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1 Introduction
In recent years, many researchers have done a lot of interesting work on nonlinear back-
ward stochastic differential equations (BSDEs, in short) with different generators.

As an important mathematical tool in probability theory, Markov chain has vast appli-
cations in diverse fields. One can see Siu [1] for more details. From the numerical point
of view, diffusions are generally approximated by Markov chains. Thus, there is a great
motivation to discuss Markov chain systems. Based on these facts, Lu and Ren [2] consid-
ered a class of mean-field BSDEs based on finite-state, continuous time Makov chain. Tao
et al. [3] proposed a class of BSDEs coupled with a finite state Markov chain, which has
two-time scale structure:

Yt:g+/tTf(s,as,Ys)ds_/TzsdBS-ZfTWS(j)dYJS(;).

¢ jel Yt

Based on Meyer—Zheng topology, they showed that the solution is weakly convergent. In
that paper, the corresponding reaction-diffusion equations were explained in the sense of
viscosity solution, and the convergence of PDEs was proved.

In recent years, the development of BSDEs has been very rapid. The extension forms
of BSDEs are various. Wu and Zhang [4] focused on BDSDEs which are locally monotone
assumptions. At the end of that paper, the Sobolev weak solutions for a kind of SPDEs were
given. This conclusion greatly broadens the applicability of this kind of equations. Some
conclusions obtained in BSDEs are also widely used in other fields. Wei et al. [5] dealt
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with the Sobolev weak solution of HJB equation, in which the nonlinear Doob—Meyer
decomposition theorem obtained from the BSDEs is the main contributor.

In particular, Pardoux and Réscanu [6] gave some results about multi-valued BSDEs
(MBSDEs, in short). In that paper, they presented a probabilistic interpretation for the
viscosity solution of some parabolic and elliptic variational inequalities. Recently, there
have been many interesting developments about MBSDEs, one can see Yang et al. [7],
Guo [8], Malinowski [9], etc. These achievements have enriched the theoretical system of
MBSDEs, and some of them also gave relevant applications.

Under the framework, we continue to discuss the class of multi-valued BSDEs as follows:

T T T T
Yt=§+f f(s,aS,Ys,Zs,VVs)ds—f stBS—Z/ Ws(i)df?s(i)—/ U ds,
t t t

jel ¢

in which the function f not only relates to the process Y, but also relates to the processes
Z and W. What is more, the function f here contains a Markov chain.

Firstly, we do some preparation for follow-up certification. Secondly, we give the main
results of this paper. Then, we prove the weak convergence result under the Meyer—Zheng
topology. Finally, we give the homogenization of a class of multi-valued PDEs with Markov
chain.

2 Basic assumptions, preliminaries, and notations
At the beginning of the paper, we introduce some foundations of the follow-up discussion,
such as the definition of multi-valued BSDEs, notations, assumptions, and so on.
Suppose that (§2, F,P) is a probability space, {B;, ¢ € [0, T']} is a d-dimensional Brownian
motion, {a;, ¢t € [0, T} is a finite state Markov chain, and the state spaceis [ = {1,2,...,m},
in which m is a positive integer. The transition intensities are A;(¢) for i #j, which is non-
negative and bounded. And X1;(¢) = — Zjel\{i} Aj(t). Suppose that F = (F;); € [0,T] is a
filtration which is generated by {Bs, a5; s € [0, T} and augmented by all P-null sets of F.
In this paper, V;(j) is the number of jumps of {«;}, and ¢ is a lower semi-continuous
convex function defined on R. More details can be found in [3].
The multi-valued BSDEs with the Markov chain are defined as follows.

Definition 1 The solution is a quadruple of (Y3, Z;, U;, Wy)o<:<T Of progressively measur-
able processes, which takes values in R x R*4 % R x R™ — R and satisfies that:
() E(supge,r Y2 < 00, E [ 1Z,2 dt < 00,E [} IWi()|*Liay_sjyhas_;(£) dt < 00,
E [, |U,]* dt < oo;
(ii) Forall 0 <t < T, it holds that

T T
Yt = g + / f(S’ Uy, Ysr Zs» Ws) dS - / Zs st
t t

_Z/tTWY(j)dﬁs(j)—/tTLlsds; (2.1)

jel

(i) E [ ¢(Y;)ds < +00;
(iv) (Yy, U;) € 0¢p,dP x ds, a.e.on [0, T], in which

0p(u) = {u* eR: <M*,v— u) +o(u) <ov),Vve ]R}.
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If the quadruple (Y, Z, U, W) is the solution of BSDE (2.1), we use the symbol (Y, Z, U,
W) € BSDE(, T3 ¢.f).
We propose some assumptions as follows.

(A1) The terminal value & is Fr-measurable such that
El§|><oco, & eDom(p) and IE|¢(E)| < +00.

(A2) The function f: £ x [0, T] x I x R x R x R” — R is progressively
measurable, and for i € I, it holds that

T
IE/ If(5,i,0,0,0)|*ds < +00, Viel.
0

(A3) Foriel,te[0,T],y,5 €R,zZ e R'*, there exist constants 8 € R, j1,0,L >0,
and ¢ is an F;-progressively measurable process such that:
(@) (,z,w)+—> f(t,i,y,z,w) is a continuous function.
(b) (y=5.f(t,i,9,2,w) - f(t,i,5,2,w)) < Bly =TI,
V(& iy, zw) = (66,5, 2, w)| < pulz =21, If (& 6,3,2,w) = f(6,1,,2,W)| < Llw - wl,
[f(ti,9,0,0)] < () +olyl.
(© E(fy lp(s)* ds) < oo.

3 A priori estimates and existence and uniqueness result
3.1 The results of existence and uniqueness
Now, we begin by showing Theorem 2, which is the main results of this paper. But the

proof of this theorem needs a lot of supporting propositions, so it will be presented later.

Theorem 2 Let assumptions (A1)—(A3) be satisfied. Then BSDE (2.1) has a unique solu-
tion {(Ytth) U[, Wl)}OStST Such th(lt

T T
]E/ |Z,|? ds +E<Z/ |L\’/S(]‘)|21{a3_#xa3_,j(s) ds) <C®i(z,T), (3.1a)
T jel T
E( sup %) < Ci(x,T), (3.1b)
T<t<T
]E¢(YT) < C¢2(Tl T)’ (31C)
T
B[ upds < o7 (3.1d)

where T € [0, T] is a stopping time,

T
/ If(s,i,0,0,0)|” ds), (3.22)

T

¢1<r,T):E(|s|2+Z

iel

T
<1>z(f,T):]E(|§|2+¢(E)+/ |<p(S)|2dS>. (3.2b)
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Proposition 3 Let assumptions (A1)—(A3) be satisfied. If (Y,Z,U, W) € BSDE(§, T; ¢,f)
and (}7, z,U, V~V) € BSDE(E, T;qb,f), we have

T 5 T 5
E f |ZS—ZS|2ds+IE<Z / | W) - Ws(j)|21{as¢,}kas,,(s)ds> <CA(T), (3.3a)
0 0

jel
E( sup |Y,-¥i*) = CA(T), (3.3b)
0<t<T
where
A(T) =E(|s “EP+ / (5,5, Yoo Zss Wi) = F (5,5, Yoo Zs, W) ds). (3.4)
0

Corollary 4 Let assumptions (A1)—(A3) be satisfied. There exists a unique quadruple
(Y,Z,U, W) which satisfies BSDE (2.1) such that

lim E|Y;|? =0, (3.5a)
t—00
(Y, Uy) € 09, dP x dt, a.e.on[0,T]. (3.5b)
Moreover,
[o¢] o0 5
]E(sup|Yt|2 +/ | Z. 12 ds + Z/ | W()| ey 4y has,i(8) ds)
= 0 el Y0
<CEY / If(s,1,0,0,0)|" ds, (3.62)
ier 0
o0 [o¢] 5
supEop(Y;) +IE/ |U,|2 ds < CE/ |<p(s)‘ ds. (3.6b)
20 0 0

3.2 Apriori estimates
Before proving the previous results, we firstly give some a priori estimates on the solution.

For x € R, we define a convex C’-function ¢s,8 > 0,
Rt 2
¢s(u) = inf §|u—v| +0p(v):veR
1 2
= §|M —Jsul” + 8¢ (su), (3.7)

where Jsu = (I + 83¢)!(u). Now we recall some properties of this approximation that ap-
peared in [10]:

SD3(u) = 06300 = (e~ o) € 39U, (3.82)

[su—TJsv| < |lu—vl|, %{%/ﬁu = Prigmg(#) (3.8b)
for u,v € R,§ > 0. For the convexity of ¢;, we have

$5(0) > ps(u) + (Deps(0), —10).
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Hence, for u € R, it holds that

0 < ¢5(u) < (Ds(w), u).

By the monotonicity of d¢ and (3.8a), we obtain
1 1
0< (§D¢a(u) - ED%(V)J&M —/ﬂ)

- (%D@(u) ~ D), Dy () v+ D%(v))
- (%D«pg(u) ~ D¢, ) u- v) - Dyt
e 1)

1 1

- %|D¢8(V)|2 + <— + —) (Dps (), Dp ().

§ ¢
Then, for §, ¢ > 0, it holds that

1

(%D@(u) D) u- v) > —(1 . —) D5 )| | D (). (3.9)
& S &

Now, we consider the approximating equation
T 1 (T
Y :g+/ f(s00, Y2, 22, W) ds - Ef D5 (Y?) ds
t t

T T
[ Zas- Y [ wrpav. (310)

t jel t

From Crépey and Moutoussi [11], (Y, 2%, 1%, W?) is the unique solution of equation
(3.10).

Proposition 5 Let assumptions (A1)—(A3) be satisfied and t € [0, T] be a stopping time.

Then
512 ’ 512 ’ 5|2
]E( SuPT|Yz| +/ |2 | dS+Z/ |W? ()| 1{%_#}/\%_,1(5)015)
T<t< T jel T
=< C¢l(tr T)r (311)

where @1 is defined by (3.2a).

Proof Using Ito's formula for | Y7 |? yields that

T T
|)/t(S |2 + / |Z§ |2dS + Z/ |‘)V55(]‘)|21{as—?/1‘})”as—:j(s) dS
t t

jel

2 T o) 8
o3 | o) vy ds
t

T
- |s|2+2/ (Fs,00 Y2, 2, WP), YP) ds
t

Page 5 of 21
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-2 TY‘S,Z‘SdB -2 (Y2, W2(j)d V().
[ wzas) -2 [ ewnano)

jel

Let us start with some terms in the equation above. On the one hand, according to the
previous assumption, we have (%Dqﬁs(Ys‘s), Y?) > 0. On the other hand, from Schwarz’s

inequality, we get

2(f (s, @57, 2,w),)
<2Bly* + 2ulyllzl + 2LIyl|w| + 2|yl |f (5,2, 0,0,0)|

<@2B+@+nu’+ @+l +7)lyf

1 1 )
+ 1—+r(|Z|2 + |W|2) + ;[f(s,as,0,0,0)‘ .

Hence,

r T r T
i [ 2P s T 3 [ WO i 9 d
jel
T T
<IEP+(2B+u>+L% + (1+M2+L2)r)/ e ds—Z/ (Y?,Z dBy)
t

+ = (s,0t5,0,0,0)|” ds — 2 (Y2, W2 (j) d V()
oy fas-2y [ 0).

jel ¢

According to the main ideas of Proposition 2.1 in [12], we take the expectation in the

above inequality. So

]E|Y3 ( / |Z‘$| ds+EZf |W5(1)| Loy iy e I(S)ds)

jel
, 17 2 ~ (T
=E{ 5] +;/ If (s, s,0,0,0)| " dis +CE/ |Y?|" ds,
t t

where C is a positive constant.
Then, by Gronwall’s lemma, we get

E[Y"<C,

where C is also a positive constant.

Thus, we have

o120 as e X [ 190 i 035 <.

jel

In addition,

sup |Y5| <|g|2+—2/ [f(s,z,000)| ds

T<t<T
iel

Page 6 of 21
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T
+2 sup Z/ (YS‘S,WSB(/')st(]'))‘
jel ¢

T<t<T|";

T
[ oz
t

+2 sup

T<t<T

We obtain

T
[ wzas)))
t

< 11@( sup ‘Y‘S}z) +CGE /T|Z‘S’2ds
4 T<t<T ! ! T : '

T N 1T s
22 > [ oewnar))

ZIE( sup

T<t<T

T<t<T|";

1 T
< 1E< sup |Yf|2> + CZE(Z/ |Wf(f)|21[as_#11)\as_,/(5)d5>~

T<t<T

jel
Thus, we get
IE( sup |Ya|2> <E |g|2+EZ/T[f(s i,0,0 0)|2ds>
i t = P i b Uy, Uy

iel

1 512 T 512
+ §E<ZZ?£T|Yt | ) + CIE(/T |Z2| ds)

+ CzE(Z

jel

T
f W2 0)|* Loy (5) ds) .

T

Proposition 6 Let assumptions (A1)—(A3) be satisfied. For C > 0, we have

T 2
]E/ <%|D¢3(Yf)|> ds < CPy(z,T), (3.12a)
E¢(/sY?) < Cdy(z, T), (3.12b)
E|Y? - J5(Y?)|” < 8*Cos(r, T), (3.12¢)

where ®@,(t, T) is given by (3.2b), and t € [0, T] is a stopping time.

Proof Borrowing the ideas in Proposition 2.2 in [6], we just briefly show the result as fol-
lows.

The subdifferential inequality can be written as
85(¥2) = 6s(¥2) + (Dos (1), ¥ - Y1)

forr=tj.  AT,” =t AT,wheret =ty <t; <ty <---,and tj;; — tj = 1/n. Summing up over

Jj, and n goes to oo, we get

T
o (07) 5 [ o) s
t

Page 7 of 21
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T T
<@+ [ (0u(V)f o0 Y2227 ds - [ (Ds(v2), 22 B
t t

- TD¢5 Y3, W) dV,(j)), Vt=>0, as. (3.13)
> [ (0os(x), W atii)

jel £
From (3.7), (3.8a), we get
‘2

D8O + 80U = 8500, 56Ui) = i)

$5(&) <8¢(5),  y—Jsy = Dbs(y).

According to the previous assumption (A3), we have

(D5 (). f (5,0, 7,2, W)
1 8
< 55 1P O) + S|/ 032w

1
=% |D¢a(y){2 +38(u?l2)® + L2 |w)* + o |y|* + 9*(1)).
The result follows. O

Proposition 7 Let assumptions (A1)—(A3) be satisfied. For 8, > 0, we have

T T
JE(/ zZi-zfase Y [ \Wf(f)—m@o>|21{ax_#ms_,,-(s)ds>
0 0

jel

<(6+¢&)Co, (3.14a)
]E( sup |Y7 - Yf|2) <(5+¢)Co, (3.14b)

0<t<T

where
T 2
® = IE(|S|2 +¢(8) + Z/ |f(5,4,0,0,0)| ds). (3.15)
ier Y0

Proof By Itd’s formula,we obtain

T
v -+ Z/ [ W7 G) = Wi )] Loy ppha () s
t

jel
T ) T 1 1
+/ |2} - ZE|"ds + 2/ (Yj ~Y?, 5D¢5(YS‘S) - qubg(Yj)) ds
t t
T
~2 [0 Ve (o Y2 W)~ f (s Y5, 22, W)
t
T
2 (v (2 -z)as)
t

T
Y [ (- v () - W) Vi),
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Moreover,

2(Y) - YE f (s Y2, 20, WD) = f (s, YE, 25, WE))
<2B|Y3 - Y[ 420 ¥2 - Y2 |28 - Z2| + 2 YD - e |L| WP - W

< (2,3+/L2+L2+ (//,2+L2)r)|Y55—YSE‘2+ (|Zf—Z§|2+ |Ws‘3— \V;f).

1
1+7r
By (3.9), it holds that

T
1=T@B+12+ L2+ (W2 +12)r)) sup |Y2 Yo 4 —— [ |22 =z ds
S S 1+r P S S

t<s<T

r

+

T
2/ "VSB(/)_ ‘)Vss(j)‘zl{as,ﬁ})\asﬂj(s) ds
t

jel

T T
- 2(% s 1) / D5 (Y2)||Depe (Y7) | ds - 2 f (¥ -1,(2 - Z;) dB,)
¢ t

1+r

T
-2y f (Y2 = Y2, (W2 () = WE () dT(). (3.16)

From (3.12a), we get the following inequality, which shows the desired result, and @ is
given by (3.15).

T
2(% + é)E/ |Dgs (Y?)||Depe (Y7)| ds < C(8 + &) . N
t

3.3 Proof of the results of existence and uniqueness
With the a priori estimates in the previous section, the main purpose of this section is the
proof of Theorem 2. Before that, we should start with the proof of Proposition 3.

Proof of Proposition 3 Using Itd’s formula, we get

T T
V-T2 [ 122l Y [ 190) - WO Va5
t t

jel

T
2 [ -y Tds
t
~ T ~ ~ ~ ~ ~
= |£,-: _%—|2 + 2/ (Ys - Ys,f(s’as: Ys:Zs: ‘/VS) —f(S,Ols, YS’ZS’ WS)) ds
t

T 5 5 T » » »
—2/ (Yo - Y., (2, - Z,) dB) —22/ (Ys = Yo, (W5() — Wi(i)) d V4 ().
t jel t

By the method similar to Proposition 5, we obtain

20U, - U, Y,-Y,)>0, dPxdsae.,
Z(YS - i/s’f(sr O, Ys’ Zs’ VVS) _f(5> s, Ystr ‘~VS))

f Z(Ys - i}s1f(sy s, Yme M) _f(sv s, Ys; Zs; W?))

Page 9 of 21
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+2|Yy = Yi|LIW, — Wil +2|Y; - Y| il Z, — Z| + 2B1Y; - Y,
- o~ - - 1 - -
=B+ D2+ @24 (L D24 )Y, = Xol* + = (120 = 2+ | W, = WiP?)
+7r

1 = 2
+ ; V(S; U, Ys: Zs; VVS) _f(sr U, }/s: Zs: ‘/VS) )

where g, 11, L are replaced by B, ji, L. Taking the expectation and using Gronwall’s lemma,
we have (3.3a) and (3.3b). |

Proof of Theorem 2 Uniqueness can be obtained simply by Proposition 3. The ex-
istence of the solution (Y,Z,U,W) can be drawn from the limit of the quadruple

(Y2, 22, LD (Y?), W).

From Proposition 7, we have

limY? =Y, limZ% = Z, lim W8 = w.
SN0 5N\0 5N\0

Passing to the limit in (3.11), we can get (3.1a) and (3.1b). From (3.12a) and (3.12c), we
have

. M 2
%I\H&]S(Ya) =Y, (lslir(l)]E(lla(Yf) -Y.[) =0,

in which t € [0, T'] is a stopping time.

Because of (3.12b), (3.14b), we get (3.1c) and (iii). For each § > 0, define U} = }D¢5(Y})
and U} = fot U? ds. Consider (3.10) and convergence results, there exists a progressively
measurable process {L_It, 0 <t < T} such that

]E( sup |I:lf—l:lt|2) —-0, §—0.

0<t<T

Moreover, from (3.12a), we obtain sup. EfOT |U? 1% dt < 0o. Then we get (3.1d).
ForO<a<b<T, [EfOT [V?ds]'? < oo,

b b
/(L[f,Vt—Yf)dta/ (U, V,-Y,)dt.

From equation (3.12a), we have fab(Uf,/s(Yf) -Y))dt—o.
Since L[;S c 8¢(]5(Yf)),

b b b
/(uf,vt—/(;(yg‘))duf d)(],;(Yf))dtf/ ¢(Vy) dt.

Then we get

b b b
/ (Up Vi - Yoy dt + f (Y, dt < f $(V,)dt.

The proof of Theorem 2 has been completed. d
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Proof of Corollary 4 Let (Y",Z",U", W") € BSDE(0, n; ¢,f) for each n > 1. According to
(3.1a)—(3.1d) in Theorem 2, we have

o[22 s X [ W0 Vi 95 )

jel

< CJE(Z/w[f(s,i,O,O,O)]2d5>,
0

iel

E( sup |v7°) < CIE(Z/OOOV(S,L',O,O,OMZds),

O=s=n iel
Eg(Y}) < CZIE/ |<p(s)|2ds,
0
m2 *© 2
]E/ u?| dsgCZ]E/ lo(s)| ds,
0 0

and Y=Y} =0,Z"=0,U} =0, W =0 for s > n.
Let m > n, then we get

n n
Y;”:Y;”+/ f(s Ys’",Z;”,VVS’”)ds—/ u ds
t

t
_/”ZS’”dBS—Z
t

jel

[ wrpan

t

for ¢ € [0, n]. From Proposition 3, we have

n n
o [z- 2z s X [ W20 - WO 0105

jel

<CE|y"|?,

E( sup |v7 - v"[") = CE|v; [

0<s<n

From (3.1b), we obtain

Ey7 " <E( sup |Yt’”|2)§CE(2/ V(s,i,o,o,0)|2ds)—>o, T=n— o0,
T T

St=m iel

There exists (Y, Z, U, W) satisfying (i) for all T > 0, as » — 00, we obtain

(o]
Y'Y, E|YT|2§CE<Z/ V(s,i,o,0,0)|2ds), 7'z, -1,
T

iel

where U = fot U™ ds, and U is absolutely continuous. (Y, Z, U, W) satisfies Corollary 4, in
which U = dll/dt.

If (Y,Z,U,W)and (Y',Z',U', W) are two solutions of BSDE (2.1) satisfying (3.5a) and
(3.5b), then

E( sup [%-¥/[")

0<s<m
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+E(/|a—4fﬁ+§:/|Wwy4wmfmmﬁhwwm0
0 0

jel

2
)

<CElY,-Y,

wegetY =Y,Z=2,W =W for n— oo; U is uniquely defined by BSDE (2.1). O
4 Weak convergence of multi-valued BSDEs with Markov switching

4.1 Asymptotic property of SDE with the singularly perturbed Markov chain
Let «®(¢) be a Markov chain governed by Q°(f) = (A‘;(t)) that satisfies

Q®)=-30+Q0, =0

(~2(t) represents the fast part and @(t) represents the slow part. More details on singularly
perturbed Markov chains can be found in Tao et al. [3]. The next lemma can be found in
[13].

Lemma 8 Define the aggregated process af = {a;;0 <t < T} as follows: Vk € {1,...,1},

o) = k, when of € Iy. Then, as ¢ — 0, a® converges weakly to a continuous-time Markov

chain o with the generator

Q(t) = diag (v'(t), ..., (1)) Q) diag(L,, - .., L)-

Here, Yk € {1,...,1}, V* is the quasi-stationary distribution of ak and 1, =1{1,...,1}* €
R™k. Here, * denotes the transpose.

Now, we present a diffusion process X} as follows:

t t

X, =x+ f b(s,af,X5)ds + / o(s,af,X;)dB, 0<t<T,

0 0
there exist p,q > 0 such that

2 L a2

sup]E(|Xf| p+/ |x¢| qu) < 00.

& 0

In the diffusion process above, we present the conditions of b and o': for any i € 1, b(, i, -)

and o (-, i,-) are measurable,

|b(t, i,x)— b(t, i,x*)| < C’|x —x*

., |b(i0)| < C,
and

o (ti,%) — o (t,4,2%)| < C'|x - &*

, lei,0)|<C.

More details can also be found in [3].
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Let a = oo *. We define

Deult,i,x) = (% + £> u(t,i,x) +f (& i, %, u(t, i, %)) + Z Afj(t)[u(t,j, x) —u(t,i,x)],
Jj#i

where

Lu(t,ix) = Zapq(ux) u(ttx)+Zb tzx) (b,

Ml

Now, we propose the following asymptotic property for the above generators.

Lemma 9 Assume that «°(t) is a Markov chain and b(t,i,x), o (t,i,x) satisfy the above
conditions. Then (X*(-),a®(-)) converges weakly under the Skorohod topology to a process
(X(-),@(-)). Moreover, (X(-),a(-)) is a solution of the martingale problem with operator

_ 9 — _
Du(t,i,x) = (5 + E) u(t,i,x) +f(t, i, x, u(t, i, x Z)"J t) (t,j,x) — u(t, i,x)],
j#i

where

Lul(t,ix) = Z Apq(t, i, x) u(t i,X)+ Zb t,i, x) u(t, i,X),

pql

a(t,ix) = ) vialt,spx),  b(tix) =) vViOb(ts;x),

j=1 J=1

f(t, i,x,u) = Z vj(t)f(t, Sijs %, 1)

j=1

4.2 Weak convergence of multi-valued BSDEs with Markov switching
Let us consider the following assumptions:
(A4) g:R? - Randf:[0,T] x I x R x R — R are all continuous.
(A5) |gx)| < CQ + |x|P).
(A6) If (& 6%9) < C(A + |x|7+ [y]").
(A7) (f(ti,%y) —f(tix5),y -5 < Bly=75*.
(A8) [ If(t,i,x,0)|>dt < 0o, Vi€ L.
Let {Y},Z;,U;, W;;0 <t < T} be the unique solution of the following BSDE with «; = }’:

T T
g0 + [ foat 1) ds- [ ziab,

—Zf WE () V- () - /tTL[fds. 4.1)

jel

Next, we prove that the processes (Y*,Z%, U®, W*) converge in law to (Y, Z, U, W), which
is the unique solution of the following BSDE:

T T
Yi=g0)+ [ fls,a0X,, Yy)ds— / Z, dB,
t t
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-3 /, ' W, (j) dVy(j) — /t ' U, ds. (4.2)

jel

Theorem 10 ([14]) The sequence of quasi-martingale {p;;0 <t < T} defined on the fil-
trated probability space (§2,{F;}o<i<1,P) is tight if

sup( sup E|p}'| + CVT(p”)> < 00,

n NO<t<T

where

Cvr(p") = sup]E(Z:HE[/O;l1 - piIFs]
i

)

with the supremum taken over all partitions of the interval [0, T].

In what follows, let

t t t t
Mf:/ ZtdB+ ) :/ WE () dVE (), Mt:/ ZydB, + ) :/ W, (j) dVs(j).
0 0 0 - J0
jel

jel
Now, we introduce the first result of this section.

Theorem 11 Under the assumptions stated above, the sequence of processes (X¢,Y*, M?,

U*) converges in law to (X, Y, M, U) as ¢ goes to zero.

Next, we give Lemma 12 that appeared in Billingsley [15] to help us complete the proof
of Theorem 11.

Lemma 12 Let U°® be a sequence of random variables defined on the same probability
spaces. For any ¢ > 0, we assume that there exists a sequence of random variables (L"),
such that

o U 2 on g g goes to zero.

o UP" = U* as n — +00, uniformly in €.

o U = U° as n — +oo.

Then U* converge in distribution to U°.

For n > 1, we consider the penalized forms of (4.1) and (4.2):

T T
ver—gxy) + [ floatxtvias- [z a,
t t

> [weiavo - [ uras a3

jel V't

and

T T
ve=gbins [ flanxoras- [ zia,
¢ t
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-3 / ' W (j) dVi(j) - / ' u" ds. (4.4)

jel ¢

Let M;" = fot ZJ"dBs + ) fot WEn(j) dVE (j). With the preparation above, we can now
prove Theorem 11 step by step.

Lemma 13 Under the assumptions of Theorem 11, for n > 1, (Y*", M®") converges in law
to (Y",M™).

Proof We shall prove this result in the following four steps.
Step 1. A Priori Estimates. By the standard arguments, we have

t
supIE( sup |Yf’”|2 + (M) o+ 2?)// |D¢5(Yf’”)|dr> < 400,
& N

0<s<t

where

t t
prer) = [z fase [ e Pr i, 0ds
0 0

jel

Step 2. Tightness. We have

T T
cva(r ) = [ If(sat,xc, v s+ [ Do (v ds.
0 0
Then we obtain

sup[CVT(Y”‘) + E( sup |YS’9’”’2> + Osupt]E|Ms‘”’|] < +00.

0<s<t

Hence, the sequence {(Y?", M®"); 0 < s < ¢t} satisfies the Meyer—Zheng tightness criterion.
There exists a subsequence (Y*", M*") = (Y", M").

Step 3. Convergence in Law. We first derive the limit process of fot fls,af, XZ,Y2") ds.
For the state space of «®(¢) thatis / = {$11,...,S1pm;s. 58115+ -+, Sim;}, We have

t
/ Ss,0f, X5, Y2") ds
0

! m; t
= Z Z/ f(S,Sij)Xf, }ff’n)l{a;?:sij] ds
0

i=1 j=1

l m; t '
- ZZfO f(s5i X5, Yo" )vi(s) Lige-iy ds

i=1 j=1

I m ¢
£ /0 (5,55 X5, YE") (Liag =) = Vi(S) Ligz-y) ds. (4.5)

i=1 j=1

By Yin and Zhang [13], fori=1,2,...,/andj=1,...,m;, as € — 0, it follows that

¢ 2
sup ]E(/ (1€a§=sly} - v;(s)llagz,»}) ds) — 0.
0

0<t<T
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So we get
t
sup E / 55 X3 YE") (Vag=syy = v)(9)Viaz-a) ds
o<t<t |Jo
t
< sup E|sup [f(s,sij,Xf,Yf'”)|/ (1{a§:5i/}_V;(S)llﬁiﬂ})ds
0<t<T 0<s<t 0
1 t 21172
2\ 2 ,
< sup (E sup |f (s, 85 X5, Y| ) [E</ (1[a§=si,} —V}(S)l{&§:i}) ds) ]
0<t<T\ 0<s<t 0
¢ ’ 29172
< C sup [E(/ (l{a;::sij} —V;(S)l[a§=i}) ds) :| — 0.
0<t<T 0

Following the inequality above, we have

l mj t T
Z Z / f(s, 8ij» Xs» Ys”)vl‘:(s)l{&xzi} ds = / f(s, o5, X, YS”) ds.
0 t

i=1 j=1

In (4.3), let ¢ — 0,
T 1 T
Y" = g(Xr) +f S50, X, Y)") ds — MY + M} — = / Do (Y7") ds.
¢ & Jt

For f(¢t,j,x),j € 1, we define

l
ftix) = ftj ey, Yiel

Jj=1

So, we have f (£, af, X?) = f (¢, @, X¢), and M" is an F¢"-martingale. Thanks to the bound-
edness and continuity of functions ¢; and the fixed ¢’, for i <n,t; <s; <s, < T, we have

n 8/
Eil_[ @il X i) f (M, - ML) dr}
i=1 0
n 8/
=E{m<az,xz, v [ (Mig'ir—Mi;’ir)dr}
i=1 0

=0.

We have already proved that (@®, X*, Y*", M®") converges weakly to (&, X, Y”, M"). Note

that [j (M5, - M",,)dr is a continuous function with respect to M*”, we can get

S 41
fos (Mg, — Mg;",,) dr converges weakly to fos (Mg, ,, =M, ) dr.
This implies that

n €/
]E{l_[(pi(ati’Xt” Y‘Vil) /o ( sy _M.:lﬁr) d’”} -
i=1

Dividing by &', letting &’ — 0, we get E{[ [, ¢;(@,, X, Y;))(M}, — M}:)} = 0, which means
that M} is an FXY" _martingale.

Page 16 of 21
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Step 4. Identification of the Limit. Suppose that (Y",Z", W") is the unique solution of
the following BSDE:

T T
Y, =g(Xr) + / f(s,@ X, Y, ) ds — / 7 dB,
t t

T_n » 1 T —
- W) dV.G)— - [ D (Y")ds,
> WL

where B; is a Brownian motion. For its construction, one can see Tao et al. [3].

E|Y!-Y, " +E[M"-M"], -E[M" - M"],

T
_9E / (Y7 =T (5@ X YT~ (5@ Xor 7)) s
t
Y — D S
_2]E/ Y! —YS,EDQSE(YS)—ED@(YS) ds,
t

where M, = " Z" dB; + >t [T W () dV.(j), the symbol [], denotes the quadratic vari-
ation process. Since ¢ is monotone, for , z, it holds that

(-7, 500.(07) - 00,7} 20

Thus, we get Y7 =Y, and M = M, a.s. Therefore, the limit process is uniquely deter-

mined. O

Following the same discussion as that in Proposition 7, we can get Lemma 14 and

Lemma 15 easily.

Lemma 14 Under the assumptions above, for fixed ¢ € (0,1], the sequence of pro-
cesses (Yo", M®",U*"), converges uniformly in probability to the sequence of processes
(Ye, M, U°) as n — +o0.

Lemma 15 Under the assumptions above, the sequence of processes (Y", M",U"), con-

verges in probability to the sequence of processes (Y,M,U) as n — +0o0.

Proof of Theorem 11 Combining the lemmas above, we can prove that (X°, Y*,M°®, U°®)
converges in law to (X, Y, M, U). d

5 Application to the homogenization of multi-valued PDEs

Then we consider the following multi-valued PDE:

N (b d,x) + Lot (& 1,%) + f (8 6,5, (2, 4,%))
3 e KO (1,),%) = (1,6,%)) € 0w (8,,)), (5.1)
u®(T,i,x) = g(x), ut(t,i,x) € Dom(¢), xeR?,
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and the following multi-valued PDE:

%—‘;(t, i,x) + Lu(t,i,x) + f (&, i, x,u(t,i,x))
+ 2 e Mi)(u(t, ), x) — u(t, i, x)) € 3 (ult, i, x)), (5.2)
u(T,i,x) = g(x), u(t,i,x) € Dom(¢), xeR%

Define
u'(t,x) = u(t, i, x). (5.3)

For ¢(t,x) € C%([0, T] x R"), we define the following operator:
o(t,x) = = Zapq(t zx) qo(t x)+Zb (t, zx) go(t x).
pq 1

The viscosity solution of multi-valued PDEs (5.2) is defined as follows, which is similar
to Definition 4.1 in [3].

Definition 16 Let u = (u',...,u") belong to C([0, T] x R%;R™). u is said to be a viscosity
subsolution (resp. supersolution) of multi-valued PDEs (5.2), if u/(T,x) < g(x) for all i
Ix € RY (resp. u'(T,x) > g(x)) and for all i € I, (£, %) € (0, T) x R% ¢ € C**((0, T) x R%;R)
such that (£,%) is a local maximum point (resp. local minimum point) of u' — ¢, it holds
that

—pE%) - L'9E7) —f (L% u' (%) - Y 1O (E5) - w' (7))

—d)/_(ul(z,ﬁ)),
((pt( %) - Lio(t,%) f(i,i,?c,u"(i,a—c))—Z)\i,(t)(uf(i,x)—u"(i,a—c))

> -9, (W', E))) (resp.);

u is a viscosity solution of multi-valued PDE (5.2) if it is both a viscosity subsolution and
a viscosity supersolution of PDE (5.2).

Consider the following FBSDE:

X = b(s, a, X1*) ds + o (s, al, X5*) dB,,

L, bi_
X7 = x, =i, t<s,

(5.4)

and

_dYSt,i,x =f(S, Olst’i,XSt’i’x, Yst,i,x) ds — Zst,i,x dBS
= Y WEH() V() + dp(YE) dis, (5.5)
Ytlx g(thx), tESET

Page 18 of 21
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Define
u'(t,x) 2 YP*, (5.6)

Note that u = u(u!,...,u™) defined above is a deterministic measurable function.
For f + v¢ satisfying the conditions of Lemma 4.2 of [3], we have the following result.

Lemma 17 For all (¢,i,x) € [0, T] x I x R%, we have a.s.
YIS = s ath, XE),
WE () = u(s, j, XE™) — u(s, alf, X07),
when j # ol
Now, we propose the viscosity solution for (5.6).

Theorem 18 Under the assumptions above, the function u'(t, x) defined by (5.6) is the vis-
cosity solution of Eq. (5.2).

Proof For § €]0,1], let (Y10, Zbixd Wwbind),_ ;. be the solution of the following multi-
valued BSDE:

T T
£,i,%,8 1i ti ytixd ytixd 1,i%,0
e =g () [ psdt it vy as— [z a,
t

t
r . - Ty .
— Z/ vyst,l,x,é(]') st(]) _ / EDQS(S (Yst,z,x,é) ds.
jel ¢ ¢
From Theorem 4.3 of [3], we obtain

ul(t,x) 2 P, te[0,T),x e R

is a viscosity solution of the following PDE:

a0
duy

oo (%) + Lug(t, x) +f(t, i, x, ufs(t, x)) + Zj#jd )»g-(t)(u{;(t, x) — ufs(t, x))
= %Dd)ﬁ(ufs(t’ x))r (57)
ufs(T,x) = g(x), ug(t,x) € Dom(¢), «xeR7.

By the conclusion in Sect. 4, we have

|ug(t,x) - ui(t,x)’ < E( sup |Yf‘"’“’5 - }’s"i’x|) —0, asé—0, (5.8)
s€(t,T]

for all (t,i,x) € [0, T] x I x R%. Next, we prove that u is a viscosity subsolution of PDE (5.2).
There exist the sequences

8 ™0,

(5.9)
(twxn) €0, T] x RY,
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such that
(tn:xnr ufS,, (tmxn)) - (t,x, ui(t,x)), as n — +0Q.

For any #, we have

aug ) )
_Wn (trn xn) - Lulgn (tn: xn) _f(tm i: Xy u:gn (tn: xn))
=3 W) (04, (b ) — 8, ()
jijel
1 i
= 5D, (45, (s %)) (5.10)

n

Let y € Dom(¢), y < u!(¢,x), by (5.8), the uniform convergence us — u on compacts indi-
cates that there exists 7 > 0 such that y < uf;n (¢4,%,) for n > ny. Multiplying Eq. (5.10) by
uf;n (t4, %) — 7, we obtain

du, i . i
- 9t (tmxn) - Eusn (tmxn) _f(tm LXn, Us, (tnxxn))
n

Y A O, ()~ i (1) } (1, (0 00) )
jAijel

<) — (s, (45, (£ %)) (5.11)

passing to liminf,_, ,, on both sides of Eq. (5.11), we have that, for all y < u/(¢,x),

{_%(t, %) = Lu'(t,2) = f (&4,%,1' (¢, %))

- Z L) (o (8, %) — ' (¢, %)) } (u'(t,%) - y)

jijel

<¢0) - o (u'(5,%)). (5.12)

It follows that

_aa—b:l(t,x) — L' (t, %) f(t, i, u' (, %)) — Z 2 (O (1 (&%) — 1 (2, %))

JjHijel

S _¢/_ (ui(t! x))r

i.e., u is a viscosity subsolution of Eq. (5.2). By similar arguments, we can show that u is
a viscosity supersolution of Eq. (5.2). As the same idea of Theorem 4.2 of Pardoux and
Riscanu [6], the uniqueness comes out. O

Corollary 19 Let u®(t,x) be the unique viscosity solution for the multi-valued PDE (5.1).
Then, for t € [0, T],x € R, u® converges to the unique viscosity solution u(t,x) of (5.2) as

e — 0.

Page 20 of 21
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