t)Tuxxx = 0, (2.3)
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Wt + κ1(t)Wwx + κ1(t)Wxw + κ ′
1(t)Twwx + κ2(t)Wxx + κ ′

2(t)Twxx

+ κ3(t)Uxxx + κ ′
3(t)Tuxxx = 0.

In the case of equation (1.1) we have to use the extended prolonged infinitesimals acting
on an enlarged space (jet space), namely Ut , Ux, Wx, Wt , Wxx, and Uxxx (for more details,
see [13–16]) and decompose equations (2.3) to a large overdetermined system of linear
PDEs for X, Y , U , and W known as determining equations:

Uw = Uuu = 0, Wu = Www = 0,

Xu = Xw = Xt = Xxx = 0, Tu = Tw = Tx = 0,

Ut + τ1(t)Uxu + τ3(t)Uxx = 0, Wt + κ1(t)Wxw + κ3(t)Uxx = 0,

Tt – 3Xx +
τ ′

3(t)
τ3(t)

T = 0, Ww – Tt – Uu + 3Xx –
κ ′

3(t)
κ3(t)

T = 0,

τ1(t)U + 2τ1(t)Xxu – τ ′
1(t)Tu – τ1(t)

τ ′
3(t)

τ3(t)
Tu = 0,

τ2(t)Ww + τ2(t)Xx – τ ′
2(t)T – τ2(t)Uu – τ2(t)

τ ′
3(t)

τ3(t)
T = 0,

2κ1(t)Ww + 2κ1(t)Xx + κ ′
1(t)T – κ1(t)Uu – κ1(t)

κ ′
3(t)

κ3(t)
T = 0,

κ2(t)Ww + κ2(t)Xx + κ ′
2(t)T – κ2(t)Uu – κ2(t)

τ ′
3(t)

τ3(t)
T = 0.

(2.4)

The general solution of this large system (2.4), by setting the coefficients of different
powers of u and w equal to zero, leads to the following expressions for infinitesimals:

X = a1x + a5,

T =
1

τ1(t)

[
(a1 – a2)

∫
τ1(t) dt + a4

]
,

U = a2u,

W = a3w.

(2.5)

The time-dependent coefficients τi(t) and κi(t), i = 1, 2, 3, are associated as follows:

τ ′
2(t)T + τ2(t)Tt + (a3 – 2a1 – a2)τ2(t) = 0,

τ ′
3(t)T + τ3(t)Tt – 3a1τ3(t) = 0,

κ ′
1(t)T + κ1(t)Tt + (a3 – a1)κ1(t) = 0,

κ ′
2(t)T + κ2(t)Tt – 2a1κ2(t) = 0,

κ ′
3(t)T + κ3(t)Tt – (a3 – a2 + 3a1)κ3(t) = 0,

(2.6)

where a1, a2, a3, a4, and a5 are arbitrary real constants. It follows that the Lie algebra of
infinitesimal symmetries of the time-dependent coupled KdV–Burgers equation (1.1) is
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spanned by the following five linearly independent vector fields:

Γ1 = x
∂

∂x
+

1
τ1(t)

∫
τ1(t) dt

∂

∂t
,

Γ2 = u
∂

∂u
–

1
τ1(t)

∫
τ1(t) dt

∂

∂t
,

Γ3 = w
∂

∂w
,

Γ4 =
1

τ1(t)
∂

∂t
,

Γ5 =
∂

∂x
.

(2.7)

Further, in this section, we concentrate on the symmetry subalgebras, and we categorize
their one-dimensional Lie subalgebras into equivalence classes under the action of the
corresponding group. To categorize all the one-dimensional subalgebras of equation (1.1),
we require considering the action of the adjoint representation of the symmetry group of
equation (1.1). The adjoint representation of a Lie group to its algebra is a group action,
and it is defined as follows:

Ad
(
exp(εΓi)

)
Γj = Γj – ε[Γi,Γj] +

ε2

2
[
Γi, [Γi,Γj]

]
– · · · , (2.8)

where [Γi,Γj] = ΓiΓj – ΓjΓi is the commutator for the Lie algebra and ε is a parameter.
More specifically, we start by considering a general element of the form Γ = a1Γ1 + a2Γ2 +
a3Γ3 + a4Γ4 + a5Γ5. Now we use all adjoint actions to simplify it as much as possible and
classify all the different one-dimensional subalgebras of equation (1.1) as follows:

(i) Γ1 + λ1Γ2 + λ2Γ3, (ii) Γ2 + λ3Γ3,

(iii) Γ3 + λ4Γ4, (iv) Γ4 + Γ5,
(2.9)

where λ1, λ2, λ3, and λ4 are arbitrary constants.

3 Hyperbolic, trigonometric, and rational function solutions
In this section, we proceed to considering the symmetry variable for reduction of equation
(1.1) to the systems of nonlinear ordinary differential equation (for details, see [37–39])
through the characteristic equation

dx
X(x, t, u, w)

=
dt

T(x, t, u, w)
=

du
U(x, t, u, w)

=
dw

W (x, t, u, w)
(3.1)

for the different operators in the optimal system, and then we continue contracting soliton
solutions of the main system (1.1) with the help of modified (G′/G)-expansion method.

3.1 Subalgebra Γ1 + λ1Γ2 + λ2Γ3

The solutions of system (1.1) which are invariant under this subalgebra with the coefficient
functions

τ2(t) =
K1

1 – λ1
τ1(t)

(∫
τ1(t) dt

) 2λ1–λ2+1
1–λ1

, τ3(t) =
K2

1 – λ1
τ1(t)

(∫
τ1(t) dt

) λ1+2
1–λ1

,
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κ1(t) =
K3

1 – λ1
τ1(t)

(∫
τ1(t) dt

) λ1–λ2
1–λ1

, κ2(t) =
K4

1 – λ1
τ1(t)

(∫
τ1(t) dt

) λ1+1
1–λ1

, (3.2)

κ3(t) =
K5

1 – λ1
τ1(t)

(∫
κ1(t) dt

) λ2+2
1–λ1

are given by the following relations:

u(x, t) =
(∫

τ1(t) dt
) λ1

1–λ1
f (ξ ),

w(x, t) =
(∫

τ1(t) dt
) λ2

1–λ1
g(ξ ),

(3.3)

where ξ = x(
∫

τ1(t))
–1

1–λ1 and f (ξ ), g(ξ ) are the solution of the system of nonlinear ordinary
differential equations

λ1f – f ′ξ + (1 – λ1)ff ′ + K1g ′′ + K2f ′′′ = 0,

λ2g – g ′ξ + K3gg ′ + K4g ′′ + K5f ′′′ = 0.
(3.4)

Solving ODEs (3.4) for f (ξ ) and g(ξ ), substituting in equation (3.3) the main system (1.1)
possesses the following solutions:

u(x, t) = x
(∫

τ1(t) dt
)–1

+ 12K2C2
2 – 4C2

2
√

6K2 tanh

(
C1 + C2x

(∫
τ1(t) dt

)–1)

– 12K2C2
2 tanh

(
C1 + C2

(
x
(∫

τ1(t) dt
)–1))2

,

w(x, t) =
x(

∫
τ1(t) dt)–1

K3
+

20
√

6K2
2 C2

3 tanh(C1 + C2x(
∫

τ1(t) dt)–1)2

K1

–
80

√
6K2

2 C3
2K3

6K1K3
,

(3.5)

where K4 = – 10C2
2 K2

2 K3
3K1

, K5 = – 50C2
2 K2

2 K3
3K2

1
, λ1 = λ2 = 0, and K1, K2, K3 are arbitrary constants.

3.2 Subalgebra Γ2 + λ3Γ3

The solutions of system (1.1) which are invariant under this subalgebra with the coefficient
functions

τ2(t) = K1τ1(t)
(∫

τ1(t) dt
)λ3–1

, τ3(t) = K2τ1(t)
(∫

τ1(t) dt
)–1

,

κ1(t) = K3τ1(t)
(∫

τ1(t) dt
)λ3–1

, κ2(t) = K4τ1(t)
(∫

τ1(t) dt
)–1

, (3.6)

κ3(t) = K5τ1(t)
(∫

τ1(t) dt
)–λ3
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are given by the following relations:

u(x, t) =
(∫

τ1(t) dt
)–1

f (ξ ),

w(x, t) =
(∫

τ1(t) dt
)–λ3

g(ξ ),

(3.7)

where ξ = x and f (ξ ), g(ξ ) are the solution of the system of nonlinear ordinary differential
equations

–f + ff ′ + K1g ′′ + K2f ′′′ = 0,

–λ3g + K3gg ′ + K4g ′′ + K5f ′′′ = 0.
(3.8)

Now, under this subalgebra for arbitrary value of λ3, we are able to find out trivial solu-
tions of nonlinear system (1.1). Therefore, to establish the nontrivial solution of system
(1.1) by using equation (3.7), we have to solve equation (3.8) by the modified (G′/G)-
expansion method [14, 15] with the restriction λ3 = 0. Let us suppose that system (3.8)
admits a solution in the modified (G′/G)-expansion method as follows:

f (ξ ) = a0 +
P∑

i=1

{
ai

(
G′(ξ )
G(ξ )

)i

+ bi

(
G′(ξ )
G(ξ )

)–i}
,

g(ξ ) = c0 +
q∑

j=1

{
cj

(
G′(ξ )
G(ξ )

)j

+ dj

(
G′(ξ )
G(ξ )

)–j}
,

(3.9)

where a0, ai, bi, c0, cj, dj, and μ are constants. The summation indexes p, q in equation
(3.9) are positive integers, and function G(ξ ) is the solution of the linear ODE

G′′(ξ ) + μG(ξ ) = 0. (3.10)

The positive integers p, q may be decided in view of the homogeneous balance among
the highest order derivative terms and nonlinear terms from equation (3.8). Therefore,
equalizing the highest-order derivatives and nonlinear terms arriving in equation (3.8),
we find p = 2, q = 2, and we set down

f (ξ ) = a0 + a1

(
G′(ξ )
G(ξ )

)
+ a2

(
G′(ξ )
G(ξ )

)2

+ b1

(
G′(ξ )
G(ξ )

)–1

+ b2

(
G′(ξ )
G(ξ )

)–2

,

g(ξ ) = c0 + c1

(
G′(ξ )
G(ξ )

)
+ c2

(
G′(ξ )
G(ξ )

)2

+ d1

(
G′(ξ )
G(ξ )

)–1

+ d2

(
G′(ξ )
G(ξ )

)–2

.

(3.11)

Further, substituting (3.11) into the system of ODEs (3.8), using linear ODE (3.10), and
equating the coefficients of the same powers of (G′/G) to zero, we arrive at a set of simul-
taneous algebraic equations among a0, a1, a2, b1, b2, c0, c1, c2, d1, d2, and μ as follows:

(i) 24b2K2μ
3 + 2b2

2μ = 0,

(ii) 6d2K1μ
2 + 6b1μ

3K2 + 3μb1b2 = 0,
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(iii) 2d1K1μ
2 + 40b2μ

2K2 + 2a0μb2 + b2
1μ + 2b2

2 = 0,

(iv) 8d2K1μ + 8b1μ
2K2 + a0μb1 + b2a1μ + 3b1b2 – b2 = 0,

(v) 2d1K1μ + 16b2μK2 + 2a0b2 – 2b2a2μ + b2
1 + 2a2b2μ – b1 = 0,

(vi) 2d2K2 – 2a1μ
2K2 + 2b1μK2 – a0a1μ + a0b1 + a1b2 – b1a2μ

+ 2c2K1μ
2 – a0 = 0, (3.12)

(vii) 2c1K1μ – 16a2μ
2K2 – 2a0a2μ – a2

1μ – a1 = 0,

(viii) 8c2K1μ – 8a1μK2 – 3a1a2μ – a0a1 – a2b1 – a2 = 0,

(ix) 2c1K1 – 40a2μK2 – 2a0a2 – a2
1 – 2a2

2μ = 0,

(x) –6a1K2 – 3a1a2 + 6K1c2 = 0,

(xi) –24a2K2 – 2a2
2 = 0.

Also, when we put (3.11) into the second equation of (3.8), it brings the system of alge-
braic equations as follows:

(i) 24b2K5μ
3 + 2K3d2

2μ = 0,

(ii) 6d2K4μ
2 + 6b1μ

3K5 + 3K3μd1d2 = 0,

(iii) 2d1K4μ
2 + 40b2μ

2K5 + 2c0μd2K3 + K3d2
1μ + 2K3d2

2 = 0,

(iv) 8d2K4μ + 8b1μ
2K5 + K3c0μd1 + K3d2c1μ + 3K3d1d2 = 0,

(v) 2d1K4μ + 16b2μK5 + 2K3c0d2 – 2K3d2c2μ + K3d2
1 + 2K3c2d2μ = 0,

(vi) 2d2K4 – 2a1μ
2K5 + 2b1μK5 – K3c0c1μ + K3c0d1 + K3c1d2 – K3d1c2μ

+ 2c2K4μ
2 = 0, (3.13)

(vii) 2c1K4μ – 16a2μ
2K5 – 2K3c0c2μ – K3c2

1μ = 0,

(viii) 8c2K4μ – 8a1μK5 – 3K3c1c2μ – K3c0c1 – K3c2d1 = 0,

(ix) 2c1K4 – 40a2μK5 – 2K3c0c2 – K3c2
1 – 2K3c2

2μ = 0,

(x) –6a1K5 – 3K3c1c2 + 6K4c2 = 0,

(xi) –24a2K5 – 2K3c2
2 = 0.

On solving algebraic equations (3.12) and (3.13) for arbitrary values of K1 and K3, we
get only the trivial solutions of the main system (1.1), which is not a physically interesting
case. Therefore, we reach the following results:

Case 1:

a0 = a0, b1 = 1, c0 = c0, d1 = d1 and

a1 = a2 = b2 = c1 = c2 = d2 = K3 = μ = 0;
(3.14)
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Figure 1 Oscillatory soliton solution (left) and dark soliton solution (right) given by equation (3.16) with A = 1,
B = 1, a0 = c0 = d1 = 1, and τ1(t) = exp(t) + sec(t) tan(t) + t

Case 2:

a0 = a0, b1 = 1, c1 =
2K4

K3
and

a1 = a2 = b2 = c0 = c2 = d2 = d2 = K1 = μ = 0.
(3.15)

Now, when we substitute equations (3.14), (3.15) and the solution of linear equation
(3.10) for μ = 0 into equation (3.11), we get the solution of nonlinear equation (3.8). Fur-
ther, using the value of solution f (ξ ) and g(ξ ) into equation (3.7), we have rational solutions
of equation (1.1) as follows.

Case 1 gives the rational solution of equation (1.1) by the following relation:

u(x, t) =
(∫

τ1(t) dt
)–1[

a0 +
(

B
A + Bx

)–1]
,

w(x, t) = c0 + d1

(
B

A + Bx

)–1

,

(3.16)

where A and B are arbitrary constants (see Fig. 1).
Similarly, Case 2 gives the rational solution by the following relation:

u(x, t) =
(∫

τ1(t) dt
)–1[

a0 +
(

B
A + Bx

)–1]
,

w(x, t) =
2K4

K3

(
B

A + Bx

)2

,

(3.17)

where A, B, K3, and K4 are arbitrary constants.

3.3 Subalgebra Γ3 + λ4Γ4

The solutions of system (1.1), which are invariant under this subalgebra with the coeffi-
cient functions

τ2(t) =
K1

λ4
τ1(t) exp

(
–

1
λ4

∫
τ1(t) dt

)
, τ3(t) =

K2

λ4
τ1(t),
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κ1(t) =
K3

λ4
τ1(t) exp

(
–

1
λ4

∫
τ1(t) dt

)
, κ2(t) =

K4

λ4
τ1(t), (3.18)

κ3(t) =
K5

λ4
τ1(t) exp

(
1
λ4

∫
τ1(t) dt

)
,

are given by the following relations:

u(x, t) = f (ξ ),

w(x, t) = exp

(
1
λ4

∫
τ1(t) dt

)
g(ξ ),

(3.19)

where ξ = x and f (ξ ), g(ξ ) are the solution of the system of nonlinear ordinary differential
equations

λ4ff ′ + K1g ′′ + K2f ′′′ = 0,

g + K3gg ′ + K4g ′′ + K5f ′′′ = 0.
(3.20)

In this subalgebra, we also seek solutions of equation (3.20) by the modified (G′/G)-
expansion method. Therefore, following the procedure adopted in subalgebra 3.2, we get
p = 2, q = 2. So we can suppose that the solution of ODEs (3.20) is of the form

f (ξ ) = a0 + a1

(
G′(ξ )
G(ξ )

)
+ a2

(
G′(ξ )
G(ξ )

)2

+ b1

(
G′(ξ )
G(ξ )

)–1

+ b2

(
G′(ξ )
G(ξ )

)–2

,

g(ξ ) = c0 + c1

(
G′(ξ )
G(ξ )

)
+ c2

(
G′(ξ )
G(ξ )

)2

+ d1

(
G′(ξ )
G(ξ )

)–1

+ d2

(
G′(ξ )
G(ξ )

)–2

.

(3.21)

Substituting (3.21) into the system of ODEs (3.20), using linear ODE (3.10), and equating
the coefficients of same powers of (G′/G) to zero, we obtain a set of simultaneous algebraic
equations among a0, a1, a2, b1, b2, c0, c1, c2, d1, d2, and μ as follows:

(i) 24b2K2μ
3 + 2λ4b2

2μ = 0,

(ii) 6d2K1μ
2 + 6b1μ

3K2 + 3λ4μb1b2 = 0,

(iii) 2d1K1μ
2 + 40b2μ

2K2 + 2λ4a0μb2 + λ4b2
1μ + 2λ4b2

2 = 0,

(iv) 8d2K1μ + 8b1μ
2K2 + a0λ4μb1 + b2λ4a1μ + 3λ4b1b2 = 0,

(v) 2d1K1μ + 16b2μK2 + 2λ4a0b2 – 2λ4b2a2μ + λ4b2
1 + 2λ4a2b2μ = 0,

(vi) 2d2K2 – 2a1μ
2K2 + 2b1μK2 – λ4a0a1μ + λ4a0b1 + λ4a1b2 – λ4b1a2μ

+ 2c2K1μ
2 = 0, (3.22)

(vii) 2c1K1μ – 16a2μ
2K2 – 2λ4a0a2μ – a2

1λ4μ = 0,

(viii) 8c2K1μ – 8a1μK2 – 3λ4a1a2μ – λ4a0a1 – λ4a2b1 = 0,

(ix) 2c1K1 – 40a2μK2 – 2λ4a0a2 – λ4a2
1 – 2λ4a2

2μ = 0,

(x) –6a1K2 – 3λ4a1a2 + 6K1c2 = 0,

(xi) –24a2K2 – 2λ4a2
2 = 0.
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Also, when we put (3.21) into the second equation of (3.20), it brings the system of al-
gebraic equations as follows:

(i) 24b2K5μ
3 + 2K3d2

2μ = 0,

(ii) 6d2K4μ
2 + 6b1μ

3K5 + 3K3μd1d2 = 0,

(iii) 2d1K4μ
2 + 40b2μ

2K5 + 2c0μd2K3 + K3d2
1μ + 2K3d2

2 = 0,

(iv) 8d2K4μ + 8b1μ
2K5 + K3c0μd1 + K3d2c1μ + 3K3d1d2 + d2 = 0,

(v) 2d1K4μ + 16b2μK5 + 2K3c0d2 – 2K3d2c2μ + K3d2
1 + 2K3c2d2μ + d1 = 0,

(vi) 2d2K4 – 2a1μ
2K5 + 2b1μK5 – K3c0c1μ + K3c0d1 + K3c1d2 – K3d1c2μ

+ 2c2K4μ
2 + c0 = 0, (3.23)

(vii) 2c1K4μ – 16a2μ
2K5 – 2K3c0c2μ – K3c2

1μ + c1 = 0,

(viii) 8c2K4μ – 8a1μK5 – 3K3c1c2μ – K3c0c1 – K3c2d1 + c2 = 0,

(ix) 2c1K4 – 40a2μK5 – 2K3c0c2 – K3c2
1 – 2K3c2

2μ = 0,

(x) –6a1K5 – 3K3c1c2 + 6K4c2 = 0,

(xi) –24a2K5 – 2K3c2
2 = 0.

On solving algebraic equations (3.22) and (3.23) for arbitrary value of K5, we get only
the trivial solutions of the main system (1.1), which is not a physically interesting case.
Therefore, we reach the following results.

Case 1:

a2 = a2, c0 = c0, d1 = –
1

K3
, K2 = –

1
12

λ4a2,

a0 = a1 = b1 = b2 = c1 = c2 = d2 = K5 = μ = 0;
(3.24)

Case 2:

a2 = –
12K2

λ4
, c0 = c0, d1 = –

1
K3

, and

a0 = a1 = b1 = b2 = c1 = c2 = d2 = K5 = μ = 0.
(3.25)

Now when we substitute equations (3.24), (3.25) and the solution of linear equation
(3.10) for μ = 0 into equation (3.21), we get the solution of nonlinear equation (3.20).
Further, using the value of solution f (ξ ) and g(ξ ) into equation (3.19), we have rational
solutions of equation (1.1) as follows.

Case 1 gives the rational solution of equation (1.1) by the following relation:

u(x, t) = a2

(
B

A + Bx

)2

,

w(x, t) = exp

(
1
λ4

∫
τ1(t) dt

)[
c0 –

1
K3

(
B

A + Bx

)–1]
,

(3.26)

where A, B, K3, and λ4 are arbitrary constants (see Fig. 2).
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Figure 2 Smooth soliton solution (left) and breather soliton solution (right) given by equation (3.26) with
K3 = –1, A = B = 1, a2 = c0 = λ4 = 1, and τ1(t) = cos(t) + sin(t)

Similarly, Case 2 gives the rational solution of equation (1.1) by the following relation:

u(x, t) = –
12K2

λ4

(
A2

A1 + A2x

)2

,

w(x, t) = exp

(
1
λ4

∫
τ1(t) dt

)[
c0 –

1
K3

(
A2

A1 + A2x

)–1]
,

(3.27)

where A, B, K2, K3, and λ4 are arbitrary constants.

3.4 Subalgebra Γ4 + Γ5

The solutions of system (1.1) which are invariant under this subalgebra with the coefficient
functions

τ2(t) = K1τ1(t), τ3(t) = K2τ1(t), κ1(t) = K3τ1(t),

κ2(t) = K4τ1(t), κ3(t) = K5τ1(t)
(3.28)

are given by the following relations:

u(x, t) = f (ξ ),

w(x, t) = g(ξ ),
(3.29)

where ξ = x –
∫

τ1(t) dt and f (ξ ), g(ξ ) are the solution of the system of nonlinear ordinary
differential equations

–f ′ + ff ′ + K1g ′′ + K2f ′′′ = 0,

–g ′ + K3gg ′ + K4g ′′ + K5f ′′′ = 0.
(3.30)

In this subalgebra, follow the procedure in a manner similar to the preceding subalgebra
to solve equations (3.30) by the modified (G′/G)-expansion method, we get the solution
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of ODEs (3.30) as follows:

f (ξ ) = a0 + a1

(
G′(ξ )
G(ξ )

)
+ a2

(
G′(ξ )
G(ξ )

)2

+ b1

(
G′(ξ )
G(ξ )

)–1

+ b2

(
G′(ξ )
G(ξ )

)–2

,

g(ξ ) = c0 + c1

(
G′(ξ )
G(ξ )

)
+ c2

(
G′(ξ )
G(ξ )

)2

+ d1

(
G′(ξ )
G(ξ )

)–1

+ d2

(
G′(ξ )
G(ξ )

)–2

.

(3.31)

By substituting (3.31) into the system of ODEs (3.30), using linear ODE (3.10), and equat-
ing the coefficients of same powers of (G′/G) to zero we obtain a set of simultaneous alge-
braic equations among a0, a1, a2, b1, b2, c0, c1, c2, d1, d2, and μ as follows:

(i) 24b2K2μ
3 + 2b2

2μ = 0,

(ii) 6d2K1μ
2 + 6b1μ

3K2 + 3μb1b2 = 0,

(iii) 2d1K1μ
2 + 40b2μ

2K2 + 2a0μb2 + b2
1μ + 2b2

2 – 2b2μ = 0,

(iv) 8d2K1μ + 8b1μ
2K2 + a0μb1 + b2a1μ + 3b1b2 – b1μ = 0,

(v) 2d1K1μ + 16b2μK2 + 2a0b2 – 2b2a2μ + b2
1 + 2a2b2μ – 2b2 = 0,

(vi) 2d2K2 – 2a1μ
2K2 + 2b1μK2 – a0a1μ + a0b1 + a1b2 – b1a2μ

+ 2c2K1μ
2 + a1μ – b1 = 0, (3.32)

(vii) 2c1K1μ – 16a2μ
2K2 – 2a0a2μ – a2

1μ + 2a2μ = 0,

(viii) 8c2K1μ – 8a1μK2 – 3a1a2μ – a0a1 – a2b1 + a1 = 0,

(ix) 2c1K1 – 40a2μK2 – 2a0a2 – a2
1 – 2a2

2μ + 2a2 = 0,

(x) –6a1K2 – 3a1a2 + 6K1c2 = 0,

(xi) –24a2K2 – 2a2
2 = 0.

Also, when we put (3.31) into the second equation of (3.30), it brings the system of al-
gebraic equations as follows:

(i) 24b2K5μ
3 + 2K3d2

2μ = 0,

(ii) 6d2K4μ
2 + 6b1μ

3K5 + 3K3μd1d2 = 0,

(iii) 2d1K4μ
2 + 40b2μ

2K5 + 2c0μd2K3 + K3d2
1μ + 2K3d2

2 – 2d2μ = 0,

(iv) 8d2K4μ + 8b1μ
2K5 + K3c0μd1 + K3d2c1μ + 3K3d1d2 – d1μ = 0,

(v) 2d1K4μ + 16b2μK5 + 2K3c0d2 – 2K3d2c2μ + K3d2
1 + 2K3c2d2μ – 2d2 = 0,

(vi) 2d2K4 – 2a1μ
2K5 + 2b1μK5 – K3c0c1μ + K3c0d1 + K3c1d2 – K3d1c2μ

+ 2c2K4μ
2 + c1μ – d1 = 0, (3.33)

(vii) 2c1K4μ – 16a2μ
2K5 – 2K3c0c2μ – K3c2

1μ + 2c2μ = 0,

(viii) 8c2K4μ – 8a1μK5 – 3K3c1c2μ – K3c0c1 – K3c2d1 + c1 = 0,

(ix) 2c1K4 – 40a2μK5 – 2K3c0c2 – K3c2
1 – 2K3c2

2μ + 2c2 = 0,

(x) –6a1K5 – 3K3c1c2 + 6K4c2 = 0,
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(xi) –24a2K5 – 2K3c2
2 = 0.

Similarly solving these algebraic equations as under the above subalgebras yields the
following.

Case 1:

a0 = –
1
8

a2c2
1 – 8c2

2
c2

2
, a1 =

c1a2

c2
, a2 = a2,

b1 =
1

16
a2c3

1

c3
2

, b2 =
1

256
a2c4

1
c4

2
, c0 = –

1
8

K3c2
1 – 8c2

K3c2
,

c1 = c1, c2 = c2, d1 =
1

16
c3

1
c2

2
,

d2 =
1

256
c4

1

c3
2

, K1 =
5

12
c1a2

2
c2

2
, K2 = –

1
12

a2,

K3 = K3, K4 =
5

12
c1K3, K5 = –

1
12

c2
2

a2
K3, μ = –

1
16

c2
1

c2
2

.

(3.34)

Case 2:

a0 = 1, a1 = a1, a2 = 0, b1 = b2 = 0, c0 =
c1

2K4
,

c1 = c1, c2 = 0, d1 = d2 = 0, K1 =
a2

1
2c1

,

K2 = 0, K3 =
2K4

c1
, K5 = 0,

K4 = K4, μ = μ.

(3.35)

Now, when we substitute equations (3.34), (3.35) and the solution of linear equation
(3.10) into equation (3.31), we get the solution of nonlinear equation (3.30). Further, using
the value of solution f (ξ ) and g(ξ ) into equation (3.29), we have hyperbolic, trigonometric,
and rational function solutions of equation (1.1) as follows.

Case 1:
Now, under Case 1 we have μ = – 1

16
c2

1
c2

2
, i.e., (μ < 0), then the hyperbolic function solution

of the main system (1.1) is given as follows:

u(x, t) = –
1
8

a2c2
1 – 8c2

2
c2

2

+
c1a2

c2

[√
–μ

A sinh(√–μ(x –
∫

τ1(t) dt)) + B sinh(√–μ(x –
∫

τ1(t) dt))
A sinh(√–μ(x –

∫
τ1(t) dt)) + B sinh(√–μ(x –

∫
τ1(t) dt))

]

+ a2

[√
–μ

A sinh(√–μ(x –
∫

τ1(t) dt)) + B sinh(√–μ(x –
∫

τ1(t) dt))
A sinh(√–μ(x –

∫
τ1(t) dt)) + B sinh(√–μ(x –

∫
τ1(t) dt))

]2

+
1

16
a2c3

1

c3
2

[√
–μ

A sinh(√–μ(x –
∫

τ1(t) dt)) + B sinh(√–μ(x –
∫

τ1(t) dt))
A sinh(√–μ(x –

∫
τ1(t) dt)) + B sinh(√–μ(x –

∫
τ1(t) dt))

]–1

+
1

256
a2c4

1
c4

2

[√
–μ

A sinh(√–μ(x –
∫

τ1(t) dt)) + B sinh(√–μ(x –
∫

τ1(t) dt))
A sinh(√–μ(x –

∫
τ1(t) dt)) + B sinh(√–μ(x –

∫
τ1(t) dt))

]–2

,
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w(x, t) = –
1
8

K3c2
1 – 8c2

K3c2

+ c1

[√
–μ

A sinh(√–μ(x –
∫

τ1(t) dt)) + B sinh(√–μ(x –
∫

τ1(t) dt))
A sinh(√–μ(x –

∫
τ1(t) dt)) + B sinh(√–μ(x –

∫
τ1(t) dt))

]

+ c2

[√
–μ

A sinh(√–μ(x –
∫

τ1(t) dt)) + B sinh(√–μ(x –
∫

τ1(t) dt))
A sinh(√–μ(x –

∫
τ1(t) dt)) + B sinh(√–μ(x –

∫
τ1(t) dt))

]2

+
1

16
c3

1
c2

2

[√
–μ

A sinh(√–μ(x –
∫

τ1(t) dt)) + B sinh(√–μ(x –
∫

τ1(t) dt))
A sinh(√–μ(x –

∫
τ1(t) dt)) + B sinh(√–μ(x –

∫
τ1(t) dt))

]–1

+
1

256
c4

1

c3
2

[√
–μ

A sinh(√–μ(x –
∫

τ1(t) dt)) + B sinh(√–μ(x –
∫

τ1(t) dt))
A sinh(√–μ(x –

∫
τ1(t) dt)) + B sinh(√–μ(x –

∫
τ1(t) dt))

]–2

,

(3.36)

where a2, c1, c2, K3, and A, B are arbitrary constants.
Again under Case 1, if we substitute μ = 0 in equation (3.34), then we have K1 = K4 =

c1 = 0. Therefore, for μ = 0, we obtained the rational function solutions of equation (1.1)
as follows:

u(x, t) = 1 + a2

[
B

A + B(x –
∫

τ1(t) dt)

]2

,

w(x, t) =
1

8K3
+ c2

[
B

A + B(x –
∫

τ1(t) dt)

]2

,

(3.37)

where A, B and a2, c2, K3 are arbitrary constants.
Case 2:
If μ > 0, the trigonometric function solution of the main equation (1.1) is given by the

following relation:

u(x, t) = 1 + a1

[√
μ

A sin(√μ(x –
∫

τ1(t) dt)) – B sin(√μ(x –
∫

τ1(t) dt))
A sin(√μ(x –

∫
τ1(t) dt)) + B sin(√μ(x –

∫
τ1(t) dt))

]
,

w(x, t) =
c1

2K4
+ c1

[√
μ

A sin(√μ(x –
∫

τ1(t) dt)) – B sin(√μ(x –
∫

τ1(t) dt))
A sin(√μ(x –

∫
τ1(t) dt)) + B sin(√μ(x –

∫
τ1(t) dt))

]
,

(3.38)

where A, B, and K4 are arbitrary constants.
If μ < 0, then the hyperbolic function solution of the main system (1.1) is given as fol-

lows:

u(x, t) = 1 + a1

[√
–μ

A sinh(√–μ(x –
∫

τ1(t) dt)) + B sinh(√–μ(x –
∫

τ1(t) dt))
A sin(√–μ(x –

∫
τ1(t) dt)) + B sin(√–μ(x –

∫
τ1(t) dt))

]
,

w(x, t) =
c1

2K4
+ c1

[√
–μ

A sinh(√–μ(x –
∫

τ1(t) dt)) + B sinh(√–μ(x –
∫

τ1(t) dt))
A sinh(√–μ(x –

∫
τ1(t) dt)) + B sinh(√–μ(x –

∫
τ1(t) dt))

]
,

(3.39)

where A, B, and K4 are arbitrary constants.
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Figure 3 Kink compacton soliton solutions given by equation (3.40) with a1 = 1, c1 = –1, K4 = –1, A = B = 1,
and τ1(t) = cos ech2(t)

When μ = 0, we obtain the rational solution as follows:

u(x, t) = 1 + a1

[
B

A + B(x –
∫

τ1(t) dt)

]
,

w(x, t) =
c1

2K4
+ c1

[
B

A + B(x –
∫

τ1(t) dt)

]
,

(3.40)

where A, B, and K4 are arbitrary constants (see Fig. 3).

4 Concluding and discussion
In this paper, the authors have studied new soliton solutions of time-dependent coupled
KdV–Burgers equation with the help of two methods: the Lie symmetry group method
and the modified (G′/G)-expansion method. Thus, by the applications of Lie symmetry
method, we have reduced nonlinear PDEs (1.1) to the system of nonlinear ODEs under
different subalgebras. The reduced nonlinear ODEs are highly nonlinear, which is difficult
to solve analytically. Therefore, in the quest of solutions for the reduced nonlinear ODEs,
we take the help of a novel method called (G′/G)-expansion method. The physical behav-
iors of the obtained solutions are represented with the help of Fig. 1, Fig. 2, and Fig. 3.
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