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Abstract
In the paper, we introduce a new notion of reduced linear c-shift operator Lrc f , and
with the aid of this new operator, we study the uniqueness of meromorphic functions
f (z) and Lrc f sharing two or more values in the extended complex plane. The results
obtained in the paper significantly improve a number of existing results. Further,
using the notion of weighted sharing of sets, we deal the same problem. We exhibit a
handful number of examples to justify certain statements relevant to the content of
the paper. We are also able to determine the form of the function that coincides with
its reduced linear c-shift operator. At the end of the paper, we pose an open question
for future research.
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1 Introduction and results
At the outset, we assume that the readers are familiar with the standard notations and
basic results of Nevanlinna’s value distribution theory (see [6, 14]). Let f be a nonconstant
meromorphic functions defined in the open complex plane C.

We recall that T(r, f ) denotes the Nevanlinna characteristic function of a noncon-
stant meromorphic function f and N(r, 1

f –a ) = N(r; a; f ) (N(r, 1
f –a ) = N(r; a; f )) denotes the

counting function (reduced counting function) of a-points of a meromorphic function f .
We need the following definitions and notations.

Definition 1.1 For a nonconstant meromorphic function f and S ⊂C∪ {∞}, let

Ef (S) =
⋃

a∈S

{
(z, p) ∈C×N : f (z) = a with multiplicity p

}

and

Ef (S) =
⋃

a∈S

{
(z, 1) ∈C×N : f (z) = a

}
.

Then we say that f and g share the set S CM ( IM) if Ef (S) = Eg(S) (Ef (S) = Eg(S)).
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When S is a singleton set, the definition coincides with the traditional definition of value
sharing.

In 2001, Lahiri [8, 9] introduced the definition of weighted sharing, which plays a key role
in uniqueness theory as far as relaxation of sharing is concerned. In terms of Definition 1.1,
weighted sharing of sets can be expressed as follows.

Definition 1.2 ([9]) Let p be a nonnegative integer or infinity. For a ∈C∪{∞}, we denote
by Ep(a; f ) the set of all a-points of f , where an a-point of multiplicity m is counted m times
if m ≤ p and p + 1 times if m > p. For S ⊂C∪{∞}, we define Ef (S; k) =

⋃
a∈S Ek(a; f ), where

k is a nonnegative integer or infinity. If Ef (S; k) = Eg(S; k), then we say that f and g share
the set S with weight k and write it as (S, k).

Clearly, Ef (S) = Ef (S,∞) and Ef (S) = Ef (S, 0).

Definition 1.3 ([8]) We denote by N2(r, a; f ) the sum N(r, a; f ) + N(r, a; f | ≥ 2).

Let c be a nonzero complex constant, and let f (z) be a meromorphic function. The shift
operator is denoted by f (z + c). Also, we use the notations �c f and �k

c f to denote the
difference and kth-order difference operators of f (z), which are defined respectively by

�c f (z) = f (z + c) – f (z), �k
c f (z) = �c

(
�k–1

c f (z)
)
, k ∈N, k ≥ 2.

Carefully observing the definitions, we see that all the variants of difference operators
are nothing but linear combinations of different shift operators. So generalizing �k

c f , it
will be reasonable to introduce the linear c-shift operator Lcf = Lc(f )(z) as follows:

Lcf = Lc(f )(z) =
k∑

j=0

ajf (z + jc),

where aj ∈ C for j = 1, 2, . . . , k with ak �= 0. For convenience, putting ak = bk , ak–1 =
–bk–1, . . . , a0 = (–1)kb0, where bi are nonzero complex constants with

∑k
j=0(–1)k–jbj = 0,

we get a special operator denoted by Lr
c f = Lr

c(f )(z) and call it the reduced linear c-shift
operator.

Putting bk =
(k

k
)
, bk–1 =

( k
k–1

)
, bk–2 =

( k
k–2

)
, . . . , b0 =

(k
0
)

in Lr
c f , we easily verify that

Lr
c(f )(z) = �k

c f .
The problem of uniqueness of meromorphic functions sharing two values were first ini-

tiated by Rubel and Yang [12] as follows.

Theorem A ([12]) Let f be a nonconstant entire function. If f and f ′ share two distinct
values (a,∞) and (b,∞), then f ≡ f ′.

In 1979, relaxing the nature of sharing, Mues and Steinmetz [11] improved Theorem A
as follows.

Theorem B ([11]) Let f be a nonconstant entire function. If f and f ′ share two distinct
values (a, 0) and (b, 0), then f ≡ f ′.
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As derivative and difference operators are two natural extensions of a function, there
is an intimate relation between them. So it is natural to investigate an analogous result
corresponding to Theorem B under �cf .

In this direction, some progress has been made by Zhang and Liao [15].

Theorem C ([15]) Let f (z) be a transcendental entire function of finite order, c be a nonzero
constant, and a, b be two distinct finite constants. If �c f (�≡ 0) and f share (a,∞) and (b,∞),
then f ≡ �c f . Furthermore, f (z) must be of the form f (z) = 2 z

c h(z), where h(z) is an entire
function with period c.

Considering f (z) = eπ iz , Zhang and Liao [15] showed that though f (z) and �1 f share 0
CM, Theorem C ceases to hold. From the next example we easily see that in Theorem C,
two value sharing cannot even be replaced by one “nonzero” value sharing.

Example 1.1 Let f (z) = e( iπ
4 + 1

2 log 2) z
c + 1 + i. Then f and �c f = ie( iπ

4 + 1
2 log 2) z

c share 1 CM.
Here �c f = �4n+1

c f , n ∈N.

In fact, we can easily form the following series of examples, rather to say counterexam-
ples, which fortify the fact that in Theorem C, two value sharing cannot be replaced by
one “nonzero” value sharing.

Example 1.2 Let f (z) = e( 7iπ
4 + 1

2 log 2) z
c + 1 – i. Then f and �c f = –ie( 7iπ

4 + 1
2 log 2) z

c share 1 CM,
where �c f = �4n+1

c f , n ∈N.

Example 1.3 Let f (z) = e
iπz
3c + 3

2 +
√

3i
2 . Then f and �c f = (– 1

2 +
√

3i
2 )e iπz

3c share 1 CM, where
�c f = �3n+1

c f , n ∈N.

Example 1.4 Let f (z) = e
2iπz

3c – 1
2 + 3

√
3i

2 . Then f and �c f = (– 3
2 +

√
3i

2 )e 2iπz
3c share

√
3i CM.

Example 1.5 Let f (z) = e
4iπz

3c + 1
2 + 3

√
3i

2 . Then f and �c f = (– 3
2 –

√
3i

2 )e 4iπz
3c share

√
3i CM.

Example 1.6 Let f (z) = e 5iπz
3c + 3

2 –
√

3i
2 . Then f and �c f = (– 1

2 –
√

3i
2 )e 5iπz

3c share 1 CM, where
�c f = �3n+1

c f , n ∈N.

We note that in Theorems A, B, and C, researchers are engaged in finding the uniqueness
of a function with its first difference operator, but all are practically tacit about higher-
order difference operators.

Recently, for meromorphic functions, Jiang and Chen [7] obtained an analogous result
corresponding to Theorem C.

Theorem D ([7]) Let f (z) be a nonconstant meromorphic function of finite order such that
N(r, f ) = S(r, f ), let c ∈ C be a nonzero constant such that f (z + c) – f (z) �≡ 0, and let a and b
be two nonzero distinct finite complex constants. If f and �c f share (a,∞) and (b,∞), then
f (z + c) = 2f (z).

The prime intention of this paper is to improve this theorem for the reduced linear c-
shift operator. In fact, we have further relaxed the condition over poles in Theorem D.
First, we state the following theorem, which improves Theorems C and D.
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Theorem 1.1 Let f be a nonconstant meromorphic function of finite order, let c be a con-
stant such that f (z + c) – f (z) �≡ 0, and let a, b be two distinct nonzero finite constants.
Suppose Lr

c f and f (z) share (a,∞) and (b,∞). If (k + 1)N(r, f ) + 2(k + 2)N(r, f ) < T(r, f ),
then f ≡ Lr

c f .

Earlier in 2013, Chen and Yi [3] took into account the sharing of infinity in the direction
of Theorem D. Their result is as follows.

Theorem E ([3]) Let f (z) be a transcendental meromorphic function such that its order of
growth σ (f ) is not an integer or infinite, and let c ∈C be a constant such that f (z + c) �≡ f (z).
If �c f (z) and f (z) share three distinct values (a,∞) and (b,∞), (∞,∞), then f (z + c) ≡
2f (z).

Recently Lu and Lu [10] removed the restriction “σ (f ) is not an integer” in the theorem
and proved the following result.

Theorem F ([10]) Let f (z) be a transcendental meromorphic function of finite order, and
let c ∈C be a constant such that f (z +c) �≡ f (z). If �c f (z) and f (z) share three distinct values
(a,∞), (b,∞), and(∞,∞), then f (z + c) ≡ 2f (z).

Considering Theorems E and F, it will be pertinent to extend the theorems in the direc-
tion of Theorem 1.1. In this respect, in the following theorem, we see that at the expense
of allowing the sharing of {∞} along with the two shared values in Theorem 1.1, we have
been able to remove the inequality and withdrawn the restriction over the sharing values
to be nonzero.

Theorem 1.2 Let f be a nonconstant transcendental meromorphic function of finite order
that is not of period c, and let a and b be two distinct finite constants. Suppose Lr

c f and f (z)
share (a,∞), (b,∞), and (∞,∞). Then f ≡ Lr

c f .

The following examples satisfy Theorem 1.1 for entire functions when Lr
c f = �k

c f and
Lr

c f �= �k
c f .

Example 1.7 Let f (z) = enz . We choose c = 1
n log 2. Then for any even integer k and Lr

c f =
�k

c f , it is easy to verify that the condition of Theorem 1.1 is satisfied and �k
c f = f .

Example 1.8 Let f (z) = sin( πz
c )e

z logω
c , where c is a constant, and ωk = 1.

When k is an odd integer, choosing bi = –1, 0 ≤ i ≤ k, we have
∑k

j=0(–1)k–jbj = 0 and
Lr

c f = ωkf (z) + ωk–1 f (z) + ωk–2 f (z) + · · · + f (z) = f (z).
When k is an even integer, choosing bi(1 + ω) + 1 = (b0 + bk)(1 + ω), 2 ≤ i ≤ k – 1, and

b1 = b0 + bk , we have
∑k

j=0(–1)k–jbj = 0 and

Lr
c f = bkω

kf (z) + bk–1ω
k–1f (z) + · · · + b0f (z)

= (b0 + bk)f (z) + bk–1ω
k–1f (z) + bk–2ω

k–2f (z) + · · · + b1ωf (z)

= b1(1 + ω)f (z) +
(
ωk–1 + ωk–2 + · · · + ω2)

[
b1 –

1
(1 + ω)

]
f (z) = f (z).
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The following examples satisfy Theorem 1.1 for meromorphic functions when Lr
c f =

�k
c f and Lr

c f �= �k
c f .

Example 1.9 Let f (z) = e
z log 2

c e
6(k+3)πzi

c

e
2πzi

c –1
, where c is a constant. Then for any even integer

k and Lr
c f = �k

c f , it is easy to verify that the condition of Theorem 1.1 is satisfied and
�k

c f = f .

Example 1.10 Let f (z) = e
3(k+3)πzi

c

e
2πzi

c –1
, where c is a nonzero constant. Here f (z + sc) = f (z) when

s is even, and = –f (z), when s is odd. Then for any even integer k, choosing b1 = b0 + bk ,
b2 = b3 = · · · = bk–1, and 2b1 + (k – 2)bi – 1 = 0, 2 ≤ i ≤ k – 1, we have

∑k
j=0(–1)k–jbj = 0 and

Lr
c f = f (z).

With the observation as made in Sect. 4, we can construct the following examples satis-
fying Theorem 1.2 for entire functions when Lr

c f = �k
c f and Lr

c f �= �k
c f .

Example 1.11 Let f (z) = {α z
c

1 + α
z
c

2 + · · · + α
z
c

k } exp( 2zπ i
c ). Choosing αi, 1 ≤ i ≤ k, as the roots

of the equation (1 – z)k – 1 = 0, it is easy to verify that �k
c f = f .

Example 1.12 Let f (z) = {α z
c

1 + α
z
c

2 + · · · + α
z
c

k } sin( 2zπ i
c ).

When k is odd integer, αi, 1 ≤ i ≤ k, are the roots of the equation zk – 2z + 1 = 0 for
choosing bi = 1

2 , 0 ≤ i ≤ k.
When k is even integer, αi, 1 ≤ i ≤ k, are the roots of the equation zk – (3 – k)z + k – 2 = 0

for choosing b0 = – k
2 , bi = – 1

2 for odd i, and bi = 1
2 for even i.

Clearly, in both the cases we have
∑k

j=0(–1)k–jbj = 0 and Lr
c f = f (z).

In the same way, with the observation as made in Sect. 4, for a meromorphic function,
we can construct the following examples satisfying Theorem 1.2 when Lr

c f = �k
c f and

Lr
c f �= �k

c f .

Example 1.13 Let f (z) = {α z
c

1 + α
z
c

2 + · · · + α
z
c

k } 1
sin( 2zπ i

c )
. Here for Lr

c f = �k
c f and αi, 1 ≤ i ≤ k,

being the roots of the equation (1 – z)k – 1 = 0, it is easy to verify that �k
c f = f .

Remark 1.1 We note that for a suitable choice of k, αi can be determined in Example 1.11
and 1.13 as α1 = 0 for k = 1, α1 = 0 and α2 = 2 for k = 2, α1 = 0,α2 = 3+3i

2 , and α2 = 3–3i
2 for

k = 3, and so on. In fact, instead of the functions chosen in Examples 1.11 and 1.13, any
periodic function of period c can be selected.

Example 1.14 Let f (z) = {α z
c

1 + α
z
c

2 } e
6(k+3)πzi

c

e
2πzi

c –1
, where c is a nonzero constant.

When k is an odd integer, αi, i = 1, 2, are the roots of the equation z2 – 2z – 1 = 0 for
choosing b0 = 1

2 , b1 = 1, b2 = 1
2 , and bi = 0 for 3 ≤ i ≤ k.

When k is an even integer, αi, i = 1, 2, are the roots of the equation z2 + z = 0 for choosing
b0 = 1, b1 = 1

2 , b2 = – 1
2 , and bi = 0 for 3 ≤ i ≤ k.

Clearly, in both the cases, we have
∑k

j=0(–1)k–jbj = 0 and Lr
c f = f (z).

In the next example, we see that Theorem 1.1 is not valid when f and �k
c f share only

one finite complex number.
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Example 1.15 Let f (z) = Aedz/c

P(t) + B, where A, B, d, and c are nonzero constants, and let P(t)

is a polynomial in t = sin2( πz
c ) or cos2( πz

c ). Then for each k, we have �k
c f = Aedz/c(ed–1)k

P(t) .

Now for α = B(ed–1)k

(ed–1)k –1 , it is easy to see that f and �k
c f share α, but f �≡ �k

c f .

The following example shows that in Theorems 1.1 and 1.2 the relation f ≡ �c f does
not hold for a function f of infinite order.

Example 1.16 Let f (z) = eφ(z) + A, where φ(z) = e z
c log 2, and c, A are nonzero constants.

Then �c f (z) = e2φ(z) – eφ(z). Here we see that f and �c f (z) share two nonzero values (A +
1) +

√
A + 1 and (A + 1) –

√
A + 1 but f �≡ �c f .

The next counterexample is an extension of this example for any �k
c f .

Example 1.17 Let f (z) = esin( πz
c ), where c is a nonzero constant. Then

�k
c f (z) = (–1)k–12k–1

(
1 – e2 sin( πz

c )

esin( πz
c )

)
.

Here we see that f and �k
c f share two nonzero values ±

√
(–1)k–12k–1

1+(–1)k–12k–1 CM, but f �≡ �k
c f .

In view of Theorems 1.1 and 1.2, it is interesting to investigate the conditions under
which the conclusions of Theorems 1.1 and 1.2 hold when sharing of the values a and b
are relaxed from CM to IM. In our next two theorems, we deal in this regard.

Theorem 1.3 Let f be a nonconstant meromorphic function of finite order, let c be a con-
stant such that f (z + c) – f (z) �≡ 0, and let a and b be two nonzero distinct finite constants.
Suppose Lr

c f and f (z) share (a, 0), (b, 0). If 3(k + 1)N(r, f ) + (k + 4)N(r, f ) + 3N(r, 1
f ) < T(r, f ),

then f ≡ Lr
c f .

Theorem 1.4 Let f be a nonconstant meromorphic function of finite order, let c be a con-
stant such that f (z + c) – f (z) �≡ 0, and let a and b be two nonzero distinct finite con-
stants. Suppose Lr

c f and f (z) share (a, 0), (b, 0), and(∞,∞). If (k + 1)N(r, f ) + (k + 4)N(r, f ) +
3N(r, 1

f ) < T(r, f ), then f ≡ Lr
c f .

The following example shows that in Theorem 1.1 or Theorem 1.2, two finite value shar-
ing cannot be replaced by sharing a set containing two elements for Lr

c f = �k
c f .

Example 1.18 Let f (z) = λ
exp{ z

c log(1+λ)}
sin( 2πz

c )
, where c,λ are constants such that λk+1 = –1. Then

�k
c f (z) = λk+1 exp{ z

c log(1 + λ)}
sin( 2πz

c )
.

Clearly, f and �k
c f share the set {ωp,ωp+2n–1}, where ω = e

2π i
2n , and n and p are two integers

such that g.c.d.(p, 2n) = 1. Here f �≡ �k
c f .

So it is also interesting to see whether the two value sharing results concerning the
uniqueness of f and �k

c f can be extended up to two set sharing. In this respect, we have
the next two theorems, where the functions f and �k

c f share two sets.



Banerjee and Bhattacharyya Advances in Difference Equations        (2019) 2019:509 Page 7 of 23

Theorem 1.5 Let S1 = {awi–1(z)|i = 1, 2, . . . , n} and S2 = {bui–1(z)|i = 1, 2, . . . , m}, where w =
exp( 2π

n ) and u = exp( 2π
m ), and a and b are two constants satisfying ab �= 0 and a2mn �= b2mn.

Suppose f (z) is a nonconstant meromorphic function of finite order satisfying Ef (Si, 2) =
E

�k
c f (Si, 2) for i = 1, 2, where n ≥ 9 and m ≥ 9 have no common factors. Then f ≡ �k

c f .

Theorem 1.6 Let Si for i = 1, 2 be defined as in Theorem 1.5. Suppose f (z) is a nonconstant
entire function of finite order such that Ef (Si, 1) = E

�k
c f (Si, 1) for i = 1, 2, where n ≥ 5 and

m ≥ 5 have no common factors. Then f ≡ �k
c f .

The following examples show that Theorems 1.5 and 1.6 are not valid if the two functions
f and �k

c f share only one set.

Example 1.19 Let f (z) = φ(z), where φ(z) = exp{ z
c log(1+λ)}

sin( 2πz
c )

, where c is a constant, and for

ζ = cos 2π
n + i sin 2π

n , λ is a root of the equation ζ n–1z2s –(ζ 2n–2 +1)zs +ζ n–1 = 0. Then clearly,
�s

c f (z) = ζ n–1φ(z) or ζ 1–nφ(z). Therefore for a nonzero constant α, f and �k
c f share the

set {α,αζ ,αζ 2, . . . ,αζ n–1}, but f �≡ �k
c f .

Example 1.20 Let f (z) = φ(z), where φ(z) = exp{ z
c log(1 + λ)}, where c and λ are defined

as in the previous example. Then clearly, �s
c f (z) = ζ n–1φ(z). Therefore for a nonzero con-

stant α, f and �k
c f share the set {α,αζ ,αζ 2, . . . ,αζ n–1}, but f �≡ �k

c f .

Note 1.1 In the previous examples, f and �k
c f share the set {β ,βζ ,βζ 2, . . . ,βζ k–1}, where

β �= α is a constant, but f �≡ �k
c f . Note that here m and n have common factors.

Based on Theorems 1.5 and 1.6, it is relevant to investigate whether analogous results
can be established by replacing two shared set problem with one shared set together with
one shared value. In this regard, we have the following results.

Theorem 1.7 Let S1 be the set defined as in Theorem 1.5, and let S2 = {b}, where a �= 0,
b �= 0, and b2n �= a2n. Suppose f (z) is a nonconstant entire function of finite order such that
Ef (Si, 1) = E

�k
c f (Si, 1) for i = 1, 2 where n ≥ 5. Then f ≡ �k

c f .

However, in the following theorem, we will show that to replace an entire function by
a meromorphic one, the set S2 must contain two elements.

Theorem 1.8 Let S1 be the set defined as in Theorem 1.5, and let S2 = {b1, b2}, where b1 and
b2 are two distinct nonzero constants such that bn

1 �= bn
2 , b2n

i �= a2n for i = 1, 2, and bn
1bn

2 �= a2n.
Suppose f (z) is a nonconstant meromorphic function of finite order such that Ef (Si, 2) =
E

�k
c f (Si, 2) for i = 1, 2 where n ≥ 9. Then f ≡ �k

c f .

As �cf and �k
c f are nothing but the derivations from the shift operator f (z + c) of the

function f , it is interesting to explore whether analogous result corresponding to Theo-
rem 1.1 can be obtained when f (z) and f (z + c) share a set with two elements.

The following examples show that like for the difference operator, it is again not possible
for meromorphic and entire functions.

Example 1.21 Let f (z) = 2e
π iz

c

1+e
2π iz

c
, where c is a constant. Then we see that for a nonzero

constant α, f (z) and f (z + c) share the set {α, –α}, but f (z) �≡ f (z + c).
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Example 1.22 Let f (z) = 1+e
π iz

c

1–e
π iz

c
, where c is a constant. Then for a nonzero constant α, f (z)

and f (z + c) share the set {α, 1
α
}, but f (z) �≡ f (z + c).

Example 1.23 Let f (z) = sin( πz
2c ), where c is a constant. Clearly, f (z) and f (z + c) share the

set { 1√
2 , – 1√

2 }, but f (z) �≡ f (z + c).

So we have the following results analogous to Theorems 1.7–1.8.

Theorem 1.9 Under the same situation as in Theorem 1.7, if �k
c f is replaced by f (z + c),

then f (z) ≡ f (z + c).

Theorem 1.10 Under the same situation as in Theorem 1.8, if �k
c f is replaced by f (z + c),

then f (z) ≡ f (z + c).

2 Lemmas
In this section, we present some lemmas, which will be needed to proceed further.

Lemma 2.1 ([14]) Let f (z) be a nonconstant meromorphic function, and let dj (j = 1, . . . , q)
be q distinct complex numbers. Then we have

m

(
r,

q∑

j=1

1
f – dj

)
=

q∑

j=1

m
(

r,
1

f – dj

)
+ O(1).

Lemma 2.2 ([4, 5]) Let f be a meromorphic function of finite order, and let η be a nonzero
complex constant. Then

m
(

r,
f (z + η)

f (z)

)
+ m

(
r,

f (z)
f (z + η)

)
= S(r, f ).

Lemma 2.3 ([5]) Let f (z) be a meromorphic function of finite order, and let c �= 0 be fixed.
Then

N
(
r, f (z + c)

) ≤ N
(
r, f (z)

)
+ S(r, f ),

N
(
r, f (z + c)

) ≤ N
(
r, f (z)

)
+ S(r, f ).

Lemma 2.4 ([7]) Let f (z) be a nonconstant meromorphic function in C. Let d1, d2, . . . , dn

be n ≥ 1 distinct complex numbers. Then we have

n∑

j=1

m
(

r,
1

f – dj

)
≤ m

(
r,

1
f ′

)
+ S(r, f ), (2.1)

n∑

j=1

m
(

r,
1

f – dj

)
≤ m

(
r,

1
�c f

)
+ S(r, f ). (2.2)

Lemma 2.5 Let f (z) be a nonconstant meromorphic function in C. Let d1, d2, . . . , dn be
n ≥ 1 distinct complex numbers. Then we have

n∑

j=1

m
(

r,
1

f – dj

)
≤ m

(
r,

1
Lr

c f

)
+ S(r, f ). (2.3)
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Proof From the definition of Lr
c f we have

Lr
c f =

k∑

s=0

(–1)k–sbsf (z + sc)

= bk
[
f (z + kc) – f (z + k – 1c)

]
– (bk–1 – bk)

[
f (z + k – 1c) – f (z + k – 2c)

]

+ (bk–2 – bk–1 + bk)
[
f (z + k – 2c) – f (z + k – 3c)

]
– · · · + (–1)k–1

× (
b1 – b2 + b3 – · · · + (–1)k–1bk

)[
f (z + c) – f (z)

]
.

By Lemmas 2.1 and 2.2 we have

n∑

j=1

m
(

r,
1

f – dj

)
= m

(
r,

n∑

j=1

1
f – dj

)
+ O(1)

= m

(
r,

1
Lr

c f
.

n∑

j=1

Lr
c f

f – dj

)
+ O(1)

≤ m
(

r,
1

Lr
c f

)
+ m

(
r,

n∑

j=1

Lr
c f

f – dj

)
+ O(1)

= m
(

r,
1

Lr
c f

)
+

n∑

j=1

m
(

r,
Lr

c f
f – dj

)
+ O(1)

≤ m
(

r,
1

Lr
c f

)
+ S(r, f ). �

Lemma 2.6 ([4]) Let f (z) be a meromorphic function of finite order ρ , and let c be a nonzero
complex constant. Then, for each ε > 0. we have

T
(
r, f (z + c)

)
= T

(
r, f (z)

)
+ O

(
rρ–1+ε

)
+ O(log r).

Lemma 2.7 Let f (z) be a meromorphic function of finite order, and let c ∈C \ {0} be fixed.
Then S(r, Lr

c f ) can be replaced by S(r, f ).

Proof In view of Lemmas 2.3 and 2.6, we have

T
(
r, Lr

c f
)

= m
(
r, Lr

c f
)

+ N
(
r, Lr

c f
)

≤ m
(

r,
Lr

c f
f

)
+ m(r, f ) + N

(
r, Lr

c f
)

+ o
(
T(r, f )

) ≤ (
k + 1 + o(1)

)
T(r, f ),

and the lemma follows. �

Lemma 2.8 ([13]) Let F and G be two nonconstant meromorphic functions such that F
and G share the values (1,∞) and (∞,∞). If

lim sup
r−→∞

N2(r, 0; F) + N2(r, 0; G) + 2N(r,∞; F)
T(r)

< 1, r ∈ I,

where T(r) = max{T(r, F), T(r, G)}, then F ≡ G or F .G ≡ 1.
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Lemma 2.9 ([2]) Let F and G share (1, 2). Then one of the following cases occurs:

(i) T(r, F) ≤ N2(r, 0; F) + N2(r, 0; G) + N2(r,∞; F) + N2(r,∞; G)

+ S(r, F) + S(r, G), the same inequality holds for T(r, G);

(ii) F ≡ G;

(iii) F .G ≡ 1.

Lemma 2.10 ([1]) Let F and G be nonconstant meromorphic functions defined in C such
that they share (1, 1), and let

H =
(

F ′′

F ′ –
2F ′

F – 1

)
–

(
G′′

G′ –
2G′

G – 1

)
�≡ 0.

Then

T(r, F) ≤ N2(r, 0; F) + N2(r,∞; F) + N2(r, 0; G) + N2(r,∞; G)

+
1
2

N(r, 0; F) +
1
2

N(r,∞; F) + S(r, F) + S(r, G).

3 Proofs of theorems

Proof of Theorem 1.1 Assume that f �≡ Lr
c f .

Using Lemma 2.7, we have

N
(

r,
1

Lr
c f – a

)
+ N

(
r,

1
Lr

c f – b

)

≤ N
(

r,
1

f – a

)
+ N

(
r,

1
f – b

)

≤ N
(

r,
1

Lr
c f – f

)

≤ T
(
r, Lr

c f – f
)

+ S(r, f )

= m
(
r, Lr

c f – f
)

+ N
(
r, Lr

c f – f
)

+ S(r, f )

= m
(

r, f
(

Lr
c f
f

– 1
))

+ N
(
r, Lr

c f – f
)

+ S(r, f )

≤ m(r, f ) + m
(

r,
Lr

c f
f

– 1
)

+ N
(
r, Lr

c f – f
)

+ S(r, f )

≤ m(r, f ) + N
(
r, Lr

c f – f
)

+ S(r, f ). (3.1)

From (3.1), in view of Lemma 2.3, we have

N
(

r,
1

Lr
c f – a

)
+ N

(
r,

1
Lr

c f – b

)

≤ N
(

r,
1

f – a

)
+ N

(
r,

1
f – b

)
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≤ T(r, f ) + N
(
r, Lr

c f
)

+ S(r, f )

≤ T(r, f ) + (k + 1)N(r, f ) + S(r, f ). (3.2)

Let

U =
(Lr

c f )′

Lr
c f – a

–
f ′

f – a
. (3.3)

Case 1. Suppose U �≡ 0.
As Lr

c f and f (z) share (a,∞), in view of Lemmas 2.3 and 2.7, a simple calculation yields

N(r,∞; U) ≤ N
(
r,∞; Lr

c f
)

+ N(r,∞; f ) + N∗
(
r, a; Lr

c f , f
)

+ S(r, f )

≤ (k + 2)N(r, f ) + S(r, f ). (3.4)

Again using the logarithmic derivative theorem and Lemma 2.7, we get

m(r, U) ≤ S
(
r, Lr

c f
)

+ S(r, f ) = S(r, f ). (3.5)

Note that

U
f – b

=
(Lr

c f )′

Lr
cf (Lr

c f – a)
Lr

c f
f – b

–
f ′

(f – a)(f – b)
. (3.6)

So in view of the first fundamental theorem, (3.4), (3.5), and Lemmas 2.2 and 2.7, we get

m
(

r,
1

f – b

)

= m
(

r,
1
U

)
+ m

(
r,

U
f – b

)

≤ T(r, U) + m
(

r,
(Lr

c f )′

Lr
cf (Lr

c f – a)

)
+ m

(
r,

Lr
c f

f – b

)

+ m
(

r,
f ′

(f – a)(f – b)

)
+ O(1)

≤ T(r, U) + m
(

r,
(Lr

c f )′

a

(
1

(Lr
c f – a)

–
1

Lr
cf

))
+ m

(
r,

Lr
c f

f – b

)

+ m
(

r,
f ′

(a – b)

(
1

f – a)
–

1
(f – b)

))
+ S(r, f )

≤ (k + 2)N(r, f ) + S
(
r, Lr

c f
)

+ S(r, f ) ≤ (k + 2)N(r, f ) + S(r, f ). (3.7)

In a similar manner, we can show that

m
(

r,
1

f – a

)
≤ (k + 2)N(r, f ) + S(r, f ). (3.8)

Now from (3.2), (3.7), and (3.8), applying the first fundamental theorem, we obtain

2T(r, f ) + O(1)
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= m
(

r,
1

f – a

)
+ m

(
r,

1
f – b

)
+ N

(
r,

1
f – a

)
+ N

(
r,

1
f – b

)

≤ T(r, f ) + (k + 1)N(r, f ) + 2(k + 2)N(r, f ) + S(r, f ), (3.9)

which implies

T(r, f ) ≤ (k + 1)N(r, f ) + 2(k + 2)N(r, f ) + S(r, f ),

a contradiction.
Case 2. Next, suppose U ≡ 0.
Integrating we get

(
Lr

c f – a
)

= C1(f – a),

where C1 is a nonzero constant. In a similar way, we can get

(
Lr

c f – b
)

= C2(f – b),

where C2 is a nonzero constant. If either of C1 = 1 or C2 = 1, then we are done. If C1 �= 1
and C2 �= 1, then from the last two equations, after simple calculations, we get

(C1 – C2)f (z) = C1a – C2b + b – a.

If C1 �= C2, then f is a constant, a contradiction. Therefore C1 = C2, and hence C1(a – b) =
(a – b). As a and b are distinct, we have C1 = C2 = 1, and so f ≡ Lr

c f . �

Proof of Theorem 1.2 Suppose f �≡ Lr
c f .

Case 1. ab �= 0.
Since f and Lr

c f share (∞,∞), we have N(r, f ) = N(r, Lr
c f ), and hence any pole of Lr

c f or f
of multiplicity p must be a pole of Lr

c f – f of multiplicity ≤ p, that is, N(r, Lr
c f – f ) ≤ N(r, f ).

So (3.1) reduces to

N
(

r,
1

Lr
c f – a

)
+ N

(
r,

1
Lr

c f – b

)

≤ N
(

r,
1

f – a

)
+ N

(
r,

1
f – b

)
≤ T(r, f ) + S(r, f ). (3.10)

Let U be defined as in (3.3).
Case 1.1 First, suppose U �≡ 0.
As Lr

c f and f (z) share (a,∞), (∞,∞), in view of Lemma 2.7, we clearly have

N(r,∞; U) ≤ N∗
(
r,∞; Lr

c f , f
)

+ N∗
(
r, a; Lr

c f , f
)

= S(r, f ). (3.11)

Next, using (3.6), the first fundamental theorem, (3.5), (3.11), Lemmas 2.2 and 2.7 and
proceeding in the same way as in Theorem 1.1, we see that (3.7) changes to

m
(

r,
1

f – b

)
≤ S

(
r, Lr

c f
)

+ S(r, f ) = S(r, f ). (3.12)
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In a similar manner, we can show that

m
(

r,
1

f – a

)
= S(r, f ). (3.13)

Now from (3.10), (3.12), and (3.13), applying the first fundamental theorem, similarly to
(3.9), we obtain

2T(r, f ) + O(1)

= m
(

r,
1

f – a

)
+ m

(
r,

1
f – b

)
+ N

(
r,

1
f – a

)
+ N

(
r,

1
f – b

)

≤ T(r, f ) + S(r, f ),

which implies

T(r, f ) ≤ S(r, f ),

a contradiction.
Case 1.2. Next, suppose U ≡ 0.
Here we can prove the theorem in the same way as in Theorem 1.1. So we omit the

details.
Case 2. Let ab = 0.
Without loss of generality, we suppose that b = 0. Let us consider the function

Φ =
(Lr

c f )(Lr
c f – f )

f (f – a)
. (3.14)

Case 2.1. First, suppose Φ �≡ 0.
Let z0 be a zero of f – a or that of f of multiplicity p. As Lr

c f and f (z) share (a,∞) and
(0,∞), clearly, a- or 0-points of f will not be poles of Φ . Noting that f is a transcendental
meromorphic function, each zero of f of multiplicity p will be a zero of Φ of multiplicity
≥ p. Similarly, any pole of f of multiplicity q would be a pole of Lr

c f – f of multiplicity s ≤ q
and hence a pole of Φ of multiplicity q + s – 2q ≤ 0. It follows that Φ has no pole. Also,
from (3.14), Lemma 2.2, and the first fundamental theorem we have

m(r,Φ) ≤ m
(

r,
Lr

c f
f – a

)
+ m

(
r,

(
Lr

c f
f

– 1
))

+ S(r, f ) ≤ S(r, f ). (3.15)

So using the fact that Φ has no pole, from (3.15) we see that S(r,Φ) can be replaced by
S(r, f ). Hence, in view of the first fundamental theorem, we have

N
(

r,
1
f

)
≤ N

(
r,

1
Φ

)
+ S(r, f ) ≤ T

(
r,

1
Φ

)
– m

(
r,

1
Φ

)
+ S(r, f )

≤ T(r,Φ) – m
(

r,
1
Φ

)
+ S(r, f )

≤ –m
(

r,
1
Φ

)
+ S(r, f ). (3.16)
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Again from Lemma 2.2 we note that

m
(

r,
1
f

)

≤ m
(

r,
1
Φ

)
+ m

(
r,

(
Lr

c f (Lr
c f – f )

f 2(f – a)

))
+ S(r, f )

≤ m
(

r,
1
Φ

)
+ m

(
r,

Lr
c f
a

{
1

f – a
–

1
f

})
+ m

(
r,

(
Lr

c f
f

– 1
))

+ S(r, f )

≤ m
(

r,
1
Φ

)
+ S(r, f ). (3.17)

Using (3.17) in (3.16), from the first fundamental theorem we get

T(r, f ) ≤ S(r, f ),

a contradiction.
Case 2.2. Next, suppose Φ ≡ 0.
As we have f �≡ Lr

c f , clearly, Lr
c f ≡ 0, a contradiction. Hence the theorem follows. �

Proof of Theorem 1.3 Assume that f �≡ Lr
c f .

For two complex constants a and b and two nonconstant meromorphic functions f and
g , by N(r, a; f | g = b) (N(r, a; f | g �= b)) we mean the counting function of those a-points
of f that are (not) the b-points of g , where an a-point of f is counted according to its
multiplicity. Again for a positive integer s, by N(r, a; f |= s) we mean the reduced counting
function of those a-points of f that are of multiplicity exactly s.

As Lr
c f and f share (a, 0) and (b, 0), we see that an a (b)-point of f whose multiplicity is

greater than that of Lr
c f is counted at least once in N(r, 1

Lr
c f –f ). Thus

N
(

r,
1

Lr
c f – a

)
+ N

(
r,

1
Lr

c f – b

)

≤ N
(

r,
1

f – a

)
+ N

(
r,

1
f – b

)

≤ N
(

r,
1

Lr
c f – f

)
+

{
N(r, a; f |= 2) + 2N(r, a; f |= 3) + 3N(r, a; f |= 4) + · · ·}

+
{

N(r, b; f |= 2) + 2N(r, b; f |= 3) + 3N(r, b; f |= 4) + · · ·}

≤ N
(

r,
1

Lr
c f – f

)
+ N

(
r, 0; f ′|f �= 0

)

≤ N
(

r,
1

Lr
c f – f

)
+ N

(
r,

f ′

f

)

≤ N
(

r,
1

Lr
c f – f

)
+ N(r, f ) + N

(
r,

1
f

)
.

So (3.2) reduces to

N
(

r,
1

Lr
c f – a

)
+ N

(
r,

1
Lr

c f – b

)
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≤ N
(

r,
1

f – a

)
+ N

(
r,

1
f – b

)

≤ T(r, f ) + N
(
r, Lr

c f
)

+ N(r, f ) + N
(

r,
1
f

)
+ S(r, f ). (3.18)

Now from Lemma 2.5 we see that

m
(

r,
1

f – a

)
+ m

(
r,

1
f – b

)
≤ m

(
r,

1
Lr

c f

)
+ S(r, f ), (3.19)

which, in view of (3.18) and the first fundamental theorem, yields

T(r, f ) ≤ m
(

r,
1

Lr
c f

)
+ N

(
r, Lr

c f
)

+ N(r, f ) + N
(

r,
1
f

)
+ S(r, f ). (3.20)

Since

N
(

r,
1

Lr
c f – a

)
– N

(
r,

1
Lr

c f – a

)
+ N

(
r,

1
Lr

c f – b

)
– N

(
r,

1
Lr

c f – b

)

≤ N
(

r,
1

(Lr
c f )′

)
+ S(r, f ),

we get from (3.18) that

N
(

r,
1

Lr
c f – a

)
+ N

(
r,

1
Lr

c f – b

)

≤ T(r, f ) + N
(
r, Lr

c f
)

+ N
(

r,
1

(Lr
c f )′

)
+ N(r, f ) + N

(
r,

1
f

)
+ S(r, f ). (3.21)

Again from (2.1) of Lemma 2.4 we notice that

m
(

r,
1

Lr
c f

)
+ m

(
r,

1
Lr

c f – a

)
+ m

(
r,

1
Lr

c f – b

)
≤ m

(
r,

1
(Lr

c f )′

)
+ S(r, f ). (3.22)

So from (2.3), (3.21), and (3.22), using Lemmas 2.5 and 2.7 and applying the first funda-
mental theorem, we obtain

m
(

r,
1

Lr
c f

)
+ 2T

(
r, Lr

c f
)

+ O(1)

= m
(

r,
1

Lr
c f

)
+ m

(
r,

1
Lr

c f – a

)
+ m

(
r,

1
Lr

c f – b

)

+ N
(

r,
1

Lr
c f – a

)
+ N

(
r,

1
Lr

c f – b

)

≤ T
(

r,
1

(Lr
c f )′

)
+ T(r, f ) + N

(
r, Lr

c f
)

+ N(r, f ) + N
(

r,
1
f

)
+ S(r, f )

≤ T(r, f ) + m
(
r,

(
Lr

c f
)′) + N

(
r,

(
Lr

c f
)′) + N

(
r, Lr

c f
)

+ N(r, f ) + N
(

r,
1
f

)
+ S(r, f )

≤ T(r, f ) + m
(

r,
(Lr

c f )′

Lr
c f

)
+ m

(
r, Lr

c f
)

+ N
(
r,

(
Lr

c f
)′) + N

(
r, Lr

c f
)

+ N(r, f )
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+ N
(

r,
1
f

)
+ S(r, f )

≤ T(r, f ) + T
(
r, Lr

c f
)

+ N
(
r,

(
Lr

c f
)′) + N(r, f ) + N

(
r,

1
f

)
+ S(r, f ).

Thus, in view of (3.20), we get

T
(
r, Lr

c f
) ≤ N

(
r, Lr

c f
)

+ N
(
r,

(
Lr

c f
)′) + 2N(r, f ) + 2N

(
r,

1
f

)
+ S(r, f ). (3.23)

Finally, using Lemmas 2.3 and 2.7 and (3.23) in (3.20), we get

T(r, f ) ≤ m
(

r,
1

Lr
c f

)
+ N

(
r, Lr

c f
)

+ N(r, f ) + N
(

r,
1
f

)
+ S(r, f )

≤ T
(
r, Lr

c f
)

+ N
(
r, Lr

c f
)

+ N(r, f ) + N
(

r,
1
f

)
+ S(r, f )

≤ 2N
(
r, Lr

c f
)

+ N
(
r,

(
Lr

c f
)′) + 3N(r, f ) + 3N

(
r,

1
f

)
+ S(r, f )

≤ 3N
(
r, Lr

c f
)

+ N
(
r, Lr

c f
)

+ 3N(r, f ) + 3N
(

r,
1
f

)
+ S(r, f )

≤ 3(k + 1)N(r, f ) + (k + 4)N(r, f ) + 3N
(

r,
1
f

)
+ S(r, f ),

which is a contradiction, and so f ≡ Lr
c f . �

Proof of Theorem 1.4 Here we proceed with the same argument as in Theorem 1.3.
So (3.2) reduces to

N
(

r,
1

Lr
c f – a

)
+ N

(
r,

1
Lr

c f – b

)

≤ N
(

r,
1

f – a

)
+ N

(
r,

1
f – b

)
≤ T(r, f ) + N(r, f ) + N

(
r,

1
f

)
+ S(r, f ). (3.24)

Thus, in view of (3.19), using Lemma 2.5 and applying the first fundamental theorem, we
get

T(r, f ) ≤ m
(

r,
1

Lr
c f

)
+ N(r, f ) + N

(
r,

1
f

)
+ S(r, f ). (3.25)

Hence (3.21) reduces to

N
(

r,
1

Lr
c f – a

)
+ N

(
r,

1
Lr

c f – b

)

≤ T(r, f ) + N
(

r,
1

(Lr
c f )′

)
+ N(r, f ) + N

(
r,

1
f

)
+ S(r, f ). (3.26)

Hence (3.23) reduces to

T
(
r, Lr

c f
) ≤ N

(
r,

(
Lr

c f
)′) + 2N(r, f ) + 2N

(
r,

1
f

)
+ S(r, f ) (3.27)
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Finally, by (3.25) and (3.27) we get

T(r, f ) ≤ (k + 1)N(r, f ) + (k + 4)N(r, f ) + 3N
(

r,
1
f

)
+ S(r, f ),

which is a contradiction, and so f ≡ Lr
c f . �

Proof of Theorem 1.5 Let F1 = ( f
a )n, G1 = ( �k

c f
a )n and F2 = ( f

b )m, G2 = ( �k
c f
b )m. By the state-

ment of the theorem it follows that Fi and Gi share (1, 2) for i = 1, 2.
First, suppose that (i) of Lemma 2.9 holds. Then we get

T(r, F1) ≤ N2(r, 0; F1) + N2(r, 0; G1) + N2(r,∞; F1) + N2(r,∞; G1) + S(r, F1) + S(r, G1),

that is,

nT(r, f ) ≤ 2N
(

r,
1
f

)
+ 2N

(
r,

1
�k

c f

)
+ 2N(r, f ) + 2N

(
r,�k

c f
)

+ S(r, f ) + S
(
r,�k

c f
)
.

In a similar way, we can obtain

nT
(
r,�k

c f
) ≤ 2N

(
r,

1
f

)
+ 2N

(
r,

1
�k

c f

)
+ 2N(r, f ) + 2N

(
r,�k

c f
)

+ S(r, f ) + S
(
r,�k

c f
)
.

Thus

n
{

T(r, f ) + T
(
r,�k

c f
)}

≤ 4
{

N
(

r,
1
f

)
+ N

(
r,

1
�k

c f

)
+ N(r, f ) + N

(
r,�k

c f
)}

+ S(r, f ) + S
(
r,�k

c f
)

≤ 8
{

T(r, f ) + T
(
r,�k

c f
)}

+ S(r, f ) + S
(
r,�k

c f
)
,

which is a contradiction for n ≥ 9.
Next, considering cases (ii) and (iii) of Lemma 2.9, we get

F1 ≡ G1, i.e., f ≡ t1�
k
c f (3.28)

or

F1.G1 ≡ 1, i.e., f .�k
c f ≡ s1, (3.29)

where tn
1 = 1 and sn

1 = a2n.
Also,

F2 ≡ G2, i.e., f ≡ t2�
k
c f (3.30)
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or

F2.G2 ≡ 1, i.e., f .�k
c f ≡ s2, (3.31)

where tm
2 = 1 and sm

2 = b2m.
(1) Assume that (3.28) and (3.30) hold. Then t1 = t2. Since tn

1 = tm
2 = 1, where n and m

are coprime, we get that t1 = t2 = 1. It follows that f ≡ �k
c f .

(2) Assume that (3.28) and (3.31) hold. Then t1(�k
c f )2 = s2, which is impossible.

(3) Assume that (3.30) and (3.31) hold. Similarly to the argument as in (2), we obtain an
impossible situation.

(4) Assume that (3.29) and (3.31) hold. Then s1 = s2. Thus a2mn = smn
1 = smn

2 = b2mn,
which is impossible. �

Proof of Theorem 1.6 Let F1 = ( f
a )n, G1 = ( �k

c f
a )n and F2 = ( f

b )m, G2 = ( �k
c f
b )m. By the state-

ment of the theorem it follows that Fi and Gi share (1, 1) for i = 1, 2.
Let

(
F ′′

i
F ′

i
–

2F ′
i

Fi – 1

)
–

(
G′′

i
G′

i
–

2G′
i

Gi – 1

)
�≡ 0 for i = 1, 2.

Now considering the functions F1 and G1, from Lemma 2.9 we get

T(r, F1) ≤ N2(r, 0; F1) + N2(r, 0; G1) + N2(r,∞; F1) + N2(r,∞; G1) +
1
2

N(r, 0; F1)

+
1
2

N(r,∞; F1) + S(r, F1) + S(r, G1).

Now as f and �k
c f are entire functions, we have

nT(r, f ) ≤ 2N
(

r,
1
f

)
+ 2N

(
r,

1
�k

c f

)
+

1
2

N
(

r,
1
f

)
+ S(r, f ) + S

(
r,�k

c f
)
.

In a similar way, we obtain

nT
(
r,�k

c f
) ≤ 2N

(
r,

1
f

)
+ 2N

(
r,

1
�k

c f

)
+

1
2

N
(

r,
1

�k
c f

)
+ S(r, f ) + S

(
r,�k

c f
)
.

Thus

n
{

T(r, f ) + T
(
r,�k

c f
)}

≤ 4
{

N
(

r,
1
f

)
+ N

(
r,

1
�k

c f

)}
+

1
2

{
N

(
r,

1
f

)
+ N

(
r,

1
�k

c f

)}

+ S(r, f ) + S
(
r,�k

c f
)

≤ 9
2
{

T(r, f ) + T
(
r,�k

c f
)}

+ S(r, f ) + S
(
r,�k

c f
)
,

which is a contradiction for n ≥ 5.
A similar contradiction holds for m ≥ 5 while considering the functions F2 and G2.
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Next, suppose

(
F ′′

i
F ′

i
–

2F ′
i

Fi – 1

)
–

(
G′′

i
G′

i
–

2G′
i

Gi – 1

)
≡ 0 for i = 1, 2.

Now considering the functions F1 and G1, by integration we get

F ′
1

(F1 – 1)2 ≡ A
G′

1
(G1 – 1)2 , (3.32)

where A is a nonzero constant.
From this we obtain that T(r, F1) = T(r, G1) + O(1), that is, T(r,�k

c f ) = T(r, f ) + O(1).
Also, (3.32) implies that F1 and G1 share (1,∞).
Again, as F1 and G1 are entire functions, we can say that F1 and G1 share (∞,∞) and

N(r,∞; F1) = N(r,∞; G1) = 0.

Now it is obvious that

N2(r, 0; F1) ≤ 2N
(

r,
1
f

)
≤ 2T(r, f ) + O(1).

Also, we obtain

N(r, 0; G1) ≤ 2T
(
r,�k

c f
)

+ O(1) ≤ 2T(r, f ) + S(r, f ).

So

lim sup
r−→∞

N2(r, 0; F) + N2(r, 0; G) + 2N(r,∞; F)
T(r)

≤ 4
n

< 1

for n ≥ 5. Thus using Lemma 2.8, we get F1 = G1 or F1.G1 = 1.
Similarly, F2 = G2 or F2.G2 = 1.
Now if we take

F1.G1 ≡ 1, i.e., f n(�k
c f

)n ≡ a2n,

then as f and �k
c f are both entire functions, we get N(r,∞; �k

c f
f ) ≤ N(r, 1

f ).
Therefore

2nT(r, f ) = 2T(r, F1) + O(1) ≤ T
(

r,
1

F2
1

)
+ S(r, f )

≤ T
(

r,
(

�k
c f
f

)n)
≤ nT

(
r,

�k
c f
f

)
+ S(r, f ) ≤ nT(r, f ) + S(r, f ),

which is a contradiction. So we have F1 ≡ G1, that is, f ≡ t1(�k
c f ), where tn

1 = 1. Similarly,
we have f ≡ t2�

k
c f , where tm

2 = 1.
Thus in the same way as in Theorem 1.5, we get f ≡ �k

c f . �
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Proof of Theorem 1.7 Since Ef (S1, 1) = E
�k

c f (S1, 1), in the line of the proof of Theorem 1.6,
we can see that

f ≡ t
(
�k

c f
)
, (3.33)

where tn = 1.
Now if b is a Picard value of f , by the assumption Ef (S2, 1) = E

�k
c f (S2, 1) we know that b

is a Picard value of �k
c f . Again from (3.33) we see that (tb) is a Picard value of f . Since f is

an entire function, we have b = tb. Thus t = 1, and hence f ≡ �k
c f .

If b is not a Picard value of f , then there exists α such that f (α) = �k
c f (α) = b. By (3.33)

we obtain b = tb. Thus t = 1, and hence f ≡ �k
c f . �

Proof of Theorem 1.8 Since Ef (S1, 2) = E
�k

c f (S1, 2), in the line of the proof of Theorem 1.5,
we can see that

f ≡ t
(
�k

c f
)
, (3.34)

where tn = 1, or

f .�k
c f ≡ s, (3.35)

where sn = a2n. Now we discuss the following cases.
Case 1.
Suppose f and �k

c f satisfy (3.34). We discuss the following subcases.
Subcase 1.1.
Assume that b1 is not a Picard value of f . Then there exists α such that f (α) = b1. Since

Ef (S2, 2) = E
�k

c f (S2, 2), we obtain �k
c f (α) = b1 or �k

c f (α) = b2. If �k
c f (α) = b1, then by (3.34)

we have b1 = tb1. Thus t = 1 and f ≡ �k
c f . If �k

c f (α) = b2, then by (3.34) we see that b1 = tb2,
which contradicts the assumption bn

1 �= bn
2 .

Subcase 1.2.
Assume that b2 is not a Picard value of f . Then in the similar way, we have f ≡ �k

c f .
Subcase 1.3.
Assume that b1 and b2 are Picard values of f . As Ef (S1, 2) = E

�k
c f (S1, 2), b1 and b2 are

Picard values f and �k
c f . Again by (3.34) we see that (tb1) and (tb2) are Picard values of

f . Since a meromorphic function has at most two Picard values, b1 = tb1 or b1 = tb2. If
b1 = tb1, then t = 1 and f ≡ �k

c f . If b1 = tb2, then it contradicts the assumption bn
1 �= bn

2 .
Case 2.
Suppose f and �k

c f satisfy (3.35). We discuss the following subcases.
Subcase 2.1.
Assume that b1 is not a Picard value of f . Then there exists α such that f (α) = b1. Since

Ef (S2, 2) = E
�k

c f (S2, 2), we obtain that �k
c f (α) = b1 or �k

c f (α) = b2. If �k
c f (α) = b1, then by

(3.35) we have b2
1 = s, which contradicts the assumption b2n

1 = a2n. If �k
c f (α) = b2, then by

(3.35) we have (b1b2) = s, which again contradicts the assumption bn
1bn

2 �= a2n.
Subcase 2.2.
Assume that b2 is not a Picard value of f . Then in a similar way, we arrive at a contra-

diction.



Banerjee and Bhattacharyya Advances in Difference Equations        (2019) 2019:509 Page 21 of 23

Subcase 2.3.
Assume that b1 and b2 are Picard values of f . Since Ef (S2, 2) = E

�k
c f (S2, 2), b1 and b2 are

Picard values of f and �k
c f . Again by (3.35) we see that s

b1
and s

b2
are Picard values of

f . Since a meromorphic function has at most two Picard values, b1 = s
b1

or b1 = s
b2

, and
similarly in both situations, contradiction arises. �

Proof of Theorem 1.9 The proof can be carried out in the line of Theorem 1.7. �

Proof of Theorem 1.10 The proof can be carried out in the line of Theorem 1.8. �

In this section, we have the following observation.

4 Observation
Considering αj(�= 1) for j = 1, 2, . . . , k as the roots of

∑k
j=0(–1)k–jbjzj = 1, we claim that the

general solution of the relation Lr
c f ≡ f is of the form

f (z) = π1(z)α
z
c

1 + π2(z)α
z
c

2 + · · · + πk(z)α
z
c

k ,

where πi(z + c) = πi(z), 1 ≤ i ≤ k, c being a nonzero constant.
For k = 1, we see that Lr

c f = f implies f (z + c) = ( b0+1
b1

)f (z). Clearly, in this case the general
solution is

f (z) = π1(z)
(

b0 + 1
b1

) z
c

= π1(z)α
z
c

1 ,

where α1 is a root of the equation b1z – b0 – 1 = 0.
Let us verify this fact:

Lr
c f = b1 f (z + c) – b0f (z)

= b1
{
π1(z + c)α

z+c
c

1
}

– b0
{
π1(z)α

z
c

1
}

= (b1α1 – b0)π1(z)α
z
c

1

= π1(z)α
z
c

1

= f (z).

For k = 2, we see that Lr
c f = f implies b2 f (z + 2c) – b1f (z + c) + b0f (z) = f (z). Let α1 and

α2 be the roots of the equation

b2z2 – b1z + b0 – 1 = 0.

In this case the general solution is of the form

f (z) = π1(z)α
z
c

1 + π2(z)α
z
c

2 .

Let us verify this fact:

Lr
c f = b2f (z + 2c) – b1f (z + c) + b0f (z)
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= b2
{
π1(z + 2c)α

z+2c
c

1 + π2(z + 2c)α
z+2c

c
2

}
– b1

{
π1(z + c)α

z+c
c

1 + π2(z + c)α
z+c

c
2

}

+ b0
{
π1(z)α

z
c

1 + π2(z)α
z
c

2
}

=
(
b2α

2
1 – b1α1 + b0

)
π1(z)α

z
c

1 +
(
b2α

2
0 – b1α0 + b0

)
π2(z)α

z
c

2

= π1(z)α
z
c

1 + π2(z)α
z
c

2

= f (z).

For k = m, we see that Lr
c f = f implies bm f (z + mc) – bm–1f (z + m – 1c) + · · ·+ (–1)mb0f (z) =

f (z). Let αi, 1 ≤ αi ≤ m, be the roots of the equation

bmzm – bm–1zm–1 + · · · + (–1)mb0 – 1 = 0.

In this case the general solution is of the form

f (z) = π1(z)α
z
c

1 + π2(z)α
z
c

2 + · · · + πm(z)α
z
c

m,

since

Lr
c f = bm f (z + mc) – bm–1f (z + m – 1c) + · · · + (–1)mb0f (z)

= bm
{
π1(z + mc)α

z+mc
c

1 + · · · + πm(z + mc)α
z+mc

c
m

}
– bm–1

{
π1(z + m – 1c)α

z+m–1c
c

1

+ · · · + πm(z + m – 1c)α
z+m–1c

c
m

}
+ · · · + (–1)mb0

{
π1(z)α

z
c

1 + · · · + πm(z)α
z
c

m
}

=
{

bmαm
1 – bm–1α

m–1
1 + · · · + (–1)mb0

}
π1(z)α

z
c

1 + · · ·

+
{

bmαm
1 – bm–1α

m–1
1 + · · · + (–1)mb0

}
πm(z)α

z
c

m

=
{
π1(z)α

z
c

1 + · · · + πm(z)α
z
c

m
}

= f (z).

So we conjecture that the general solution of the equation Lr
c f = f for any integer k is

f (z) = π1(z)α
z
c

1 + π2(z)α
z
c

2 + · · · + πk(z)α
z
c

k ,

where πi(z + c) = πi(z), 1 ≤ i ≤ k, where c is a constant, and αj(�= 1), 1 ≤ j ≤ k, are the roots
of the equation

∑k
j=0(–1)k–jbjzj = 1.

5 An open question
Due to suitable choice of the coefficients of the linear c-shift operator, Theorems 1.1 and
1.2 are valid for Lr

c f . So the following question is inevitable:
Do Theorems 1.1 and 1.2 hold if Lc f is considered instead of Lr

c f ?
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