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Abstract
In this paper we study the Boussinesq equation with power law nonlinearity and dual
dispersion which arises in fluid dynamics. A particular kind of product of distributions
is introduced and applied to solve non-smooth solutions of this equation. It is proved
that, under certain conditions, a distribution solution as a singular Dirac delta function
exists for this model. For the first time, this kind of product of distributions is used to
deal with a fourth order nonlinear partial differential equation.
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1 Introduction
In 1872, Boussinesq [1] derived one-dimensional nonlinear water wave equation under
the assumption that the horizontal velocity is constant along the water depth, and the ver-
tical velocity is linear along the water depth, and it is called the Boussinesq equation. The
classical Boussinesq equation is the momentum equation of mass conservation and in-
compressible inviscid fluid. It has the following properties: (1) the governing equation is
expressed by water depth and velocity, which satisfies the conservation of mass and mo-
mentum in any case, so it can describe wave refraction, diffraction, and the interaction
between waves and reflected waves; (2) the Boussinesq equation is weak dispersive and
nonlinear, it is only suitable for the shallow water area; (3) the classical Boussinesq equa-
tion cannot be used to deal with the strong nonlinearity of wave breaking and the influence
of environmental current. There are more details about advantages and disadvantages and
the application of Boussinesq equation in [2–10].

However, some characteristics of the classic Boussinesq equation limit the application
of the equation in wider range. In order to expand the range of water depth of the equation,
many researchers came to study the modified or generalized forms of Boussinesq equa-
tion, so that it can be applied to the deep water area. For example, the velocity variation
or the higher derivative term is introduced to adjust the linear dispersion performance of
the equation.
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This paper is devoted to the study of Boussinesq equation with power law nonlinearity
and dual dispersion that is investigated in fluid dynamics [11–13] as follows:

utt – k2uxx + a
(
u2n)

xx + b1uxxxx + b2uxxtt = 0, (1.1)

where u(x, t) represents the wave profile, x and t are spacial and temporal variables, respec-
tively, in addition, k, a, and bj for j = 1, 2 are real-valued constants. The first term means
the developing term, the first two terms form the wave operator, the term with coefficient
a represents the nonlinear action, where n is the power law nonlinearity parameter. Then,
the two terms with coefficients bj (j = 1, 2) are the dispersions, where the first one is the
regular dispersion, while the second one arises as the surface tension [14].

Special solutions play an important role in the research of partial differential equations,
and they can be used to describe and explain many phenomena in physics and engineer-
ing and so on. It is interesting to consider the different kinds of exact solutions of (1.1).
There were some results involving exact solutions to be obtained, here we give a brief re-
view. Equation (1.1) was studied in order to look for exact solutions in [11], there three
integration tools were adopted in order to extract the soliton solutions. These methods
used in [11] are the traveling wave hypothesis, ansatz method, and the semi-inverse vari-
ational principle. The shock waves and singular soliton solutions to (1.1) were obtained
and the wave profiles were also displayed numerically. Besides, the connection between
singular solitons and solitary waves was also established. The conserved quantities were
also obtained by the aid of multiplier method in Lie symmetry. Soliton solutions of (1.1)
in two forms were considered in [12]. The solitary wave ansatz was used to carry out the
integration of these equations. Two of the conserved quantities were laid down. Finally,
the numerical simulation was carried out for these two equations as well. In [13], from
the view of integrability as well, the Boussinesq equation with power law nonlinearity and
dual dispersion (1.1) was studied, three additional algorithms were used to search for so-
lutions; as a result, the exact expressions of solitary wave solution, singular solitary waves,
shock waves, plane waves, and finally singular periodic solutions were obtained. There are
also many meaningful results established for fractional Boussinesq equation or general-
ized Boussinesq systems, readers can refer to [15–20] for details.

However, to the best of our knowledge, some other special solution such as the singu-
lar traveling delta wave has not been considered for (1.1) yet. In [21–26], in order to deal
with non-smooth or distribution solutions of some nonlinear partial differential equa-
tions, such as delta function, Heaviside function etc., the authors have constructed a very
suitable definition of products of distribution so that the results remain distributions for
any product of distributions. It is a reasonable and effective extension of products of classi-
cal functions or distribution multiplied by smooth function, and can return to the classical
products if both the factors multiplied by each other are classical functions. We will in-
troduce the details about the products of distributions later. It is worth noticing that, in
[21–26], only the first order partial differential models were studied. So far, the higher or-
der partial differential equations, even the second order ones, have not been considered
in this way yet. It is a new attempt to use these methods in the above references to study
the distribution solutions for a fourth order equation like (1.1). So, in this paper, we use
the relative definition and approach on products of distributions therein to research some
specific aspects of propagation of delta waves for (1.1). It is proved that, in a sense of the
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products of distributions defined by [21–26], under certain conditions, the traveling delta
wave

u(x, t) = mδ(x – ct) (1.2)

is a solution of (1.1), where δ stands for the Dirac measure concentrated at the origin.
First of all, it is necessary to give an overview on the products of distributions, because

we have to depend on such products of distributions to obtain the relative results.
Non-smooth functions or singular functions can be regarded as distributions or gener-

alized functions. We have to turn to distributions or generalized functions when we want
to obtain non-smooth or singular solutions for nonlinear partial differential equations be-
cause of the nonlinearity. Now we recall some results on products of distributions. Firstly,
Maslov and his collaborators [27–30] introduced several distribution algebras, and later
Rosinger [31–34] did some similar works. These works brought into light algebraic struc-
tures involved in embedding the space of distributions D′ into certain quotient algebras.
The article of Egorov [35] is a very good guide for a preliminary review about those types
of approaches to products of distributions.

Later, several more products of distributions were introduced, the most popular one is
the work of Colombeau [36, 37], it is especially related to the framework of Rosinger. The
book of Oberguggenberger [38] can be well referred to in this direction.

As is well known, unfortunately, some distributional products are probably not success-
ful in multiplying distributions with a strong singularity at a given point, for instance,
the product δδ of two Dirac-delta measures. Other approaches obtain such products at
the price of leaving out the space of distributions. For example, δδ is an element of the
Colombeau’s algebra G, but this element has no associated distribution. Consequently,
from the mathematical point of view, δδ is well defined but difficult to interpret at a level
of theoretical physics; some indeterminacies also arise.

The approach in [21, 22] is a general theory that provides a distribution as the outcome
of any product of distributions, once we fix a certain function α. Such a function quanti-
fies the indeterminacy inherent to the products, and, once fixed, its physical interpretation
becomes clear. They stress that this indeterminacy is not avoidable in general, and it plays
an essential role in many questions. Concerning this point, we can refer to Sect. 6 in [22]
and also to [39–41]. For instance, within their framework, they have exhibited explicitly
[21, 25] Dirac delta wave solutions (and also solutions which are not measures) for the
turbulent model ruled by Burgers nonconservative equation, and some phenomena, like
“infinitely narrow soliton solutions,” obtained by Maslov and his collaborators arise di-
rectly in distributional form [25] as a particular case. Also in the same setting, for a model
ruled by a singular perturbation of Burgers conservative equation, they have proved [26]
that delta-waves under collision behave as classical soliton collisions (as in the Korteweg–
de Vries equation).

The rest of this paper is organized as follows. In Sect. 2, we give a review about the delta
distribution and some of its properties used later. And then we introduce the product of
distributions in a particular sense and some arithmetic rules in Sect. 3. In Sect. 4 we define
the concept of α-solution and show that it is a particular extension of classical solution.
Finally, under some conditions, we prove that (1.1) possesses traveling delta wave solutions
in Sect. 5.
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2 Delta function and some of its properties
In mathematics, the Dirac delta function (δ function) is a generalized function or distri-
bution. It is used to model the density of an idealized point mass or point charge as a
function equal to zero everywhere except for zero and whose integral over the entire real
line is equal to one.

That is,

δ(x) =

⎧
⎨

⎩
+∞, x = 0,

0, x �= 0,
(2.1)

and it is also constrained to satisfy the identity

∫ +∞

–∞
δ(x) dx = 1. (2.2)

As there is no function that has these properties, the computations made by the theoret-
ical physicists appeared to mathematicians as nonsense until the introduction of distribu-
tions by Laurent Schwartz to formalize and validate the computations. As a distribution,
the Dirac delta function is a linear functional that maps every function to its value at zero.

Here we present some properties that will be used later. The delta function satisfies the
following scaling property for a nonzero scalar μ:

∫ +∞

–∞
δ(μx) dx =

∫ +∞

–∞
δ(y)

dy
|μ| =

1
|μ| , (2.3)

and so

δ(αx) =
δ(x)
|α| . (2.4)

In particular, the delta function is an even distribution in the sense that

δ(–x) = δ(x). (2.5)

The distributional derivative of the Dirac delta distribution is the distribution δ′ defined
on compactly supported smooth test functions ϕ

δ′[ϕ] = –δ
[
ϕ′] = –ϕ′(0). (2.6)

The above equality here is a kind of integration by parts, for if δ were a true function,
then

∫ ∞

–∞
δ′(x)ϕ(x) dx = –

∫ ∞

–∞
δ(x)ϕ′(x) dx. (2.7)

The kth derivative of δ is defined similarly as the distribution given on test functions by

δ(k)[ϕ] = (–1)kϕ(k)(0). (2.8)
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In particular, δ is an infinitely differentiable distribution. Furthermore, the convolutions
of δ and δ′ with a compactly supported smooth function f are

δ ∗ f = δ ∗ f = f (2.9)

and

δ′ ∗ f = δ ∗ f ′ = f ′ (2.10)

respectively, which follows from the properties of the distributional derivative of a convo-
lution.

3 Product of distributions
This section introduces the product of distributions defined in [21, 22].

LetD be the space of compactly supported infinitely differentiable complex-valued func-
tions defined on R, let D′ be the space of Schwartz distributions, and let α ∈ D be even
with

∫ ∞
–∞ α = 1. In the theory of products in [21, 22], for computing the α-product Tα̇S,

they arrive at a relation of the form

Tα̇S = Tβ + (T ∗ α)f (3.1)

for T ∈D′ and S = β + f ∈ Cp ⊕D′
μ, where p ∈ 0, 1, 2, . . . ,∞,D′p is the space of distributions

of order p in the sense of Schwartz (D′∞ means D′), D′
μ is the space of distributions whose

support has measure zero in the sense of Lebesgue, and Tβ is the usual Schwartz product
of a D′p distribution by a Cp-function.

Remark 3.1 The α-product is a generalization of the classical product of functions in the
distribution sense. Therefore, the weak solution of the nonlinear PDE is related to this
product. It is clear to see that, in (3.1), if the functions T and S are classical functions,
then S = β + f , f = 0 and Tα̇S = Tβ + (T ∗ α)f = Tβ . Hence the α-product is equivalent to
the classical product.

For instance, if δ stands for the Dirac measure, we have

δα̇δ = δα̇(0 + δ) = (δ ∗ α)δ = αδ = α(0)δ, (3.2)

δα̇(Dδ) = (δ ∗ α)(Dδ) = α(0)(Dδ) – α′(0)δ = α(0)(Dδ), (3.3)

(Dδ)α̇δ =
(
(Dδ) ∗ α

)
δ =

(
δ ∗ α′)δ = α′(0)δ = 0, (3.4)

where D denotes the generalized derivative.
It is easy to define the product of a distribution with a smooth function. A limitation

of the theory of distributions is that there is no associative product of two distributions
extending the product of a distribution by a smooth function, as has been proved by Lau-
rent Schwartz in the 1950s [42, 43]. So about the properties of this kind of product of
distributions, it is quite different from the pointwise product of classical functions.

This α-product is bilinear, has unit element(the constant function taking the value 1
viewed as a distribution), is invariant under translations and also under the action of the
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transformation t → –t from R onto R. In general, this product is neither associative nor
commutative; however,

∫

R
Tα̇S =

∫

R
Sα̇T (3.5)

for any α if T , S ∈ D′
μ and T or S is compactly supported. In general, α-products cannot

be completely localized. This becomes clear by noticing that supp(Tα̇S) ⊂ supp S (as for
ordinary functions), but it can happen that supp(Tα̇S) ⊂ supp T . Thus, in the following,
α-product is regarded as a global product, and when we apply the product to differential
equations, the solutions are naturally viewed as global solutions. Product (3.1) is consistent
with the Schwartz product of D′p-distributions by Cp-functions (if these functions are
placed on the right-hand side) and satisfy the standard differential rules.

In general, α-product cannot be completely localized. Thus, in the following, α-product
is regarded as a global product. The Leibniz formula must be represented in the form

D(Tα̇S) = (DT)α̇S + Tα̇(DS), (3.6)

where D is the derivative operator in the distributional sense.
Besides, we can use α-products (3.1) to define powers of some distributions. Thus, if

T = β + f ∈ Cp ⊕D′
μ ∩D′p, then

Tα̇T = β2 +
[
β + (β ∗ α) + (f ∗ α)

]
f , (3.7)

because T ∈ D′p ∩ (Cp ⊕ D′
μ). Since Tα̇T ∈ Cp ⊕ D′

μ ∩ D′p, we can define the α-powers
Tn

α (n ≥ 0 is an integer) by the recurrence formula

T0
α = 1, (3.8)

Tn
α =

(
Tn–1

α

)
α̇

T . (3.9)

Since the distributional products (3.1) are consistent with the Schwartz products of distri-
butions by functions (when functions are placed on the right-hand side), we have βn

α = βn

for all β ∈ Cp, and the consistency of this definition with the ordinary powers of Cp-
functions is proved. For instance, if m ∈ C, then (mδ)0

α = 1 and (mδ)n
α = mn[α(0)]n–1 for

n ≥ 2, which can readily be seen by induction.
We also have (τaT)n

α = τa(T)n
α in the distributional sense, where τa is the translation op-

erator defined by a ∈ R. Thus, in what follows, we shall write Tn instead of Tn
α (supposing

that α is fixed), which will also simplify the notation.
Notice that, under the definition of this kind product of distributions, if φ(u) is an entire

function of u, then φ ◦ u is well defined, here φ ◦ u is used to denote the expression of φ(u)
involving the product of distributions, and we have the following result.

Lemma 3.1 ([22]) If φ(u) is an entire function of u, then

φ ◦ (mδ) =

⎧
⎨

⎩
φ(0) + φ′(0)mδ if α(0) = 0,

φ(0) + φ[mα(0)]–φ(0)
α(0) δ if α(0) �= 0.

(3.10)
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Proof If φ(u) is an entire function of u, then we have

φ(u) = a0 + a1u + a2u2 + · · · , (3.11)

where an = φn(0)
n! for n = 0, 1, 2, . . . . For T ∈ Cp ⊕ (D′p ∪ D′

μ), we define the composition
φ ◦ T as follows:

φ ◦ T = a0 + a1T + a2T2 + · · · (3.12)

provided this series converges in D′. This is clearly a consistent definition, and we have
τa(φ ◦ T) = φ ◦ (τaT) if φ ◦ T or φ ◦ (τaT) is well defined. Recall that φ ◦ T depends on α in
general. Now we shall show that φ ◦ (mδ) is a distribution for all m ∈C. We have (mδ)0 = 1
and (mδ)1 = mδ and, for n ≥ 2,

(mδ)n = mn[α(0)
]n–1

δ, (3.13)

as we have already seen. Then, according to (3.12),

φ ◦ (mδ) = a0 + a1mδ + a2(mδ)2 + · · · , (3.14)

because, as we shall see, this series is convergent in D′. Indeed, by (3.13), we have

φ ◦ (mδ) = a0 + a1mδ + a2m2α(0)δ + a3m3[α(0)
]2

δ + · · · , (3.15)

and thus, if α(0) = 0, then φ ◦ (mδ) = a0 + a1mδ, while if α(0) �= 0, then

α(0)
[
φ ◦ (mδ) – a0

]
= a1α(0)mδ + a2m2[α(0)

]2
δ + a3m3[α(0)

]3
δ + · · · , (3.16)

which is equivalent to

α(0)
[
φ ◦ (mδ) – a0

]
=

[
a1α(0)m + a2m2[α(0)

]2 + a3m3[α(0)
]3 + · · ·]δ, (3.17)

because, by (3.11), the series {· · · } converges to φ(mα(0)) – a0. In this case,

α(0)
[
φ ◦ (mδ) – a0

]
=

[
φ
(
mα(0)

)
– a0

]
δ, (3.18)

from the above equation, we have

φ ◦ (mδ) = φ(0) +
φ[mα(0)] – φ(0)

α(0)
δ. (3.19)

This completes the proof. �

4 The concept of α-solution
For simplicity, we first deal with the case n = 1 for (1.1), that is,

utt – k2uxx + a
(
u2)

xx + b1uxxxx + b2uxxtt = 0. (4.1)

Let us consider equation (4.1). By a classical solution of (4.1) we mean a forth order contin-
uously differentiable complex function (x, t) → u(x, t) which satisfies (4.1) at every point
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of its domain. Let I be an interval of R with nonempty interior, and let F(I) be the space of
second order continuously differentiable mappings ũ : I →D′ in the sense of the topology
of D′. For t ∈ I , the notation [ũ(t)](x) is sometimes used to stress that the distribution ũ(t)
acts on functions ξ ∈D that depend on x.

Definition 4.1 The mapping ũ ∈ F(I) is said to be an α-solution of (4.1) if and only if there
is an α such that, for all t ∈ I ,

(
1 + b2D(2))d2ũ(t)

dt2 – k2D(2)̃u(t) + aD(2)(ũ(t)α̇ũ(t)
)

+ b1D(4)̃u(t) = 0, (4.2)

where D(n) (n = 2 or 4) stands for the distributional derivative.

Theorem 4.1 If u is a global classical solution of equation (4.1) on R × I , then, for any α,
the map ũ defined by [̃u(t)](x) = u(x, t) is a global α-solution of (4.1).

Theorem 4.2 If u : R × [0, +∞) → C is a C4-function and ũ : [0, +∞) → D′defined by
[̃u(t)](x) = u(x, t) is a global α-solution of (4.1), then u is a global classical solution of (4.1).

For the proof, it is sufficient to note that a C4-function u(x, t) can be treated as a contin-
uously differentiable function ũ ∈ F(I) defined by [̃u(t)](x) = u(x, t) and to use the consis-
tency of the α-products with the classical ones.

Remark 4.1 Theorems 4.1 and 4.2 show that α-solution is a particular extension of the
classical solution.

5 The propagation of a wave profile T ∈D′

Definition 5.1 Let τct be a translation operator satisfying τctT(·) = T(· – ct). We say that
T ∈ D′ α-propagates with the speed c, according to (4.1), if and only if the mapping ũ ∈ F(I)
defined by ũ(t) = τctT is an α-solution of (4.1).

Theorem 5.1 Let T ∈ D′ be a nonconstant distribution. Then T α-propagates with the
speed c, according to (4.1), if and only if

c2(1 + b2D(2))D(2)T – k2D(2)T + aD(2)(Tα̇T) + b1D(4)T = 0. (5.1)

Proof Assume that T α-propagates with the speed c. By Definitions 4.1 and 5.1 we have

(
1 + b2D(2))d2(τctT)

dt2 – k2D(2)(τctT) + aD(2)((τctT)α̇(τctT)
)

+ b1D(4)(τctT) = 0 (5.2)

for all t ∈ I .
According to [13, p. 648], we have d2(τctT)

dt2 = c2D(2)(τctT), so the above equation can be
rewritten as

c2(1 + b2D(2))D(2)(τctT) – k2D(2)(τctT) + aD(2)((τctT)α̇(τctT)
)

+ b1D(4)(τctT) = 0. (5.3)

Using the translation operator τ–ct to the above equation, we have

c2(1 + b2D(2))D(2)T – k2D(2)T + aD(2)[τ–ct
(
(τctT)α̇(τctT)

)]
+ b1D(4)T = 0. (5.4)
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Again, since τct(T2)α̇ = (τctT)2
α̇ , it follows that

c2(1 + b2D(2))D(2)T – k2D(2)T + aD(2)(Tα̇T) + b1D(4)T = 0. (5.5)

Especially, if T = mδ(x), it can be verified that

d2(τctmδ(x))
dt2 = c2D(2)(τctmδ(x)

)
. (5.6)

Let ξ ∈D be a test function, in fact,

〈
d(τctmδ(x))

dt
, ξ

〉
=

〈
d(mδ(x – ct))

dt
, ξ

〉
(5.7)

=
〈

lim
h→0

mδ(x – c(t + h)) – mδ(x – ct)
h

, ξ
〉

(5.8)

= lim
h→0

1
h
[〈

mδ
(
x – c(t + h)

)
, ξ

〉
–

〈
mδ(x – ct), ξ

〉]
(5.9)

= lim
h→0

1
h
[
mξ

(
c(t + h)

)
– mξ (ct)

]
(5.10)

= cmξ ′(ct) (5.11)

= cm
〈
δ(x – ct), ξ ′(x)

〉
(5.12)

= –cm
〈
δ′(x – ct), ξ (x)

〉
(5.13)

=
〈
–cmδ′(x – ct), ξ (x)

〉
, (5.14)

that is,

d(τctmδ(x))
dt

= –mcδ′(x – ct), (5.15)

where the prime of δ is the distributional derivative. Similarly, we have

〈
d2(τctmδ(x))

dt2 , ξ
〉

=
〈

d2(mδ(x – ct))
dt2 , ξ

〉
(5.16)

=
〈

lim
h→0

cmδ′(x – c(t + h)) – cmδ′(x – ct)
h

, ξ
〉

(5.17)

= lim
h→0

1
h
[〈

cmδ′(x – c(t + h)
)
, ξ

〉
–

〈
cmδ′(x – ct), ξ

〉]
(5.18)

= lim
h→0

1
h
[
cmξ ′(c(t + h)

)
– cmξ ′(ct)

]
(5.19)

= c2mξ ′′(ct) (5.20)

= c2m
〈
δ(x – ct), ξ ′′(x)

〉
(5.21)

= –c2m
〈
δ′(x – ct), ξ ′(x)

〉
(5.22)

=
〈
c2mδ′′(x – ct), ξ (x)

〉
, (5.23)
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namely,

d2(τctmδ(x))
dt2 = c2D(2)(mδ(x – ct)

)
= c2D(2)(τctmδ(x)

)
. (5.24)

�

Now we show that a Dirac delta wave T = mδ α-propagating with speed c is a solution
of (4.1), m ∈ C is a nonzero constant.

Theorem 5.2 Dirac delta wave T = mδ α-propagates with speed c according to (4.1) if and
only if one of the following two conditions is satisfied:

(1) If α(0) = 0, then c2 = k2 = – b1
b2

.
(2) If α(0) �= 0, the wave speed c satisfies c2 = – b1

b2
, the α function should be chosen with

α(0) = b1+k2b2
ab2m .

Proof According to the definition of product of distributions and Lemma 3.1, calculating
directly, we have

φ ◦ (mδ) = mδ(x)α̇mδ(x) =

⎧
⎨

⎩
0 if α(0) = 0,

m2α(0)δ(x) if α(0) �= 0.
(5.25)

By using Theorem 5.1, substituting (5.25) into (5.1), we have

c2(1 + b2D(2))mD(2)δ(x) – k2mD(2)δ(x) + aD(2)(m2α(0)δ(x)
)

+ b1mD(4)δ(x) = 0, (5.26)

or

c2(1 + b2D(2))mD(2)δ(x) – k2mD(2)δ(x) + b1mD(4)δ(x) = 0, (5.27)

that is,

[
c2 – k2 + amα(0)

]
D(2)δ(x) +

(
c2b2 + b1

)
D(4)δ(x) = 0, (5.28)

or

(
c2 – k2)D(2)δ(x) +

(
c2b2 + b1

)
D(4)δ(x) = 0, (5.29)

the above equation holds true if and only if c2 = – b1
b2

and α(0) = b1+k2b2
ab2m or c2 = k2 = – b1

b2
.

When n = 2, equation (1.1) becomes

utt – k2uxx + a
(
u4)

xx + b1uxxxx + b2uxxtt = 0. (5.30)
�

Following the above steps, we can obtain the δ solution for (5.30) by the following the-
orem.

Theorem 5.3 Dirac delta wave T = mδ α-propagates with speed c according to (5.30) if
and only if one of the following two conditions is satisfied:
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(1) If α(0) = 0, then c2 = k2 = – b1
b2

.
(2) If α(0) �= 0, the wave speed c satisfies c2 = – b1

b2
, the α function should be chosen with

α(0) = 1
m

3
√

b1+k2b2
ab2

.

Proof On the basis of the definition of product of distributions and Lemma 3.1, calculating
directly, we have

φ ◦ (mδ) =
[
mδ(x)

]4
α̇

=

⎧
⎨

⎩
0 if α(0) = 0,

m4[α(0)]3δ(x) if α(0) �= 0,
(5.31)

where [mδ(x)]4
α̇ = mδ(x)α̇mδ(x)α̇mδ(x)α̇mδ(x). Then, substituting (5.31) into the following

equation

c2(1 + b2D(2))D(2)T – k2D(2)T + aD(2)(T4
α̇

)
+ b1D(4)T = 0, (5.32)

where T4
α̇ = Tα̇Tα̇Tα̇T , we have

c2(1 + b2D(2))mD(2)δ(x) – k2mD(2)δ(x) + aD(2)(m4[α(0)
]3

δ(x)
)

+ b1mD(4)δ(x) = 0,

(5.33)

or

c2(1 + b2D(2))mD(2)δ(x) – k2mD(2)δ(x) + b1mD(4)δ(x) = 0, (5.34)

that is,

(
c2 – k2 + a

[
mα(0)

]3)D(2)δ(x) +
(
c2b2 + b1

)
D(4)δ(x) = 0, (5.35)

or

(
c2 – k2)D(2)δ(x) +

(
c2b2 + b1

)
D(4)δ(x) = 0, (5.36)

the above equation holds true if and only if c2 = – b1
b2

and α(0) = 1
m

3
√

b1+k2b2
ab2

or c2 = k2 =
– b1

b2
. �

Furthermore, with basically similar steps, we can get the traveling delta wave solution
of (1.1) for any positive integer n.

Theorem 5.4 Dirac delta wave T = mδ α-propagates with speed c according to (1.1) if and
only if the following two conditions are satisfied:

(1) If α(0) = 0, then c2 = k2 = – b1
b2

.
(2) If α(0) �= 0, the wave speed c satisfies c2 = – b1

b2
, the α function should be chosen with

α(0) = 1
m

2n–1
√

b1+k2b2
ab2

.
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6 Conclusion
Up to now, only first and second order nonlinear partial differential equations have been
investigated with this kind of product of distributions. This paper has extended the ap-
plication of such product of distributions into a higher order nonlinear partial differential
equation; under some conditions, it is verified that Dirac delta function with a translation
at speed c is a singular solution of (1.1). The result of this paper shows that more higher
order nonlinear models are able to be dealt with in this way.
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