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Abstract
We propose a generalized long-water wave system that reduces to the standard
water wave system. We also obtain the Lax pair and symmetries of the generalized
shallow-water wave system and single out some their similarity reductions,
group-invariant solutions, and series solutions. We further investigate the
corresponding self-adjointness and the conservation laws of the generalized system.
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1 Introduction
The classical dispersiveless long wave equations

⎧
⎨

⎩

ut + uux + hx = 0,

ht + (uh)x = 0,
(1)

have a number of dispersive generalizations [1]. Kupershmidt [2] considered the following
extension of (1):

⎧
⎨

⎩

ut = ( 1
2 u2 + h – βux)x,

ht = (uh + αuxx – βhx)x,
(2)

where α, β are arbitrary constants. The invertible change of variables u = ū, h = h̄ + γ ūx,
turns (2) into

⎧
⎨

⎩

ūt = ( 1
2 ū2 + h̄ + μūx)x,

h̄t = (ūh̄ – μh̄x)x,μ = γ + β = ±√
α + β2.

Broer [1] derived system (2) for α = 1
3 ,β = 0, for which it is the proper Boussinesq equation.

In terms of the potential ϕ : u = ϕx, system (2) was derived by Kaup [3]. Later, Matveev and
Yavor [4] found algebrogeometrically a large class of almost periodic solutions. Li, Ma,
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and Zhang [5] used a scaling transformation to transfer a nonlinear long wave equation of
Boussinesq class to the Broer–Kaup (BK) system, a type of long water wave equations:

⎧
⎨

⎩

vt = 1
2 (v2 + 2w – vx)x,

wt = (vw + 1
2 wx)x.

Furthermore, some exact solutions and Darboux transformations of (1) were obtained by
applying the Lax-pair method. In terms of [5], we can study the similarity reduction, exact
solutions, and conservation laws of the Boussinesq system through the scalar transforma-
tion

v = –u, w = ξ + 1 +
vx

2
,

that is, we can transform the BK system to the Boussinesq system

⎧
⎨

⎩

ξt + [(1 + ξ )u]x = – 1
4 uxxx,

ut + uux + ξx = 0,

where ξ is the elevation of the water wave, u is the surface velocity of water along the
x-direction. Hence, the results of the paper have certain physical sense.

In the paper, we construct a generalized BK system as follows:

⎧
⎨

⎩

vt = α
2 (vx – v2 – 2w)x – βvx,

wt = – α
2 (wx + 2wv)x – βwx,

where α, β are constants, so that some symmetries of (2) are produced by the symmetry
group method [6]. It follows that some similarity solutions, group-invariant solutions, and
series solutions are produced. In addition, Ibragimov and Avdonina [7] showed how to ap-
ply the symmetries of differential equations to study the self-adjointness and conservation
laws. Thus we would like to follow the approach to investigate the quasiself-adjointness
and conservation laws of the generalized BK system (2).

2 Integrability of (2)
Set

ϕx = Uϕ, ϕt = Vϕ, (3)

where

U =

(
–λ + v

2 1
–w λ – v

2

)

,

V =

(
αλ2 + βλ + α

4 vx – α
4 v2 – β

2 v –αλ – α
2 v – β

αwλ + α
2 wx + α

2 wv + βw –αλ2 – βλ – α
4 vx + α

4 v2 + β

2 v

)

.
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Then the compatibility condition of (3)

Vt – Ux + UV – VU = 0

admits the generalized BK system, which can be directly verified. Hence the generalized
BK system (2) is Lax integrable. Using (3), we can get some Darboux transformations for
deducing solutions of the system. Here we omit them.

3 Similarity solutions and group-invariant solutions
Applying the Lie symmetry analysis, we can get the symmetry of system (2):

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 =

(
1
2

x + βt
)

∂

∂x
+ t

∂

∂t
–

1
2

v
∂

∂v
– w

∂

∂w
. (4)

The vector field X3 has the following characteristic equation:

dt
t

=
dx

1
2 x + βt

=
dv

– 1
2 v

=
dw
–w

, (5)

which gives rise to

(

βt +
1
2

x
)

dt – t dx = 0. (6)

One integration factor of (6) is given by

μ = e–
∫ 3

2t dt = t– 3
2 ,

which transfers (6) to the complete integration equation

βt– 1
2 dt + d

(
–t– 1

2 x
)

= 0,

from which we have the invariant variable ξ = 2βt 1
2 – t– 1

2 x. In terms of Eq. (5), we have
the formal invariants

v = t– 1
2 f (ξ ), w = t–1g(ξ ), (7)

where f (ξ ) and g(ξ ) are arbitrary smooth functions of ξ . Substituting (7) into system (2)
yields the ordinary differential system

⎧
⎨

⎩

– 1
2 f (ξ ) + 1

2 xt– 1
2 f ′(ξ ) = α

2 [f ′′(ξ ) + 2f (ξ )f ′(ξ ) + 2g ′(ξ )],

–g(ξ ) + 1
2 xt– 1

2 g ′(ξ ) = – α
2 [g ′′(ξ ) – 2g ′(ξ )f (ξ ) – 2g(ξ )f ′(ξ )].

(8)

Let β = 0, Then system (8) reduces to

⎧
⎨

⎩

f (τ ) + τ f ′(τ ) = –α[f ′′(τ ) + 2f (τ )f ′(τ ) + 2g ′(τ )],

g(τ ) + 1
2τg ′(τ ) = α

2 [g ′′(τ ) – 2g ′(τ )f (τ ) – 2g(τ )f ′(τ )],
(9)
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where τ = –t– 1
2 x, which is a reduction of ξ . In facr, system (9) is an ordinary differential

system corresponding to the BK system (1).
The group-invariant transformations of the generalized BK system are as follows:

⎧
⎪⎪⎨

⎪⎪⎩

g1 : (x, t, v, w) → (x, t + ε, v, w),

g2 : (x, t, v, w) → (x + ε, t, v, w),

g3 : (x, t, v, w) → (2βteε + (x – 2βt)e 1
2 ε , teε , e– 1

2 εv, we–ε).

(10)

In what follows, we consider solutions to the BK system. Set v = V (ρ), w = W (ρ), ρ = x + lt.
Then (2) becomes

⎧
⎨

⎩

lV ′ = α
2 (V ′′ – 2VV ′ – 2W ′) – βV ′,

lW ′ = – α
2 (W ′′ + 2W ′V + 2WV ′) – βW ′,

from which we have

⎧
⎨

⎩

lV – α
2 (V ′ – V 2 – 2W ) + βV = c1,

lW + α
2 (W ′ + 2WV ) – βW ′ = c2.

(11)

A special solution to (11) is given by

V =
1

c + ξ
, W =

1
(c + ξ )2 (12)

in the case of l = –β , c1 = c2 = 0. Hence we get a set of solutions to the generalized BK
system (2):

v =
1

c + x – βt
, w =

1
(c + x – βt)2 . (13)

Applying the group-invariant transformation (10), we can deduce some other new solu-
tions to system (2):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

g1 : v = 1
c+x–β(t+ε) , w = 1

[c+x–β(t+ε)]2 ,

g2 : v = 1
c+x–βt+ε

, w = 1
(c+x–βt+ε)2 ,

g3 : v = e– 1
2 ε

c+βteε+(x–2βt)e
1
2 ε

, w = e–ε

[c+βteε+(x–2βt)e
1
2 ε ]2

.

Taking β = 0, we can obtain group-invariant solutions to the BK system (1). In particular,
we can get the series solutions to the BK system. Indeed, let

f (τ ) =
∞∑

n=0

cnτ
n, g(τ ) =

∞∑

m=0

cmτm, (14)
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and substituting into (9), we have that

c0 +
∞∑

n=1

cnτ
n + τc1 +

∞∑

n=1

(n + 1)cn+1τ
n+1

= –α

[

2c2 +
∞∑

n=1

(n + 2)(n + 1)cn+2τ
n

]

+ 2

(

c0 +
∞∑

n=1

cnτ
n

)(

c1 +
∞∑

n=1

(n + 1)cn+1τ
n

)

+ 2d1 + 2
∞∑

m=1

(m + 1)dm+1τ
m,

d0 +
∞∑

m=1

dmτm +
1
2
τd1 +

1
2

∞∑

m=1

(m + 1)dm+1τ
m+1

=
α

2
[2d2 +

∞∑

m=1

(m + 2)(m + 1)dm+2τ
m – 2

(

c0 +
∞∑

n=1

cnτ
n

)(

d1 +
∞∑

m=1

(m + 1)dm+1τ
m

)

– 2

(

d0 +
∞∑

m=1

dmτm

)(

c1 +
∞∑

n=1

(n + 1)cn+1τ
n

)

,

from which we infer that

c2 = –c0c1 –
1

2α
c0 – d1,

d2 = c0d1 + d0c1 +
1
α

d0,

c3 = –
1

3α
c1 –

2
3

c0c2 –
1
6

c2
1 –

2
3

d1,

d3 =
1

2α
d1 +

2
3

c0d2 –
1
3

d1c1 +
2
3

d0c2,

· · · · · · ,

cn+2 =
1

α(n + 1)(n + 2)

[

–cn – 2αc0(n + 1)cn+1 – 2αc1cn

– α

n∑

i,j=2

cicj+1(j + 1)τ i+j – 2α(n + 1)dn+1

]

,

dn+2 =
1

(n + 1)(n + 2)

[
2
α

dn + 2(n + 1)c0dn+1 + 2d1cn + 2
n∑

i,j=2

cidj+1τ
i+j

+ 2(n + 1)d0cn+1 + 2c1dn + 2
n∑

i,j=2

(j + 1)dicj+1τ
i+j

]

,

where c0, d0, c1, d1 are arbitrary parameters. Inserting these expressions into (14), we get
the series solutions of the BK system. The second equation of system (9) can be reduced
to

g ′′(τ ) –
1
α

τg ′(τ ) –
2
α

g(τ ) = 0 (15)
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under the condition

(fg)′ = 0 ⇒ fg = c. (16)

As long as the solution of (15) is obtained, we can get the solution f (τ ) from (16). If g1(τ )
is the known solution of (15), then we assume that g(τ ) = u(τ )g1(τ ). If u(τ ) is known, then
the solution g(τ ) to Eq. (15) can be presented. It is easy to see that

g ′′(τ ) = g1(τ )u′′(τ ) + 2u′(τ )g ′
1(τ ) + u(τ )g ′′

1 (τ ). (17)

Substituting (17) into Eq. (15) yields

g1(τ )u′′(τ ) +
(

2g ′
1(τ ) –

1
α

τg1(τ )
)

u′(τ ) +
(

g ′′
1 (τ ) –

1
α

τg ′
1(τ ) –

2
α

g1(τ )
)

u(τ ) = 0.

Since

g ′′
1 (τ ) –

1
α

τg ′
1(τ ) –

2
α

g1(τ ) = 0,

we have

g1(τ )u′′(τ ) +
(

2g ′
1(τ ) –

1
α

τg1(τ )
)

u′(τ ) = 0. (18)

Assume that u′(τ ) = z(τ ). Then Eq. (18) becomes

g1(τ )z′(τ ) +
(

2g ′
1(τ ) –

1
α

τg1(τ )
)

z(τ ) = 0,

which has the solution

z =
c

g2
1 (τ )

e
∫ 1

α τ dτ =
c

g2
1 (τ )

e
1

2α τ2 ,

where c is a constant. Thus we have

u(τ ) = c
∫ τ 1

g2
1 (τ )

e
τ2
2α dτ + c̄,

g(τ ) = g1(τ )
[

c
∫ τ 1

g2
1 (τ )

e
τ2
2α dτ + c̄

]

.
(19)

Substituting (19) into Eq. (16), we can get f (τ ). Thus a type of special solutions to system
(9) can be obtained.

4 The self-adjointness of system (2)
Ibragimov [8] introduced a few related notations of the strict self-adjointness, the nonlin-
ear self-adjointness, and the quasiself-adjointness. Let us recall them.

Let H be a Hilbert space with the scalar product (u, v) defined by

(Fu, v) =
(
u, F∗v

)
, u, v ∈ H , (20)
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where F∗ is the adjoint operator to a linear operator F . A special Hilbert space is given by

H =
{∫

Rn

∣
∣f (x)

∣
∣2 dx

}

along with an inner product

(u, v) =
∫

Rn
u(x)v(x) dx.

Let F be a linear differential operator in H whose action on the function u is expressed by
F[u]. Then Eq. (20) becomes

(
F[u], v

)
=

(
u, F∗[v]

)
,

which means that

vF[u] – uF∗[v] = Di
(
ξ i), (21)

where Di = ∂

∂xi + uα
i ∂uα + uα

ij∂uα
j

+ · · · .
For the differential equations

Fα(x, u, uxi , uxixj , . . . ) = 0, α = 1, . . . , m, (22)

where u = (u1, . . . , um). The adjoint equations to (22) are as follows:

F∗
α(x, u, v, uxi , vxi , . . .) = 0, α = 1, . . . , m, (23)

with F∗
α = δϕ

δuα . The Lagrangian ϕ for (22) is defined by

ϕ = vβFβ =:
m∑

β=1

vβFβ ,

δ

δuα
=

∂

∂uα
+

∞∑

j=1

(–1)jDi1 · · ·Dij
∂

∂uα
i1···ij

.

(24)

Definition 1 ([7, 8]) The differential Eqs. (22) are said to be strictly self-adjoint if their
adjoint Eqs. (23) are equivalent to (23) upon the substitution v = u. That is, the equation

F∗(x, u, u, uxi , uxi , . . .) = λF(x, u, ux, . . .)

holds with a coefficient λ.

Definition 2 ([8]) Upon a substitution

v = ϕ(u), (25)

if (23) becomes (22), then we call (22) is quasiself-adjoint.
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Definition 3 ([7, 8]) Upon a substitution

v = ϕ(x, u) �= 0, (26)

if (26) solves the adjoint Eqs. (23) for all the solutions of (22), then we call system (22)
nonlinearly self-adjoint, that is, we have the following equations:

F∗
α(x, u,ϕ, . . .) = λβ

αFβ(x, u, . . .). (27)

It is easy to find that the strictly self-adjoint and quasiself-adjoint equations both are par-
ticular cases of the nonlinear self-adjoint equations.

For the generalized BK system (2), denoted by

⎧
⎨

⎩

F = vt – α
2 (vx – v2 – 2w)x + βvx,

G = wt + α
2 (wx + 2wv)x + βwx,

the formal Lagrangian L can be written as L = pF + qG, and the adjoint system of (2) is as
follows:

⎧
⎨

⎩

δL
δv = 2αpvx – pt – α

2 pxx + α(pv)x – βpx – αwqx = 0,
δL
δw = –αpx – qt – α(qv)x + α

2 qxx – βqx = 0.
(28)

Setting p = ϕ(v, w) and q = ψ(v, w) and substituting into (27), along with (28), we have

δL
δv

∣
∣
∣
∣
p=ϕ,q=ψ

= λ1F + μ1G,
δL
δw

∣
∣
∣
∣
p=ϕ,q=ψ

= λ2F + μ2G, (29)

where λ1, λ2, μ1, μ2 are undetermined functions. It is easy to get

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

pt = ϕvvt + ϕwwt , px = ϕvvx + ϕwwx,

pxx = ϕvvv2
x + 2ϕvwvxwx + ϕwww2

x + ϕvvxx + ϕwwxx,

qt = ψvvt + ψwwt , qx = ψvvx + ψwwx,

qxx = ψvvv2
x + 2ψvwvxwx + ψwww2

x + ψvvxx + ψwwxx.

Inserting all these results into (29) yields that

λ1 = μ1 = λ2 = μ2 = 0.

Therefore, for all solutions of system (2), (28) holds. Thus system (2) is nonlinearly self-
adjoint.

5 Another expression of system (2) and some properties
Set

v(x, t) = V
(

x,
α

2
t
)

–
β

α
, w(x, t) = W

(

x,
α

2
t
)

.
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Then system (2) becomes

⎧
⎨

⎩

Vt = Vxx – 2VVx – 2Wx,

Wt = –Wxx – 2WxV – 2WVx,
(30)

which has the infinitesimal symmetries

X = (2c1t + c2)∂t + (c1x + c3t + c4)∂x +
(

c1v –
1
2

c3

)

∂V + 2c1∂W ,

where c1, c2, c3, c4 are constants. Obviously, when c1 = c2 = c3 = 0 and c4 = 1, we get X1 = ∂x.
When c1 = c3 = c4 = 0 and c2 = 1, we have X2 = ∂t . When c2 = c3 = c4 = 0 and c1 = 1, we find
X3 = 2t∂t + x∂x + ∂V + 2∂W ; Xi (i = 1, 2, 3) all are particular cases of X.

Next, we consider the characteristic equation of X so that we can obtain the similarity
reductions of system (30). The characteristic equation of X reads as

dt
2c1t + c2

=
dx

c1x + c3t + c4
=

dV
–c1v + 1

2 c3
=

dW
–2c1W

. (31)

Case 1: c1 = 1.

ξ =
x – c3t + c4 – c2c3√

2t + c2
, V =

1
2

c3 +
f (ξ )√
2t + c2

, W =
g(ξ )

2(2t + c2)
. (32)

System (30) reduces to

⎧
⎨

⎩

–f (ξ ) – ξ f ′(ξ ) + 2f (ξ )f ′(ξ ) – f ′′(ξ ) + g ′(ξ ) = 0,

–2g(ξ ) – ξg ′(ξ ) + g ′′(ξ ) + 2g(ξ )f ′(ξ ) + 2g ′(ξ )f (ξ ) = 0.
(33)

Case 2: c1 = c2 = 0. Equation (31) becomes

dt
0

=
dx

c3t + c4
=

dV
1
2 c3

=
dW

0
.

We take

ξ = t, W = W (t), V =
c3x

2(c3t + c4)
–

1
2

c3f (t).

Then system (30) reduces to

⎧
⎨

⎩

c3ξ f ′(ξ ) + c3f (ξ ) + c4f ′(ξ ) = 0,

c3ξW ′(ξ ) + c4W ′(ξ ) + c3W (ξ ) = 0.
(34)

The two equations are in fact the same.
Case 3: c1 = 0, c2 �= 0. Equation (31) reduces to

dt
c2

=
dx

c3t + c4
=

dV
1
2 c3

=
dW

0
.



Zhang and Zhang Advances in Difference Equations        (2019) 2019:496 Page 10 of 14

We choose

ξ = c2x –
1
2

c3t2 – c4t, V =
c3t
2c3

+
f (ξ )
c2

, W = g(ξ ).

Thus system (30) turns to

⎧
⎨

⎩

–2c4f ′(ξ ) + c3 – 2c2
2f ′′(ξ ) + 4f (ξ )f ′(ξ ) + 4c2

2g ′(ξ ) = 0,

–c4g ′(ξ ) + c2
2g ′′(ξ ) + 2g ′(ξ )f (ξ ) + 2g(ξ )f ′(ξ ) = 0.

(35)

System (35) has the particular solutions

f (ξ ) =
1
2
ξ 2 – ξ–1, g(ξ ) = cξ ,

where ξ satisfies the constraint

ξ 3 –
3
2
ξ 2 + c – 2 = 0.

Thus from (32) we get a set of new solutions of system (2):

⎧
⎨

⎩

v(x, t) = 1
2 c3 + 1√

αt+c2
( 1

2
(x–c3t+c4–c2c3)2

2t+c2
–

√
2t+c3

x–c3t+c4–c2c3
) – β

α
,

w(x, t) = c
2

x–c3t+c4–c2c3

(αt+c2)
3
2

.

In what follows, we consider the series solutions of (33).
Setting

f (ξ ) =
∞∑

i=0

aiξ
i, g(ξ ) =

∞∑

i=0

biξ
i

and substituting into system (33), we infer that

⎧
⎪⎪⎨

⎪⎪⎩

a0 + 2a0a1 – 2a2 + b1 = 0,

4a0a2 + 2a2
1 – 6a3 + 2b2 = 0,

–a2 + 2(3a0a3 + 3a1a2) – 12a4 + 3b3 = 0,

an – nan + 2
n∑

i,j=1

ai(j + 1)aj+1 – (n + 2)!an+2 + (n + 1)bn+1 = 0, (36)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–2b0 + 2b2 + 2b0a1 + 2b1a0 = 0,

–3b1 + 6b3 + 2(2b0a2 + b1a1) + 2(b1a1 + 2b2a0) = 0,

–4b2 + 12b4 + 2(3b0a3 + 2b1a2 + a1b2) + 2(b1a2 + 2b2a1 + 3b3a0) = 0,

· · ·

–2bn – (n + 1)bn+1 + (n + 2)!bn+2 + 2
n∑

i,j=1

bi(j + 1)aj + 2
n∑

i,j=1

ai(j + 1)bj+1 = 0, (37)
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from which we get

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

a2 = 1
2 a0 + a0a1 + 1

2 b1,

b2 = b0 – a1b0 – a0b1,

a3 = 1
3 (2a0a2 + a2

1 + b2),

b3 = 1
2 b1 – 1

3 (a1b1 + 2a2b0) – 1
3 (b1a1 + 2b2a0),

· · ·

where a0, b0, a1, b1 are arbitrary parameters. Thus we obtain the following formal series
solutions of system (33):

f (ξ ) = a0 + a1ξ +
(

1
2

a0 + a0a1 +
1
2

b1

)

ξ 2 +
1
3
(
2a0a2 + a2

1 + b2
)
ξ 3 +

∞∑

i=4

aiξ
i, (38)

g(ξ ) = b0 + b1ξ + (b0 – a1b0 – a0b1)ξ 2

+
[

1
2

b1 –
1
3

(2a1b1 + 2a2b0 + 2b2a0)
]

ξ 3 +
∞∑

i=4

biξ
i, (39)

where ai, bi (i = 4, 5, . . .) satisfy (36) and (37). Substituting (38)and (39) into (32), we can
get the series solutions of the generalized BK system.

Next, we consider the solutions to system (34). It is easy to see that

g(ξ ) = f (ξ ) = –ξ –
c4

c3
or g(ξ ) = f (ξ ) =

ĉ
ξ + c4

c3

, (40)

where ĉ is an integration constant.
System (35) is solvable similarly to system (33), and we omit the computations.

6 Conservation laws
In this section, we consider the conservation laws of the generalized BK system by using
the method in [7, 8]. From the identity

X + Di
(
ξ i) = W α δ

δuα
+ DiNi

we find that

X(L) + Di
(
ξ i)L = W α δL

δuα
+ Di

[
Ni(L)

]
, (41)

where
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

X = ξ i∂xi + ηα ∂
∂uα + ξi

∂
∂uα

i
+ · · · ,

Ni = ξ i + W α δ
δuα

i
+

∑∞
s=1 Di1 · · ·Dis (wα) δ

δuii1 ···is
, i = 1, 2, . . . , n,

W α = ηα – ξ juα
j , α = 1, . . . , m,

and L is the Euler–Lagrange function, which satisfies

δL
δuα

= 0, α = 1, . . . , m.
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Since system (28) holds, we can investigate the conservation laws by using (41), where the
components of the conservation laws are the following:

Ci = Ni(L), i = 1, . . . , n, (42)

which satisfy the conservation equations

Di
(
Ci)

(22) = 0. (43)

For X1 = ∂
∂x , we find that

W 1,1 = –vx, W 1,2 = –wx. (44)

Substituting (44) into (42) yields

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

C1
v = –αvvx(p + q) – (α + β)vxp – αqwvx – βqvx + α

2 vx(qx – px)

+ α
2 vxx – α

2 qvxx,

C1
w = –αpvwx – βpwx – αqwwx – αpwx – αqvwx

– βqwx – α
2 pxwx + α

2 wxqx + α
2 pwxx – α

2 qwxx.

For X2 = ∂
∂t , we get

⎧
⎨

⎩

C2
v = –vt(p + q) = –(p + q)[–βvx + α

2 (vx – v2 – 2w)x],

C2
w = (p + q)[βwx + α

2 (wx + 2wv)x].

For X3 = ( 1
2 x + βt)∂x + t∂t – 1

2 v∂v – w∂w, we infer

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W 3,1 = – 1
2 v – tvt – ( 1

2 x + βt)vx,

W 3,2 = –w – twt – ( 1
2 x + βt)wx,

C3
v = [– 1

2 v – tvt – ( 1
2 x + βt)vx][αpv + βp + 2wq + αp + αqv + β

+ α
2 (p + q)[– 1

2 vx – vxt – 1
2 vx – ( 1

2 x + βt)vxt],

C3
w = [–w – twt – ( 1

2 x + βt)wx](αpv + βp + 2wq + αp + αqv + β)

+ α
2 (p + q)[–wx – twxt – 1

2 wx – ( 1
2 x + βt)wxx],

where vt , wt are given by system (2).

Remark Anco and Bluman [9] proposed a method for constructing conservation laws of
differential equations, which uses a formula directly generating the conservation laws and
independent of the system having a Lagrangian formulation, in contrast to Noether’s the-
orem, which requires a Lagrangian. They adopted the linear equations and the adjoint
equations of the original differential equations to study conservation laws. Essentially, the
algorithm presented by Ibragimov et al. is the same as that of Anco and Bluman. Besides,
Anco [10] also gave some comments on the work of Ibragimov.
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7 Conclusions
In the paper, we have investigated various similarity reductions and exact solutions of the
generalized BK system and various its conservation laws by the Lie group analysis. We
have pointed out that the standard BK system is only a paticular case of the generalized
BK system (2) when α = –1 and β = 0. In addition, Lou [11, 12] applied the symmetry group
method to study some coherent solutions of nonlocal KdV systems and primary branch so-
lutions of a first-order autonomous system. We hope to extend the methods to the systems
presented in the paper in the forthcoming days. In addition, Ma [13] obtained some new
conservation laws of some discrete evolution equation by symmetries and adjoint symme-
tries. Zhang, et al. [14, 15] considered symmetry properties of some fractional equations.
Therefore there is an open problem how we can look for the fractional systems that corre-
spond to the systems presented in the paper and how we can to solve them. Besides, Liu,
Zhang, and Zhou [16] constructed the fractional Volterra hierarchy, gave a definition of
the hierarchy in terms of Lax pair and Hamiltonian formalisms, and constructed its tau
functions and multisoliton solutions. Bridgman, Hereman, Quispel, and Kamp [17] and
El-Nabulsi [18] studied the peakon and Toda lattice. The approaches adopted in [16–18]
can lead us to investigate some related properties of the generalized BK system presented
in the paper. These questions will be discussed in the future.
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