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Abstract
This paper introduces the projective synchronization of different fractional-order
multiple chaotic systems with uncertainties, disturbances, unknown parameters, and
input nonlinearities. A fractional adaptive sliding surface is suggested to guarantee
that more slave systems synchronize with one master system. First, an adaptive sliding
mode controller is proposed for the synchronization of fractional-order multiple
chaotic systems with unknown parameters and disturbances. Then, the
synchronization of fractional-order multiple chaotic systems in the presence of
uncertainties and input nonlinearity is obtained. The developed method can be used
for many of fractional-order multiple chaotic systems. The bounds of the
uncertainties and disturbances are unknown. Suitable adaptive rules are established
to overcome the unknown parameters. Based on the fractional Lyapunov theorem,
the stability of the suggested technique is proved. Finally, the simulation results
demonstrate the feasibility and robustness of our suggested scheme.
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1 Introduction
In the last few years, chaos synchronization of multiple chaotic systems has received con-
siderable attention among scholars in various fields of research. Chaos synchronization
has been used in a wide range of physics and engineering sciences [1–3]. Various con-
trol methods, such as fuzzy control [4–7], sliding mode control [8–11], backstepping
control [12–14], active control [15, 16], observer-based control [17], impulsive control
[18, 19], etc., have been suggested for synchronizing chaotic systems. Nevertheless, all of
the aforementioned works are limited to studying two different chaotic systems without
the presence of uncertainties and disturbances, and all the parameters of the systems are
known; while in real-world applications, unmodified dynamics, structural changes in the
system, and noise measurements cause uncertainties and disturbances to chaotic systems
and it is difficult to determine the exact parameters of the system in practical situations.
So, an important issue, which is the central idea of this paper, is to synchronize multi-

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13662-019-2423-7
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-019-2423-7&domain=pdf
mailto:Zahra_rashidnejad@yahoo.com


Rashidnejad Heydari and Karimaghaee Advances in Difference Equations        (2019) 2019:498 Page 2 of 23

ple chaotic systems in the presence of uncertainties, disturbances, and unknown param-
eters.

Fortunately, adaptive control [20–22] is an effective way to overcome these uncertain-
ties and the lack of accurate information. Using this type of controller helps to syn-
chronize master and slave systems even in the presence of uncertainties, disturbances,
and unknown parameters. The major idea of the adaptive rule is the estimation of the
uncertain parameters. Generally, the choice of matching control rule may be complex,
but the analysis of convergence properties, which is another idea of this paper, is sim-
ple.

Fractional computing [23–26], a field of mathematics, has attracted a lot of researchers
in recent years. Nowadays, it has been shown that chaotic behavior exists in many
fractional-order systems such as fractional-order Chen system [27], fractional-order fi-
nancial system [28], fractional-order Liu system [29], fractional-order Lu system [30], etc.
The fractional computation, which is a generalization of classical computing, enables us
to model nonlinear phenomena more accurately. The advantages of a fractional controller
include a fractional sliding surface instead of a traditional sliding surface, the existence of
a degree of freedom at the sliding surface, robustness and convergence in limited time.
So far, some methods have been studied to synchronize fractional-order chaotic systems.
For example, Huang et al. in [31] presented an active control scheme to achieve synchro-
nization for a fractional chaotic financial system. In [32], a controller for a class of un-
certain fractional-order chaotic systems based on adaptive backstepping control strat-
egy was investigated. The problem of chaos synchronization of fractional-order time-
delayed chaotic systems was developed in [33]. The scholars of [34], using a sliding mode
control strategy, designed a fractional-order disturbance observer for synchronization of
fractional-order chaotic systems with disturbances. Qin et al. in [35] reported a procedure
to synchronize unknown fractional-order time-delayed chaotic systems based on adaptive
fuzzy control. However, all of the above works only address the issue of synchronization
between two fractional-order chaotic systems. Until now, there has been no work based
on the synchronization of fractional-order multiple chaotic systems, which motivates us
to write this paper.

On the other hand, sliding mode [36] is a control technique that is used for nonlinear
systems with uncertainties in the model. This method of control uses a switching control
rule to move the state of the system to a predetermined level, which is called a sliding
surface, then, after moving the states on the surface, it tries to keep them on the sur-
face. The use of this controller has many advantages including simple implementation,
fast response, robustness, and good performance. Various articles have been presented
to synchronize chaotic systems using a sliding mode controller. For instance, Liu et al. in
[37] developed an adaptive sliding mode control method for synchronization of fractional-
order chaotic systems. The authors of [38] focused on the construction, dynamic analysis,
and control of a new fractional-order financial system. Furthermore, an efficient adaptive
sliding mode controller technique was used to stabilize the suggested hyperchaotic frac-
tional system with disturbances. In [39], the finite-time robust control of uncertain non-
linear fractional-order Hopfield neural networks was studied via adaptive sliding mode
control. All of these works only examined the synchronization of two chaotic systems. In
[40], the delay-dependent robust dissipative sampled-data control problem for a class of
uncertain nonlinear systems with both differentiable and non-differentiable time-varying
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delays was investigated. Sakthivel et al. in [41] addressed the tracking performance of a
class of singular systems with time-varying delay via a repetitive controller based on the
equivalent-input disturbance approach. So far, studies based on design fractional sliding
surface have not been published to synchronize fractional-order multiple chaotic systems,
which is the greatest motivation behind this work.

In addition, when the controller is implemented in physical systems, due to the physical
limitations of the actuator, there are nonlinearities in control input. Input nonlinearity
can lead to poor performance or even instability of synchronization control systems. Also,
input nonlinearity can lead the chaotic system to unpredictable results because the chaotic
system is highly sensitive to parameter. Therefore, its effect cannot be ignored in analyzing
the design of the controller and detecting the chaos synchronization. Consequently, it is
important to obtain a controller in the presence of nonlinear input to synchronize chaos
[42, 43]. In this paper, we consider the nonlinear input effect for controller design.

Considering the above discussion, in this paper, with the application of the fractional
version of Lyapunov stability theory, a fractional sliding surface is developed. First, the
projective synchronization of fractional-order multiple chaotic systems with unknown pa-
rameters and disturbances, where more slave systems synchronize with one master sys-
tem, is studied. Then, using the proposed controller, the projective synchronization of
fractional-order multiple chaotic systems in the presence of uncertainties, disturbances,
and nonlinear input is investigated. In addition, proper adaptive rules are proposed to deal
with uncertain parameters. At the end, based on the Lyapunov theorem, the convergence
and stability of the suggested technique is demonstrated.

The advantages of our proposed method are as follows:
• A factional adaptive sliding surface is presented. The fractional derivative increases

the degree of freedom at the sliding surface.
• Adaptive rules are used to deal with uncertain parameters. The suggested technique

does not require information from disturbance bounds.
• The control strategy is used for synchronizing more slave systems with one master

system.
• The suggested approach is used for a wide range of systems.
• Our proposed technique has well overcome the phenomenon of chattering.
• The suggested method has been successfully used to synchronize fractional-order

multiple chaotic systems with uncertainties, disturbances, uncertain parameters, and
nonlinear inputs.

• It is in favor of its potential applications in multilateral communications, secret
signaling, complex networks, and many other engineering fields.

The organization of this research paper is as follows: in Sect. 2, the basic definitions
of fractional calculus are mentioned. The projective synchronization of fractional-order
multiple chaotic systems via the suggested controller in the presence of uncertain param-
eters and disturbances is investigated in Sect. 3. Section 4 describes the projective syn-
chronization of fractional-order multiple chaotic systems in the presence of uncertain-
ties, disturbances, and nonlinear input. Section 5 gives three illustrative examples. The
concluding part of our discussion is in Sect. 6.
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2 Fractional calculus
Definition 1 The Riemann–Liouville fractional integration of order α of a continuous
function f (t) is represented as follows:

t0 Iα
t f (t) =

1
Γ (α)

∫ t

t0

f (τ )
(t – τ )1–α

dτ , (1)

where Γ (α) is the well-known gamma function [44].

Definition 2 The α-order Riemann–Liouville fractional derivative of function f (t) is ex-
pressed by

t0 Dα
t f (t) =

dαf (t)
dtα

=
1

Γ (m – α)
dm

dtm

∫ t

t0

f (τ )
(t – τ )α–m+1 dτ , (2)

where m – 1 < α ≤ m, m ∈ N [44].

Definition 3 The α-order Caputo fractional derivative of function f (t) is given by

t0 Dα
t f (t) =

⎧⎨
⎩

1
Γ (m–α)

∫ t
t0

f (m)(τ )
(t–τ )α–m+1 dτ , m – 1 < α < m,

dmf (t)
dtm , α = m,

(3)

where m is the smallest integer number larger than α [44].

Theorem 1 ([45, 46]) Let x = 0 be an equilibrium point for either Caputo or Riemann–
Liouville fractional non-autonomous system

Dqx(t) = f (x, t), (4)

where f (x, t) satisfies the Lipschitz condition with Lipschitz constant l > 0 and α ∈ (0, 1).
Assume that there exists a Lyapunov function V (t, x(t)) satisfying

α1‖x‖a ≤ V (t, x) ≤ α2‖x‖, (5)

V̇ (t, x) ≤ –α3‖x‖, (6)

where α1, α2, α3, and a are positive constants and ‖.‖ denotes an arbitrary norm. Then the
equilibrium point of system (4) is Mittag-Leffler stable.

Remark 1 Mittag-Leffler stability implies asymptotic stability [46].

Remark 2 In this paper, the notation Dq is used to represent the Riemann–Liouville frac-
tional derivative.

3 Projective synchronization of fractional-order multiple chaotic systems with
unknown parameters and disturbances

3.1 Problem statement
In this section, we utilize the adaptive sliding mode control technique to obtain projective
synchronization of fractional-order multiple chaotic systems in the presence of uncertain
parameters and disturbances.



Rashidnejad Heydari and Karimaghaee Advances in Difference Equations        (2019) 2019:498 Page 5 of 23

Here the aim is that more slave systems synchronize with one master system, i.e., the
synchronization error moves toward zero.

A master system is given as follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Dqx11(t) = g11(x11(t), . . . , x1n(t)) + G11(x11(t), . . . , x1n(t))ξ11 + d11(t),

Dqx12(t) = g12(x11(t), . . . , x1n(t)) + G12(x11(t), . . . , x1n(t))ξ12 + d12(t),
...

Dqx1n(t) = g1n(x11(t), . . . , x1n(t)) + G1n(x11(t), . . . , x1n(t))ξ1n + d1n(t),

(7)

where 0 < q < 1. x1(t) = [x11(t), . . . , x1n(t)]T and d1(t) = [d11(t), . . . , d1n(t)]T are the vectors
of the states and disturbances of the master system, respectively. g1(x1(t)) = [g11, . . . , g1n]T

is a continuous nonlinear function, G1(x1(t)) = [G11, . . . , G1n]T is a continuous nonlinear
function matrix, and ξ1 = [ξ11, . . . , ξ1n]T is the uncertain parameter vector of the master
system.

Remark 3 Most of the famous fractional-order chaotic systems, such as fractional-
order Lorenz system, fractional-order Chen system, fractional-order Rossler system,
fractional-order Lu system, fractional-order Liu system, fractional-order Arneodo system,
fractional-order Genesio system, fractional-order Duffing oscillator, and fractional-order
Van der Pol oscillator, as paradigms in the research of chaos can be expressed by Eq. (7).

We describe the other N – 1 slave systems with control signals as follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Dqxj1(t) = gj1(xj1(t), . . . , xjn(t)) + Gj1(xj1(t), . . . , xjn(t))ξj1 + dj1(t) + uj–1,1,

Dqxj2(t) = gj2(xj1(t), . . . , xjn(t)) + Gj2(xj1(t), . . . , xjn(t))ξj2 + dj2(t) + uj–1,2,
...

Dqxjn(t) = gjn(xj1(t), . . . , xjn(t)) + Gjn(xj1(t), . . . , xjn(t))ξjn + djn(t) + uj–1,n,

j = 2, . . . , N , (8)

where 0 < q < 1. xj(t) = [xj1(t), . . . , xjn(t)]T and dj(t) = [dj1(t), . . . , djn(t)]T are the vectors of
the states and disturbances of the slave system, respectively. gj(xj(t)) = [gj1, . . . , gjn]T is a
continuous nonlinear function, Gj(xj(t)) = [Gj1, . . . , Gjn]T is a continuous nonlinear func-
tion matrix, ξj = [ξj1, . . . , ξjn]T is the uncertain parameter vector of the slave system, and
uj–1 = [uj–1,1, . . . , uj–1,n]T is the vector of the control inputs. The fractional-order multiple
chaotic systems can be rewritten in the general form

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Dqx1(t) = g1(x1(t)) + G1(x1(t))ξ1 + d1(t),

Dqx2(t) = g2(x2(t)) + G2(x2(t))ξ2 + d2(t) + u1,
...

DqxN (t) = gN (xN (t)) + GN (xN (t))ξN + dN (t) + uN–1,

(9)

Remark 4 If xj(t) = 0, j = 2, . . . , N , so the synchronization issue of fractional-order multiple
chaotic systems (7) is converted to the stabilization issue.
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Remark 5 If the functions gr(xr) = gz(xz) (r, z = 1, 2, . . . , N , r �= z) and Gr(xr) = Gz(xz)
(r, z = 1, 2, . . . , N , r �= z), the projective synchronization of different fractional-order multi-
ple chaotic systems is converted into the projective synchronization of identical fractional-
order multiple chaotic systems with different initial conditions.

Definition 4 The aim of the control issue is to choose a suitable controller u1, u2, . . . , un–1

which limt→∞ ‖ej–1(t)‖ = limt→∞ ‖x1(t) – Cjxj(t)‖ = 0, j = 2, . . . , N , i.e., the state of more
slave systems (8) tends to that of one master system (7). This kind of synchronization is
called projective synchronization [47].

The dynamics of the error system are formed by

⎡
⎢⎢⎢⎢⎣

Dqe1(t)
Dqe2(t)

...
DqeN–1(t)

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

Dqx1 – C2Dqx2

Dqx1 – C3Dqx3
...

Dqx1 – CN DqxN

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

g1(x1(t)) + G1(x1(t))ξ1 + d1(t) – C2[g2(x2(t)) + G2(x2(t))ξ2 + d2(t) + u1]
g1(x1(t)) + G1(x1(t))ξ1 + d1(t) – C3[g3(x3(t)) + G3(x3(t))ξ3 + d3(t) + u2]

...
g1(x1(t)) + G1(x1(t))ξ1 + d1(t) – CN [gN (xN (t)) + GN (xN (t))ξN + dN (t) + uN–1]

⎤
⎥⎥⎦. (10)

Remark 6 The definition of the desired scaling factor C means that there exists projective
synchronization among N chaotic systems, then it is easy to know that complete synchro-
nization [48], anti-synchronization [49], and another proposed synchronization [50] can
be considered as special cases in our model.

The error system dynamics can be rewritten as follows:

Dqej–1,i(t) = g1i(x1i) + G1i(x1i)ξ1 + d1i(t) – Cjgji(xji)

– CjGji(xji)ξj – Cjdji(t) – Cjuj–1,i. (11)

Considering the above discussion, it can be said that the synchronization issue has been
converted into stabilization of error system. The purpose of this section is to design a
proper control signal in such a way that the asymptotic stability of the error system ensures
the convergence to zero.

Assumption 1 We can assume that d1i(t) and Cjdji(t) are bounded by some positive con-
stants, i.e., |d1i(t)| < σ1i and |Cjdji(t)| < ϑji.

So, one obtains

∣∣d1i(t) – Cjdji(t)
∣∣ ≤ ρi. (12)

Assumption 2 The constants σ1i, ϑji, and ρi are unknown positive.
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3.2 Design of controller
Sliding mode controller design consists of two steps: 1) suitable sliding surface design 2)
designing a controller to assure that the system’s state tends to the sliding surface.

Sj–1 = Dq–1ej–1(t) + D–1
N∑

j=2

lj–1,iej–1,i(t), (13)

where Sj–1 = [Sj–1,1, Sj–1,2., . . . , Sj–1,n]T and lj–1 = diag(lj–1,1, . . . , lj–1,n) > 0, j = 2, . . . , N .
When the system is in sliding mode, it is clear that

Sj–1,i = Dq–1ej–1,i(t) + D–1
N∑

j=2

lj–1,iej–1,i(t) = 0 (14)

and

Ṡj–1,i = Dqej–1,i(t) +
N∑

j=2

lj–1,iej–1,i(t) = 0. (15)

So, the control rule is as follows:

uj–1,i(t) = C–1
j

[
g1i(x1i) + G1i(x1i)ξ̂1 – Cjgji(xji) – CjGji(xji)ξ̂j

+ (ρ̂j–1,i + δ̂j–1,i) sgn(Sj–1,i) +
N∑

j=2

lj–1,iej–1,i(t)

]
, (16)

where ξ̂1 > 0, ξ̂j > 0, ρ̂j–1,i > 0, and δ̂j–1,i > 0 are the adaptive parameters to overcome the
uncertain parameters ξ1, ξj, ρj–1,i, and δj–1,i, respectively.

The adaptive rules are designed as follows:

˙̂
ξ1 = GT

1
(
x1(t)

)
Sj–1, ξ̂1(0) = ξ̂10 > 0, (17)

˙̂
ξj = –CjGT

j
(
xj(t)

)
Sj–1, ξ̂j(0) = ξ̂j0 > 0, (18)

˙̂ρj–1,i = |Sj–1,i|, (19)

˙̂
δj–1,i = |Sj–1,i|. (20)

The initial values of the adaptive parameters ξ̂1, ξ̂j, ρ̂j, and δ̂j are ξ̂10, ξ̂j0, ρ̂j0, and δ̂j0,
respectively.

Theorem 2 By using controller (16) and adaptive rules (17)–(20), the projective synchro-
nization error converges to zero, i.e., the slave system trajectories (8) converge to the master
system trajectory (7).
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Proof We select the Lyapunov function candidate Vj–1(t) as follows:

Vj–1(t) =
1
2

n∑
i=1

[
S2

j–1,i + (ρ̂j–1,i – ρj–1,i)2 + (δ̂j–1,i – δj–1,i)2]

+
1
2
[‖ξ̂1 – ξ1‖2

2 + ‖ξ̂j – ξj‖2
2
]
. (21)

Differentiating (21), we get

V̇j–1,i(t) =
n∑

i=1

[
Sj–1,iṠj–1,i + (ρ̂j–1,i – ρj–1,i) ˙̂ρj–1,i + (δ̂j–1,i – δj–1,i) ˙̂δj–1,i

]
+ (ξ̂1 – ξ1)T ˙̂

ξ1

+ (ξ̂j – ξj)T ˙̂
ξj. (22)

Introducing (15) into (22), we obtain

V̇j–1,i(t) =
n∑

i=1

[
Sj–1,i

(
Dqej–1,i(t) +

N∑
j=2

lj–1,iej–1,i(t)

)

+ (ρ̂j–1,i – ρj–1,i) ˙̂ρj–1,i + (δ̂j–1,i – δj–1,i) ˙̂δj–1,i

]

+ (ξ̂1 – ξ1)T ˙̂
ξ1 + (ξ̂j – ξj)T ˙̂

ξj. (23)

Combining (11), (16), and (23), we get

V̇j–1,i(t) =
n∑

i=1

[
Sj–1,i

(
–G1i(x1i)(ξ̂1 – ξ1) + CjGji(xji)(ξ̂j – ξj)

+
(
d1i(t) – Cjdji(t)

)
– (ρ̂j–1,i + δ̂j–1,i) sgn(Sj–1) –

N∑
j=2

lj–1,iej–1,i(t)

+
N∑

j=2

lj–1,iej–1,i(t)

)
+ (ρ̂j–1,i – ρj–1,i) ˙̂ρj–1,i + (δ̂j–1,i – δj–1,i) ˙̂δj–1,i

]

+ (ξ̂1 – ξ1)T ˙̂
ξ1 + (ξ̂j – ξj)T ˙̂

ξj. (24)

It is clear that

V̇j–1,i(t) ≤
n∑

i=1

[|Sj–1,i|
∣∣d1i(t) – Cjdji(t)

∣∣

+ Sj–1,i
(
–G1i(x1i)(ξ̂1 – ξ1) + CjGji(xji)(ξ̂j – ξj)

– (ρ̂j–1,i + δ̂j–1,i) sgn(Sj–1)
)

+ (ρ̂j–1,i – ρj–1,i) ˙̂ρj–1,i + (δ̂j–1,i – δj–1,i) ˙̂δj–1,i
]

+ (ξ̂1 – ξ1)T ˙̂
ξ1 + (ξ̂j – ξj)T ˙̂

ξj. (25)
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Utilizing Assumption 1, we get

V̇j–1,i(t) ≤
n∑

i=1

[
ρj–1,i|Sj–1,i| – Sj–1,iG1i(x1i)(ξ̂1 – ξ1)

+ CjSj–1,iGji(xji)(ξ̂j – ξj) – (ρ̂j–1,i + δ̂j–1,i)|Sj–1,i| + (ρ̂j–1,i – ρj–1,i) ˙̂ρj–1,i

+ (δ̂j–1,i – δj–1,i) ˙̂δj–1,i
]

+ (ξ̂1 – ξ1)T ˙̂
ξ1 + (ξ̂j – ξj)T ˙̂

ξj. (26)

The following equations are equivalent:

n∑
i=1

[
–Sj–1,iG1i(x1i)

]
(ξ̂1 – ξ1) = –(ξ̂1 – ξ1)T GT

1
(
x1(t)

)
Sj–1,

n∑
i=1

[
CjSj–1,iGji(xji)

]
(ξ̂j – ξj) = Cj(ξ̂j – ξj)T GT

j
(
xj(t)

)
Sj–1.

By replacing adaptive rules (17)–(20) into (26), we have

V̇j–1,i(t) ≤
n∑

i=1

[
–(ρ̂j–1,i – ρj–1,i)|Sj–1,i| – δ̂j–1,i|Sj–1,i| + (ρ̂j–1,i – ρj–1,i)|Sj–1,i|

+ (δ̂j–1,i – δj–1,i)|Sj–1,i|
]

– (ξ̂1 – ξ1)T GT
1
(
x1(t)

)
Sj–1

+ Cj(ξ̂j – ξj)T GT
j
(
xj(t)

)
Sj–1 + (ξ̂1 – ξ1)T GT

1
(
x1(t)

)
Sj–1

– Cj(ξ̂j – ξj)T GT
j
(
xj(t)

)
Sj–1. (27)

Thus, (27) implies that

V̇j–1,i(t) ≤ –
n∑

i=1

δj–1,i|Sj–1,i| ≤ 0. (28)

Therefore, one can get

Vj–1,i(0) ≥ Vj–1,i(t) +
∫ t

0
δj–1,i

∣∣Sj–1,i(τ )
∣∣dτ . (29)

With the help of Barbalat’s lemma [51], it is easily obtained that

lim
t→∞

∫ t

0
δj–1,i

∣∣Sj–1,i(τ )
∣∣dτ = 0, (30)

which can conclude that Sj–1,i(t) = 0. So, using the suggested controller, we can correctly
obtain the projective synchronization between the first system and the jth system for all
initial conditions, i.e., the synchronization error converges to zero. Thus, Theorem 2 is
proved. �

Remark 7 Theorem 1 shows the possibility of sliding mode control (13) and adaptive laws
(17)–(20), and the designed controller (16) can compensate the disturbances. Then it is
easy to get that V̇j–1,i(t) ≤ 0 by reducing the inequalities, then we get Sj–1,i(t) = 0, i.e.
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Sj–1,i(t)Ṡj–1,i(t) < 0, i.e., ej–1,i(t) can move to Sj–1,i(t) = 0, then the asymptotic stability of
(11) is obtained based on sliding mode control theory.

4 Projective synchronization of fractional-order multiple chaotic systems with
uncertainties, disturbances, and input nonlinearity

4.1 Problem statement
Here, we utilize our suggested technique for projective synchronization of fractional-order
multiple chaotic systems with uncertainties, disturbances, and nonlinear input. The mas-
ter chaotic system is formulated as follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Dqy11(t) = h11(y1(t)) + 
h11(y1(t), t) + ω11(t),

Dqy12(t) = h12(y1(t)) + 
h12(y1(t), t) + ω12(t),
...

Dqy1n(t) = h1n(y1(t)) + 
h1n(y1(t), t) + ω1n(t),

(31)

where 0 < q < 1. y1(t) = [y11(t), . . . , y1n(t)]T , 
h1(y1(t), t) = [
h11(y1(t), t), . . . ,

h1n(y1(t), t)]T , and ω1(t) = [ω11(t), . . . ,ω1n(t)]T are the vectors of the states, uncertainties,
and disturbances of the master system, respectively. h1(y1(t)) = [h11, . . . , h1n]T is a continu-
ous nonlinear function. We describe the other N – 1 slave systems with the control signals
as follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Dqyi1(t) = hi1(yi(t)) + 
hi1(yi(t), t) + ωi1(t) + φi–1,1(vi–1,1),

Dqyi2(t) = hi2(yi(t)) + 
hi2(yi(t), t) + ωi2(t) + φi–1,2(vi–1,2),
...

Dqyin(t) = hin(yi(t)) + 
hin(yi(t), t) + ωin(t) + φi–1,n(vi–1,n),

i = 2, . . . , N , (32)

where i = 2, . . . , N and 0 < q < 1. yi(t) = [yi1(t), . . . , yin(t)]T , 
hi(yi(t), t) = [
hi1(yi(t), t),
. . . ,
hin(yi(t), t)]T , and ωi(t) = [ωi1(t), . . . ,ωin(t)]T are the vectors of the states, uncertain-
ties, and disturbances of the slave system, respectively. hi(yi(t)) = [hi1, . . . , hin]T is a con-
tinuous nonlinear function, and φi–1(vi–1) = [φi–1,1(vi–1,1), . . . ,φi–1,n(vi–1,n)]T is the vector
of the nonlinear control inputs. In (32), φ(v(t)) is a continuous nonlinear function with
φ(0) = 0 belonging to the sector [α,β], where α is a nonzero scalar, i.e.,

αi–1,pv2
i–1,p ≤ vi–1,pφi–1,p(vi–1,p) ≤ βi–1,pv2

i–1,p; αi–1,p > 0. (33)

Figure 1 depicts the nonlinear function φ(v(t)).
The fractional-order multiple chaotic systems can be written in a general form:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Dqy1(t) = h1(y1(t)) + 
h1(y1(t), t) + ω1(t),

Dqy2(t) = h2(y2(t)) + 
h2(y2(t), t) + ω2(t) + φ1(v1),
...

DqyN (t) = hN (yN (t)) + 
hN (yN (t), t) + ωN (t) + φN–1(vN–1).

(34)
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Figure 1 Input nonlinearity

To achieve the projective synchronization issue, the error among one master and more
slave systems is defined as ei–1 = y1(t) – Jiyi(t), i = 2, . . . , N . So, the aim is to synchronize
system (31) with system (32) via the suggested control strategy, i.e.,

lim
t→∞

∥∥ei–1(t)
∥∥ = lim

t→∞
∥∥y1(t) – Jiyi(t)

∥∥ = 0, i = 2, . . . , N . (35)

Subtracting (32) from (31), we obtain the synchronization error dynamics as follows:

⎡
⎢⎢⎢⎢⎣

Dqe1(t)
Dqe2(t)

...
DqeN–1(t)

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

Dqy1 – J2Dqy2

Dqy1 – J3Dqy3
...

Dqy1 – JN DqyN

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

h1(y1(t)) + 
h1(y1(t), t) + ω1(t) – J2[h2(y2(t)) + 
h2(y2(t), t) + ω2(t) + φ1(v1)]
h1(y1(t)) + 
h1(y1(t), t) + ω1(t) – J3[h3(y3(t)) + 
h3(y3(t), t) + ω3(t) + φ2(v2)]

...
h1(y1(t)) + 
h1(y1(t), t) + ω1(t) – JN [hN (yN (t)) + 
hN (yN (t), t) + ωN (t) + φN–1(vN–1)]

⎤
⎥⎥⎦. (36)

The error system dynamics can be rewritten as follows:

Dqei–1,p(t) = h1p
(
y1p(t)

)
+ 
h1p

(
y1p(t), t

)
+ ω1p(t) – Jihip

(
yip(t)

)

– Ji
hip
(
yip(t), t

)
– Jiωip(t) – Jiφi–1,p(vi–1,p). (37)

Assumption 3 Suppose |
h1p| < ϕ1p and |Ji
hip| < μip. So, we get

∣∣
h1p
(
y1p(t), t

)
– Ji
hip

(
yip(t), t

)∣∣ ≤ γp. (38)

Assumption 4 We can also assume that ω1p(t) and Jiωip(t) are bounded. As a result, we
have

∣∣ω1p(t) – Jiωip(t)
∣∣ ≤ θp. (39)
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Assumption 5 The constants ϕ1p, μip, γp, and θp are unknown positive.

4.2 Design of a controller
Here, we choose the sliding surface in the following form:

Si–1 = Dq–1ei–1(t) + D–1
N∑

i=2

li–1,pei–1,p(t), (40)

where Si–1 = [Si–1,1, Si–1,2, . . . , Si–1,n]T and li–1 = diag(li–1,1, . . . , li–1,n) > 0, i = 2, . . . , N .
The sliding surface can be rewritten as follows:

Si–1,p = Dq–1ei–1,p(t) + D–1
N∑

i=2

li–1,pei–1,p(t). (41)

Differentiating Si–1,p in (41) yields

Ṡi–1,p = Dqei–1,p(t) +
N∑

i=2

li–1,pei–1,p(t). (42)

The control rule is selected as

vi–1,p(t) =

[
1

Jiαi–1,p

(∣∣∣∣∣
N∑

i=2

li–1,pei–1,p(t)

∣∣∣∣∣ +
∣∣h1p

(
y1p(t)

)
– Jihip

(
yip(t)

)∣∣

+ γ̂i–1,p + θ̂i–1,p + ki–1,p

)]
sgn(Si–1,p)

= λi–1,p sgn(Si–1,p), (43)

where γ̂i–1,p > 0 and θ̂i–1,p > 0 are two adaptive parameters to overcome the uncertain pa-
rameters γj–1,i and θj–1,i, respectively. ki–1,p > 0 is a switching gain.

The adaptive rules are the following:

˙̂γi–1,p = |Si–1,p|, (44)

˙̂
θi–1,p = |Si–1,p|. (45)

Theorem 3 By using controller (43) and adaptive rules (44), (45), the projective synchro-
nization error converges to zero, i.e., the slave system trajectories (32) converge to the master
system trajectory (31).

Proof The Lyapunov function Vi–1(t) can be selected as

Vi–1(t) =
1
2

n∑
p=1

[
S2

i–1,p + (γ̂i–1,p – γi–1,p)2 + (θ̂i–1,p – θi–1,p)2]. (46)

Its derivative is

V̇i–1(t) =
n∑

p=1

[
Si–1,pṠi–1,p + (γ̂i–1,p – γi–1,p) ˙̂γi–1,p + (θ̂i–1,p – θi–1,p) ˙̂

θi–1,p
]
. (47)
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Substituting (42) into (47), we have

V̇i–1(t) =
n∑

p=1

[
Si–1,p

(
Dqei–1,p(t) +

N∑
i=2

li–1,pei–1,p(t)

)

+ (γ̂i–1,p – γi–1,p) ˙̂γi–1,p + (θ̂i–1,p – θi–1,p) ˙̂
θi–1,p

]
. (48)

By using (37) and (44), (45), we get

V̇i–1(t) =
n∑

p=1

[
Si–1,p

(
h1p

(
y1p(t)

)
+ 
h1p

(
y1p(t), t

)
+ ω1p(t) – Jihip

(
yip(t)

)

– Ji
hip
(
yip(t), t

)
– Jiωip(t) – Jiφi–1,p(vi–1,p) +

N∑
i=2

li–1,pei–1,p(t)

)

+ (γ̂i–1,p – γi–1,p)|Si–1,p| + (θ̂i–1,p – θi–1,p)|Si–1,p|
]

. (49)

It is clear that

V̇i–1(t) ≤
n∑

p=1

[
|Si–1,p|

∣∣
h1p
(
y1p(t)

)
– Ji
hip

(
yip(t)

)∣∣

+ |Si–1,p|
∣∣ω1p(t) – Jiωip(t)

∣∣ + |Si–1,p|
∣∣h1p

(
y1p(t)

)
– Jihip

(
yip(t)

)∣∣

+ |Si–1,p|
∣∣∣∣∣

N∑
i=2

li–1,pei–1,p(t)

∣∣∣∣∣ – JiSi–1,pφi–1,p(vi–1,p) + (γ̂i–1,p – γi–1,p)|Si–1,p|

+ (θ̂i–1,p – θi–1,p)|Si–1,p|
]

. (50)

Utilizing (33), it is easily obtained that –Si–1,pφi–1,p(vi–1,p) ≤ –αi–1,pλi–1,p|Si–1,p|. Further-
more, the following result can be achieved:

V̇i–1(t) ≤
n∑

p=1

[
|Si–1,p|

∣∣h1p
(
y1p(t)

)
– Jihip

(
yip(t)

)∣∣ + |Si–1,p|
∣∣∣∣∣

N∑
i=2

li–1,pei–1,p(t)

∣∣∣∣∣

– Jiαi–1,pλi–1,p|Si–1,p| + γ̂i–1,p|Si–1,p| + θ̂i–1,p|Si–1,p|
]

. (51)

By replacing

λi–1,p =
1

Jiαi–1,p

(∣∣∣∣∣
N∑

i=2

li–1,pei–1,p(t)

∣∣∣∣∣ +
∣∣h1p

(
y1p(t)

)
– Jihip

(
yip(t)

)∣∣

+ γ̂i–1,p + θ̂i–1,p + ki–1,p

)
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into (51), we obtain

V̇i–1(t) ≤
n∑

p=1

[
|Si–1,p|

∣∣h1p
(
y1p(t)

)
– Jihip

(
yip(t)

)∣∣ + |Si–1,p|
∣∣∣∣∣

N∑
i=2

li–1,pei–1,p(t)

∣∣∣∣∣

– Jiαi–1,p × 1
Jiαi–1,p

(∣∣∣∣∣
N∑

i=2

li–1,pei–1,p(t)

∣∣∣∣∣

+
∣∣h1p

(
y1p(t)

)
– Jihip

(
yip(t)

)∣∣ + γ̂i–1,p + θ̂i–1,p + ki–1,p

)
|Si–1,p|

+ γ̂i–1,p|Si–1,p| + θ̂i–1,p|Si–1,p|
]

. (52)

It is clear that

V̇i–1(t) ≤ –
n∑

p=1

ki–1,p|Si–1,p| ≤ 0. (53)

Using Barbalat’s lemma [51] in the Lyapunov stability theorem, it can be concluded that
the synchronization error moves toward zero and the projective synchronization is real-
ized. Thus, Theorem 3 is proved. �

5 Simulation results
Here, three examples are presented to examine the usefulness of the technique suggested
in the previous sections. Simulations are performed using MATLAB software.

5.1 Example 1
Consider the three fractional-order chaotic systems, Chen, Lorenz, and Liu, and assume
the Chen system to be the master system and the Lorenz and Liu systems to be the slave
systems, which are expressed by the following nonlinear equations:

Chen system:
⎡
⎢⎣

Dqx11

Dqx12

Dqx13

⎤
⎥⎦ =

⎡
⎢⎣

0
–x11x13

x11x12

⎤
⎥⎦

︸ ︷︷ ︸
g1(x1(t))

+

⎡
⎢⎣

x12 – x11 0 0
–x11 x12 + x11 0

0 0 –x13

⎤
⎥⎦

︸ ︷︷ ︸
G1(x1(t))

⎡
⎢⎣

ξ11

ξ12

ξ13

⎤
⎥⎦

︸ ︷︷ ︸
ξ1

+

⎡
⎢⎣

d11

d12

d13

⎤
⎥⎦

︸ ︷︷ ︸
D1

, (54)

Lorenz system:
⎡
⎢⎣

Dqx21

Dqx22

Dqx23

⎤
⎥⎦ =

⎡
⎢⎣

0
–x21x23 – x22

x21x22

⎤
⎥⎦

︸ ︷︷ ︸
g2(x2(t))

+

⎡
⎢⎣

x22 – x21 0 0
0 x21 0
0 0 –x23

⎤
⎥⎦

︸ ︷︷ ︸
G2(x2(t))

⎡
⎢⎣

ξ21

ξ22

ξ23

⎤
⎥⎦

︸ ︷︷ ︸
ξ2

+

⎡
⎢⎣

d21

d22

d23

⎤
⎥⎦

︸ ︷︷ ︸
D2

+

⎡
⎢⎣

u11

u12

u13

⎤
⎥⎦

︸ ︷︷ ︸
u1

, (55)
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and

Liu system:
⎡
⎢⎣

Dqx31

Dqx32

Dqx33

⎤
⎥⎦ =

⎡
⎢⎣

0
–x31x33

4x2
31

⎤
⎥⎦

︸ ︷︷ ︸
g3(x3(t))

+

⎡
⎢⎣

x32 – x31 0 0
0 x31 0
0 0 –x33

⎤
⎥⎦

︸ ︷︷ ︸
G3(x3(t))

⎡
⎢⎣

ξ31

ξ32

ξ33

⎤
⎥⎦

︸ ︷︷ ︸
ξ3

+

⎡
⎢⎣

d31

d32

d33

⎤
⎥⎦

︸ ︷︷ ︸
D3

+

⎡
⎢⎣

u21

u22

u23

⎤
⎥⎦

︸ ︷︷ ︸
u2

, (56)

where q = 0.98. ξ11, ξ12, ξ13, ξ21, ξ22, ξ23, ξ31, ξ32, and ξ33 are the unknown parameters.
u1 = [u11, u12, u13]T and u2 = [u21, u22, u23]T are the vectors of the control inputs. The dis-
turbances are selected as follows:

D1 =

⎡
⎢⎣

–0.1 cos(t)
–0.1 cos(t)
–0.1 cos(t)

⎤
⎥⎦ , D2 = D3 =

⎡
⎢⎣

0.1 cos(t)
0.1 cos(t)
0.1 cos(t)

⎤
⎥⎦ . (57)

Utilizing the suitable coefficients C1 = diag{1, –1, –2} and C2 = diag{–1, 1, 2}, we have

⎧⎪⎪⎨
⎪⎪⎩

e11(t) = x11(t) – x21(t),

e12(t) = x12(t) + x22(t),

e13(t) = x13(t) + 2x23(t),

⎧⎪⎪⎨
⎪⎪⎩

e21(t) = x11(t) + x31(t),

e22(t) = x12(t) – x32(t),

e23(t) = x13(t) – 2x33(t).

(58)

Vectors [1, –1, 1], [2, 1, 1], and [2, 1, 1] are chosen as the initial values of [x11(0), x12(0),
x13(0)], [x21(0), x22(0), x23(0)], and [x31(0), x32(0), x33(0)], respectively. The initial condi-
tions of the adaptive vector parameters are supposed as [ξ̂11(0), ξ̂12(0), ξ̂13(0)] = [6, 0, –8],
[ξ̂21(0), ξ̂22(0), ξ̂23(0)] = [0, 6, 4]; [ξ̂11(0), ξ̂12(0), ξ̂13(0)] = [24, 0, –2], [ξ̂31(0), ξ̂32(0), ξ̂33(0)] =
[0, 24, 1]; [ρ̂11(0), ρ̂12(0), ρ̂13(0)] = [0.5, 0.5, 0.5], [ρ̂21(0), ρ̂22(0), ρ̂23(0)] = [0.3, 0.3, 0.3];
[δ̂11(0), δ̂12(0), δ̂13(0)] = [0.5, 0.5, 0.5], [δ̂21(0), δ̂22(0), δ̂23(0)] = [0.3, 0.3, 0.3]. It is supposed
l1 = l2 = diag{25, 5, 1}. The control strategy in Theorem 2 is given to projectively syn-
chronize one fractional-order Chen system (54) and two fractional-order Lorenz (55) and
fractional-order Liu (56) systems with unknown parameters and disturbances. Figure 2

Figure 2 State trajectories of the error system: (a) e11(t), e12(t), e13(t) and (b) e21(t), e22(t), e23(t)
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Figure 3 Estimation of master and slave system parameters: (a) ξ11(t), ξ12(t), ξ13(t), ξ21(t), ξ22(t), ξ23(t) and (b)
ξ11(t), ξ12(t), ξ13(t), ξ31(t), ξ32(t), ξ33(t)

Figure 4 State trajectories of the sliding surface: (a) S11(t), S12(t), S13(t) and (b) S21(t), S22(t), S23(t)

depicts the projective synchronization error of systems (54), (55), and (56) in the presence
of suggested controller (16). It is represented that error via the suggested controller tends
to zero, which shows that the projective synchronization is realized between fractional-
order multiple chaotic systems with uncertain parameters and disturbances. Figure 3 dis-
plays the estimate of the master and slave system parameters. The uncertain parameters
of fractional-order multiple chaotic systems are identified correctly, and the adaptive pa-
rameters move toward some true values. The trajectories of sliding surface (13) are shown
in Fig. 4.

5.2 Example 2: economical system
One of the real physical systems that have chaotic behavior is the economy and finance.
But the chaotic behavior in financial systems is undesirable due to the threat of investment
safety. Therefore, in order to improve economic performance, the phenomenon of chaos
should be reduced in financial systems. The model examined in this paper is a fractional-
order financial system consisting of three nonlinear differential equations. The system has
three variables x11, x12, and x13 that represent the interest rate, the investment demand,
and the price index, respectively.
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Consider the three fractional-order financial systems as follows:

master system:
⎡
⎢⎣

Dqx11

Dqx12

Dqx13

⎤
⎥⎦ =

⎡
⎢⎣

x13 + x12x11

1 – x2
11

–x11

⎤
⎥⎦

︸ ︷︷ ︸
g1(x1(t))

+

⎡
⎢⎣

–x11 0 0
0 –x12 0
0 0 –x13

⎤
⎥⎦

︸ ︷︷ ︸
G1(x1(t))

⎡
⎢⎣

ξ11

ξ12

ξ13

⎤
⎥⎦

︸ ︷︷ ︸
ξ1

+

⎡
⎢⎣

–0.2 cos(t)
–0.2 cos(t)
–0.2 cos(t)

⎤
⎥⎦

︸ ︷︷ ︸
D1

, (59)

slave systems:
⎡
⎢⎣

Dqx21

Dqx22

Dqx23

⎤
⎥⎦ =

⎡
⎢⎣

x23 + x22x21

1 – x2
21

–x21

⎤
⎥⎦

︸ ︷︷ ︸
g2(x2(t))

+

⎡
⎢⎣

–x21 0 0
0 –x22 0
0 0 –x23

⎤
⎥⎦

︸ ︷︷ ︸
G2(x2(t))

⎡
⎢⎣

ξ21

ξ22

ξ23

⎤
⎥⎦

︸ ︷︷ ︸
ξ2

+

⎡
⎢⎣

0.2 cos(t)
0.2 cos(t)
0.2 cos(t)

⎤
⎥⎦

︸ ︷︷ ︸
D2

+

⎡
⎢⎣

u11

u12

u13

⎤
⎥⎦

︸ ︷︷ ︸
u1

(60)

and

⎡
⎢⎣

Dqx31

Dqx32

Dqx33

⎤
⎥⎦ =

⎡
⎢⎣

x33 + x32x31

1 – x2
31

–x31

⎤
⎥⎦

︸ ︷︷ ︸
g3(x3(t))

+

⎡
⎢⎣

–x31 0 0
0 –x32 0
0 0 –x33

⎤
⎥⎦

︸ ︷︷ ︸
G3(x3(t))

⎡
⎢⎣

ξ31

ξ32

ξ33

⎤
⎥⎦

︸ ︷︷ ︸
ξ3

+

⎡
⎢⎣

0.2 cos(t)
0.2 cos(t)
0.2 cos(t)

⎤
⎥⎦

︸ ︷︷ ︸
D3

+

⎡
⎢⎣

u21

u22

u23

⎤
⎥⎦

︸ ︷︷ ︸
u2

, (61)

where q = 0.98. ξ11, ξ12, ξ13, ξ21, ξ22, ξ23, ξ31, ξ32, and ξ33 are the unknown parameters.
u1 = [u11, u12, u13]T and u2 = [u21, u22, u23]T are the vectors of the control inputs.

Figure 5 illustrates the chaotic behavior of financial system (59) for ξ11 = 1, ξ12 = 0.1, and
ξ13 = 1.

Using the suitable coefficients C1 = diag{1, –1, –2} and C2 = diag{–1, 1, 2}, we have

⎧⎪⎪⎨
⎪⎪⎩

e11(t) = x11(t) – x21(t),

e12(t) = x12(t) + x22(t),

e13(t) = x13(t) + 2x23(t),

⎧⎪⎪⎨
⎪⎪⎩

e21(t) = x11(t) + x31(t),

e22(t) = x12(t) – x32(t),

e23(t) = x13(t) – 2x33(t).

(62)

The initial conditions can be selected as [x11(0), x12(0), x13(0)]T = [2, –1, 1]T ,
[x21(0), x22(0), x23(0)]T = [1, 2, 1]T , and [x31(0), x32(0), x33(0)]T = [1, 2, 1]T .

Applying controller (16), the trajectories of the projective synchronization error are
shown in Fig. 6. It can be seen that the synchronization errors converge to zero, which
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Figure 5 The chaos attractor of system (59) with x11(0) = 2, x12(0) = –3, x13(0) = 2

Figure 6 State trajectories of the error system: (a) e11(t), e12(t), e13(t) and (b) e21(t), e22(t), e23(t)

Figure 7 State trajectories of the sliding surface: (a) S11(t), S12(t), S13(t) and (b) S21(t), S22(t), S23(t)

indicates that more slave systems and one master system are indeed synchronized. Fig-
ure 7 shows the trajectories of sliding surface (13). Obviously, the control signal is practi-
cal.
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5.3 Example 3
Consider the master system and two slave systems as follows:

master system:
⎡
⎢⎣

Dqy11

Dqy12

Dqy13

⎤
⎥⎦ =

⎡
⎢⎣

–36y11 + 36y12

20y12 – y11y13

–36y13 + y11y12

⎤
⎥⎦

︸ ︷︷ ︸
h1(y1(t))

+

⎡
⎢⎣


h11(y11(t))

h12(y12(t))

h13(y13(t))

⎤
⎥⎦

︸ ︷︷ ︸

h1(y1(t))

+

⎡
⎢⎣

ω11(t)
ω12(t)
ω13(t)

⎤
⎥⎦

︸ ︷︷ ︸
ω1

, (63)

slave systems:
⎡
⎢⎣

Dqy21

Dqy22

Dqy23

⎤
⎥⎦ =

⎡
⎢⎣

–10y21 + 10y22

28y21 – y22 – y21y23

– 8
3 y23 + y21y22

⎤
⎥⎦

︸ ︷︷ ︸
h2(y2(t))

+

⎡
⎢⎣


h21(y21(t))

h22(y22(t))

h23(y23(t))

⎤
⎥⎦

︸ ︷︷ ︸

h2(y2(t))

+

⎡
⎢⎣

ω21(t)
ω22(t)
ω23(t)

⎤
⎥⎦

︸ ︷︷ ︸
ω2

+

⎡
⎢⎣

ϕ11(v11)
ϕ12(v12)
ϕ13(v13)

⎤
⎥⎦

︸ ︷︷ ︸
ϕ1(v1)

(64)

and

⎡
⎢⎣

Dqy31

Dqy32

Dqy33

⎤
⎥⎦ =

⎡
⎢⎣

–35y31 + 35y32

–7y31 + 28y32 – y31y33

–3y33 + y31y32

⎤
⎥⎦

︸ ︷︷ ︸
h3(y3(t))

+

⎡
⎢⎣


h31(y31(t))

h32(y32(t))

h33(y33(t))

⎤
⎥⎦

︸ ︷︷ ︸

h3(y3(t))

+

⎡
⎢⎣

ω31(t)
ω32(t)
ω33(t)

⎤
⎥⎦

︸ ︷︷ ︸
ω3

+

⎡
⎢⎣

ϕ21(v21)
ϕ22(v22)
ϕ23(v23)

⎤
⎥⎦ ,

︸ ︷︷ ︸
ϕ2(v2)

(65)

where q = 0.98. φ1(v1) = [φ11(v11),φ12(v12),φ13(v13)]T , and φ2(v2) = [φ21(v21),φ22(v22),
φ23(v23)]T are the vectors of the nonlinear control inputs. ϕi–1,p = [3 + 2 sin t]vi–1,p (i = 2, 3,
p = 1, 2, 3) is selected as the nonlinear control inputs. The uncertainties and disturbances
are chosen as follows:


h1
(
y1(t)

)
=

⎡
⎢⎣

0.5 sin(πy11)
0.5 sin(2πy12)
0.5 sin(3πy13)

⎤
⎥⎦ ,


h2
(
y2(t)

)
=

⎡
⎢⎣

–0.5 sin(πy21)
–0.5 sin(2πy22)
–0.5 sin(3πy23)

⎤
⎥⎦ , and


h3
(
y3(t)

)
=

⎡
⎢⎣

0.5 sin(πy31)
0.5 sin(2πy32)
0.5 sin(3πy33)

⎤
⎥⎦

(66)

ω1 =

⎡
⎢⎣

0.1 cos t
0.1 cos t
0.1 cos t

⎤
⎥⎦ , ω2 =

⎡
⎢⎣

–0.1 cos t
–0.1 cos t
–0.1 cos t

⎤
⎥⎦ , and ω3 =

⎡
⎢⎣

0.1 cos t
0.1 cos t
0.1 cos t

⎤
⎥⎦ . (67)
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Utilizing the suitable coefficients J1 = diag{1, –1, –2} and J2 = diag{–1, 1, 2}, we have

⎧⎪⎪⎨
⎪⎪⎩

e11(t) = x11(t) – x21(t),

e12(t) = x12(t) + x22(t),

e13(t) = x13(t) + 2x23(t),

⎧⎪⎪⎨
⎪⎪⎩

e21(t) = x11(t) + x31(t),

e22(t) = x12(t) – x32(t),

e23(t) = x13(t) – 2x33(t).

(68)

Vectors [4, –1, 6], [1, 2, 3], and [3, 1, 2] are chosen as the initial values of [y11(0), y12(0),
y13(0)], [y21(0), y22(0), y23(0)], and [y31(0), y32(0), y33(0)], respectively. The initial conditions
of the adaptive vector parameters are supposed as [γ̂11(0), γ̂12(0), γ̂13(0)] = [0.03, 0.03, 0.03],
[γ̂21(0), γ̂22(0), γ̂23(0)] = [0.02, 0.01, 0.01], [θ̂11(0), θ̂12(0), θ̂13(0)] = [0.03, 0.03, 0.03], and
[θ̂21(0), θ̂22(0), θ̂23(0)] = [0.02, 0.01, 0.01]. It is supposed l1 = l2 = diag{25, 5, 1}. So, the con-
trol strategy under the conditions of Theorem 3 is applied to the synchronization of one
master system (63) and two slave systems (64) and (65) with uncertainties, disturbances,
and input nonlinearity. Figure 8 demonstrates the trajectories of the projective synchro-
nization error, when controller (43) is used. As it can be seen, the suggested controller
has been able to synchronize more slave systems with one master system even with un-
certainties and disturbances. The estimate of the master and slave systems parameters is
displayed in Fig. 9. Figure 10 shows the trajectories of sliding surface (40).

Figure 8 State trajectories of the error system: (a) e11(t), e12(t), e13(t) and (b) e21(t), e22(t), e23(t)

Figure 9 Estimation of adaptive parameters: (a) γ11(t), γ12(t), γ13(t), γ21(t), γ22(t), γ23(t) and (b) θ11(t), θ12(t),
θ13(t), θ21(t), θ22(t), θ23(t)
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Figure 10 State trajectories of the sliding surface: (a) S11(t), S12(t), S13(t) and (b) S21(t), S22(t), S23(t)

6 Conclusion
This work attempts to study the issue of projective synchronization of different fractional-
order multiple chaotic systems with fully uncertain parameters, uncertainties, distur-
bances, and nonlinear input. In the initial part of the discussion, an adaptive sliding mode
controller is suggested for projective synchronization in the presence of uncertain pa-
rameters and disturbances. Then, the projective synchronization via an adaptive sliding
mode controller is studied with input nonlinearity. It should be noted that the suggested
method is simple and practical. The stability of the proposed technique is investigated
via the fractional Lyapunov stability theorem and adaptive rules. Simulation results show
that the suggested technique is effective and applicable to the synchronization of differ-
ent fractional-order multiple chaotic systems. Eventually, it is worthy of consideration to
tackle the problems of optimal control and the time-delay of these systems as the future
research topics.
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