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Abstract
We introduce and analyze a new mixed discontinuous Galerkin method for
approximation of an electric field. We carry out its error analysis and prove an error
estimate that is optimal in the mesh size. Some numerical results are given to confirm
the theoretical convergence.
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1 Introduction
Numerical and analytical methods play an important role for solving many mathematical
models arising in physics and applied sciences. Indeed, several researchers use numeri-
cal and analytical methods for solving some scientific problems (see, e.g., [1–13]). As in
[1], the authors have generalized Fξ -calculus for fractals embedding in R

3, and in [12]
an efficient computational technique for fractal vehicular traffic flow is presented. A new
analysis of the Fornberg–Whitham equation pertaining to a fractional derivative with
Mittag-Leffler-type kernel is studied by Kumar, Singh, and Baleanu [11]. Recently, Ali et
al. [6] presented a new interesting two-wave version of the fifth-order Korteweg–de Vries
model. Baleanu et al. [7] investigated the existence of solutions for a three-step crisis frac-
tional integro-differential equation under some boundary conditions, and Veeresha et al.
[8] presented an efficient numerical technique for the nonlinear fractional Kolmogorov–
Petrovskii–Piskunov equation. We also cite the paper of Yang, Srivastava, and Baleanu
[3], who investigated an initial-boundary value problem for the local fractional Laplace
equation arising in fractal electrostatics.

During recent years, the discontinuous Galerkin method was developed and has been
applied for approximating solutions of many partial differential equations, for example,
Maxwell’s equations [14–22], Navier–Stokes equations [23], and Poisson’s equation [24].
For the time-dependent Maxwell equations, there are works of Daveau and Zaghdani [19–
21]. In [19] a discontinuous Galerkin scheme for the wave equation derived from Maxwell’s
equations with constant coefficients was discussed and analyzed, and in [22], we studied
a new discontinuous Galerkin formulation for the resolution of the wave equation with
variable coefficients.
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In this paper, we consider the three-dimensional Maxwell equations

∇ × (
μ–1∇ × u

)
= J in Ω ⊂R

3,

∇ · (εu) = 0 in Ω ⊂R
3,

(1)

with the boundary condition n×u = 0 on ∂Ω . Here μ is the magnetic permeability, ε is the
electric permittivity of the medium, and u is related to the electric field E by the relation
E(x, t) = Re(u(x) exp(iωt)), where ω is a given nonzero frequency. We assume that μ and ε

are sufficiently smooth and there exist εmin, εmax, μmin, and μmax such that 0 < εmin < ε(x) <
εmax and 0 < μmin < μ(x) < μmax for all x ∈ Ω . This paper is a generalization of [20], where
problem (1) was studied with constant coefficients and was also studied in [25]. Here we
analyze a new discontinuous Galerkin method with a symmetric principal bilinear form,
but in [25] the primal formulation used to establish an a priori error estimate is no longer
consistent due to the nature of the lifting operators.

To control the divergence of the electric field, we choose the mixed discontinuous
Galerkin formulation. We introduce a Lagrange multiplier and consider

∇ × (
μ–1∇ × u

)
– ε∇p = J in Ω ⊂R

3,

∇ · (εu) = 0 in Ω ⊂R
3,

n × u = 0 in ∂Ω ,

(2)

together with the boundary condition p = 0 on ∂Ω .
The paper is organized as follows. Firstly, we give some notations and preliminaries re-

lated to the mesh and finite element space. Secondly, we derive a discontinuous Galerkin
scheme and prove that it is consistent and well posed. Thirdly, we give an a priori error
estimate. In Sects. 4 and 5, we give some numerical results to confirm the expected con-
vergence rate as a function of the mesh size and concluding remarks, respectively.

Let Ω be a polygonal domain in R
3, and let Πh be a nondegenerate quasiuniform sub-

division of Ω into tetrahedra, which means that

Ω =
⋃

K∈Πh

K and Ki ∩ Kj = ∅ for i �= j.

We denote by FI
h the set of interior faces, by FD

h the set of exterior faces, and by Fh the
set of all faces of the partition. For s > 0, let

H
s(Πh) :=

{
v ∈ L2(Ω)3 : v|K ∈ Hs(K),∀K ∈ Πh

}

and

H
s(∇×,Πh) :=

{
v : v|K ∈ Hs(K)3 and ∇ × (v|K ) ∈ Hs(K)3,∀K ∈ Πh

}
.

Too define the average of ∇ × u and the jump of p as elements of ΠK∈Πh L2(∂K)3 and
ΠK∈Πh L2(∂K ), respectively, in formulation (13), we introduce

V (h) = H
1(∇×,Πh) and Q(h) = H

1(Πh).
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Finite element spaces. Let K ∈ Πh, and let Pk(K) be the set of polynomials of degree less
than or equal to k on K . The finite element space is taken to be

Dk =
{

v : v|K ∈ Pk(K)3, K ∈ Πh
}

. (3)

Traces operators. We give some notations for the traces of functions v in H
s(Πh)3 and w

in H
s(Πh) with s > 1

2 . Let e ∈ FI
h be an interior face shared by two elements K1 and K2, and

let n1 and n2 be the outer unit normal vectors on e with respect to K1 and K2, respectively.
For a vector function v in H

s(Πh)3 and a scalar function w in H
s(Πh), we denote by v1, w1

and v2, w2 the restrictions of v, w to K1 and K2, respectively. Then we define the average,
normal, and tangential jumps of v and the average and normal jump of w as

{v} =
v1|e + v2|e

2
, [v]N = v1|e · n1 + v2|e · n2, [v]T = v1|e × n1 + v2|e × n2,

{w} =
w1|e + w2|e

2
, [w]N = w1|en1 + w2|en2.

For e ∈ FD
h , we denote by n the outward unit normal vector on e and define

{v} = v|e, [v]N = v|e · n, [v]T = v|e × n.

{w} = w|e, [w]N = w|en.

For K ∈ Πh, we denote by hK the diameter of K and define as usual h = maxK∈Πh hK .
Further, in this paper, σa and σc are two stabilization parameters to be chosen depend-
ing on the local mesh size. We consider the same parameters as in [18, 21] and define
σa = κ

min(hK ,hK ′ ) in the case of interior faces, σa = κ
hK

in the case of boundary faces, and
σc = 1

σa
with a strictly positive constant κ (see [18, 21] for more details). For the other

notations and spaces used in this paper, we refer to [21].

2 Formulation of the Maxwell problem
To derive a weak formulation of (2), we formally multiply the first equation in (2) by a
test function v and the second equation in (2) by a test function ψ . Integrating over K , we
obtain

∫

K
μ–1(∇ × u) · (∇ × v) dx +

∫

K
p∇ · εv dx –

∫

∂K
(εv · nK )p ds

–
∫

∂K
v · ((μ–1∇ × u

) × nK
)

ds =
∫

K
J · v dx (4)

and

–
∫

K
εu · ∇ψ dx +

∫

∂K
(εu · nK )ψ ds = 0. (5)

Note that the functions used in the previous identities are totally discontinuous on the
interfaces of the partition. Then we approximate the traces of these functions by the nu-
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merical fluxes ̂μ–1∇ × u, ε̂u, and p̂ and transform the previous identities into

∫

K

(
μ–1∇ × u

) · (∇ × v) dx +
∫

K
p∇ · εv dx –

∫

∂K
(εv · nK )̂p ds

–
∫

∂K
v · (( ̂μ–1∇ × u

) × nK
)

ds =
∫

K
J · v dx (6)

and

–
∫

K
εu · ∇ψ dx +

∫

∂K
(ε̂u · nK )ψ ds = 0. (7)

2.1 Numerical fluxes
We define the numerical fluxes face by face by adapting the numerical fluxes defined in
[18, 26] for the curl–curl operator and in [27] for the Laplacian operator. The fluxes are
defined so that they are conservative in the sense of [28], and they give rise to a consistent
formulation. We consider the following definition of numerical fluxes:

• in the interior faces of the partition,

⎧
⎪⎪⎨

⎪⎪⎩

̂μ–1∇ × u = {μ–1∇ × u} – σa[u]T ,

ε̂u = {εu} – σc[p]N ,

p̂ = {p} – σa[εu]N ;

(8)

• in the exterior interfaces of the partition,

⎧
⎪⎪⎨

⎪⎪⎩

̂μ–1∇ × u = {μ–1∇ × u} – σa[u]T ,

ε̂u = εu – σcpn,

p̂ = 0.

(9)

Now integrating back by parts equation (7), we obtain

∫

K
ψ∇ · εu dx +

∫

∂K

(
(ε̂u – εu) · nK

)
ψ ds = 0. (10)

2.2 Discontinuous Galerkin formulation
First, we remark that for all t, v ∈ ΠK∈Πh L2(∂K)3, and ψ ∈ ΠK∈Πh L2(∂K), we have (see [21])

∑

K∈Πh

∫

∂K
v(t × nK ) ds =

∫

Fh

[v]T {t} –
∫

FI
h

[t]T {v}ds,

∑

K∈Πh

∫

∂K
ψ(v · nK ) ds =

∫

FI
h

(
[v]N {ψ} + [ψ]N {v})ds +

∫

FD
h

ψ(v · n) ds.
(11)
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Now summing identities (6) and (10) over all elements of the partition, use formulas (11),
and the definition of the numerical fluxes, we get

∫

Ω

μ–1∇ × u∇ × v dx –
∫

Fh

[v]T (
{
μ–1∇ × u

}
ds +

∫

Fh

σa[v]T [u]T ds

+
∫

Ω

p∇ · εv dx –
∫

FI
h

[εv]N {p}ds +
∫

FI
h

σa[εv]N [εu]N ds =
∫

Ω

J · v dx,

∫

Ω

ψ∇ · εu dx –
∫

FI
h

[εu]N {ψ}ds –
∫

FI
h

σc[p]N [ψ]N ds –
∫

FD
h

σc[ψ]N [p]N ds = 0.

Since [u]T = 0 in FI
h, n × u = 0 in FD

h , and ∇ · εu = 0 in Ω for the exact solution u, we can
introduce the quantity

–
∫

Fh

[u]T
{
μ–1∇ × v

}
ds + r

∫

Ω

(∇ · εu)(∇ · εv) dx (12)

as a penalization term. Now the discontinuous Galerkin formulation is:
Find (u, p) ∈ V (h) × Q(h) such that

⎧
⎨

⎩
A(u, v) + B(v, p) = L(v), ∀v ∈ V (h),

B(u,ψ) – C(p,ψ) = 0, ∀ψ ∈ Q(h),
(13)

where A, B, and C are the bilinear forms defined on V (h) × V (h), V (h) × Q(h), and Q(h) ×
Q(h) by

A(u, v) := a(u, v) – J(v, u) – J(u, v) (14)

with

J(u, v) :=
∫

Fh

[u]T
{
μ–1∇ × v

}
ds, (15)

a(u, v) :=
∫

Ω

μ–1(∇ × u) · (∇ × v) dx +
∫

Fh

σa[u]T [v]T ds

+
∫

FI
h

σa[εu]N [εv]N ds + r
∫

Ω

(∇ · εu)(∇ · εv) dx,
(16)

B(v, p) :=
∫

Ω

p∇ · εv dx –
∫

FI
h

[εv]N {p}ds, (17)

and

C(p,ψ) :=
∫

Fh

σc[p][ψ] ds. (18)

Note that the first term in (12) is introduced to symmetrize the principal bilinear form of
the formulation, the second term in (12) is introduced to obtain a principal bilinear form
coercive not only on the kernel of the bilinear form B but also on the whole discrete space.
This second term may not be introduced, and in this case, we prove the coercivity of A on
the kernel of B, and this property is satisfied.
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2.3 Discrete formulation
The finite element method for formulation (13) consists in approximating the spaces V (h)
and Q(h) by the finite-dimensional spacesVh := D2 andQh := D1, respectively. The discrete
formulation is given by: Find (uh, ph) ∈ Vh ×Qh such that

⎧
⎨

⎩
A(uh, v) + B(v, ph) = L(v), ∀v ∈ Vh,

B(uh,ψ) – C(ph,ψ) = 0, ∀ψ ∈Qh.
(19)

In the following section, we study the well-posedness of our mixed DG formulation. First,
let us define the mesh-dependent norm on the spaces Vh and Qh. For u ∈ Vh and p ∈ Qh,
we set

‖u‖2
h :=

∥
∥μ– 1

2 ∇ × u
∥
∥2

0,Ω +
∥
∥√

σa[εu]N
∥
∥2

0,FI
h

+ r‖∇ · εu‖2
0,Ω

+
∥∥√

σa[u]T
∥∥2

0,Fh
+

∥
∥∥
∥

1√
σa

{
μ– 1

2 ∇ × u
}
∥
∥∥
∥

2

0,Fh

(20)

and

‖p‖2
h := ‖p‖2

0,Ω +
∥∥√

σc[p]
∥∥2

0,Fh
+

∥∥√
σc{p}∥∥2

0,Fh
. (21)

It is obvious that these quantities define norms on the spacesVh and Qh, respectively. Now
we prove that the mixed DG formulation (19) is consistent, and it has only one solution.

2.3.1 Theorem
Under the assumptions on μ and ε, there exists a constant κ0 > 0 such that for all κ ≥ κ0,
problem (19) is consistent and has only one discrete solution.

Proof The consistency of problem (19) can be deduced from the derivation of the DG for-
mulation. Indeed, after some integration by parts and using the fact that the exact solution
(u, p) ∈ H0(∇×,Ω) ∩ H(∇ε·,Ω) × H1

0 (Ω) (we refer to [21] for the definition of this space),
we can prove that the exact solution of (2) satisfies formulation (19) and the consistency
follows. Since problem (19) is linear finite-dimensional space, to prove the existence and
uniqueness of a solution, we only have to prove that if J = 0, then (uh, ph) = (0, 0). Letting
J = 0, setting (v,ψ) = (u, p) in (19), and subtracting the second equation from the first one,
we get

a(u, u) – 2J(u, u) + C(p, p) = 0. (22)

Then
∫

Ω

μ–1(∇ × u) · (∇ × u) dx +
∫

Fh

σa[u]T [u]T ds +
∫

FI
h

σa[εu]N [εu]N ds

+ r
∫

Ω

(∇ · εu)(∇ · εu) dx

– 2
∫

Fh

[u]T
{
μ–1∇ × u

}
ds +

∫

Fh

σc[p]2
N ds = 0. (23)
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Using the Cauchy–Schwarz inequality and the boundedness of μ, we deduce

2J(u, u) ≤ 2δ

∫

Fh

σa[u]2
T ds +

2
δ

C
∫

Fh

1
σa

∣∣{∇ × uh}∣∣2 ds for any δ > 0. (24)

Now, we apply the following inverse inequality [14, 29]:

‖q‖2
0,∂K ≤ C

1
hK

‖q‖2
0,K , ∀q ∈ Pk(K), (25)

and since ∇ × Vh ⊂ Vh, we obtain

∫

Fh

∣∣
∣∣

1√
σa

{∇ × v}
∣∣
∣∣

2

ds ≤ C
κ

∫

Ω

|∇ × v|2 dx, ∀v ∈ Vh, (26)

which implies that

2J(u, u) ≤ 2δ

∫

Fh

σa[u]2
T ds +

2
δ

C
κ

∫

Ω

|∇ × u|2 dx. (27)

We use the fact that μ is bounded and deduce that

a(u, u) – 2J(u, u) + C(p, p) ≥
(

1 –
2C
δκ

)∫

Ω

(∇ × uh)2 dx + r
∫

Ω

(∇ · εuh)2 dx

+ (1 – 2δ)
∫

Fh

σa
[
uh]2

T ds +
∫

FI
h

σa
[
εuh]2

N ds

+
∫

Fh

σc
[
ph]2 ds. (28)

If we choose δ, κ such that 1 – 2δ > 0 and 1 – 2C
δκ

> 0, we obtain

∇ × u = 0 in Ω ,

∇ · εu = 0 in Ω ,

[u]T = 0 in Fh,

[εu]N = 0 in FI
h,

[p]N = 0 in Fh.

(29)

We deduce from the first and third equations that u belongs to the set H0(∇ × 0,Ω). From
the second and fourth equations we deduce that u ∈ H(∇ε · 0,Ω). Therefore u = 0 ev-
erywhere in Ω . Now the fifth equation gives that p belongs to the space H1

0 (Ω), and the
second equation in (19) implies, after integration by parts,

–
∫

Ω

v∇p dx = 0, ∀v ∈ Vh, (30)

and therefore p = 0 in Ω . �
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3 A priori error estimate
First, we study the properties of the bilinear forms A, B, and C on the spaces Vh × Vh,
Vh ×Qh, and Qh ×Qh, respectively. Using the Cauch–Schwarz inequality, the definition
of A, B, C, and the mesh-dependent norm, we can obtain the continuity of the bilinear
forms A, B, and C, and we have the following:

3.1 Proposition
There exists a constant C independent of h such that

∣∣A(u, v)
∣∣ ≤ C‖u‖h‖v‖h, ∀u, v ∈ Vh,

∣
∣B(u,ψ)

∣
∣ ≤ C‖u‖h‖ψ‖h, ∀u ∈ Vh,∀ψ ∈Qh,

∣
∣C(p, q)

∣
∣ ≤ C‖p‖h‖q‖h, ∀p, q ∈Qh.

For the coercivity of the bilinear form of A, we know that if A is coercive on the kernel of B,
then together with an inf–sup condition, we can demonstrate some convergence results.
Nevertheless, we prove the coercivity of A on the whole space Vh × Vh.

3.2 Proposition
There exists a constant α0 independent of h such that

A(u, u) ≥ α0‖u‖2
h, ∀u ∈ Vh. (31)

Proof From inequality (28), since C(p, p) =
∫

Fh
σc[p]2

N ds, after subtracting C(p, p) from the
left side and

∫
Fh

σc[p]2 ds from the right side, we deduce

a(u, u) – 2J(u, u)

≥
(

1 –
2C
δκ

)∫

Ω

(∇ × uh)2 dx + r
∫

Ω

(∇ · εuh)2 dx

+ (1 – 2δ)
∫

Fh

σa
[
uh]2

T ds +
∫

FI
h

σa
[
εuh]2

N ds. (32)

Since A(u, u) = a(u, u) – 2J(u, u) and

‖u‖2
h = a(u, u) +

∥
∥∥
∥

1√
σa

{
μ– 1

2 ∇ × u
}
∥
∥∥
∥

2

0,Fh

=
∫

Ω

∣∣μ– 1
2 ∇ × u

∣∣2 dx +
∫

Fh

σa[u]2
T ds +

∫

FI
h

σa[εu]2
N ds

+ r
∫

Ω

|∇ · εu|2 dx +
∥∥
∥∥

1√
σa

{
μ– 1

2 ∇ × u
}
∥∥
∥∥

2

0,Fh

(33)
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and since μ is bounded, we deduce that

A(u, u) – α‖u‖2
h ≥

(
1 –

2C
δκ

– α

)∫

Ω

(∇ × uh)2 dx + r(1 – α)
∫

Ω

(∇ · εuh)2 dx

+ (1 – 2δ – α)
∫

Fh

σa
[
uh]2

T ds + (1 – α)
∫

FI
h

σa
[
εuh]2

N ds

– α

∥
∥∥
∥

1√
σa

{
μ– 1

2 ∇ × u
}
∥
∥∥
∥

2

0,Fh

. (34)

We use inequality (26) for u to write

A(u, u) – α‖u‖2
h ≥

(
1 –

2C
δκ

– α – α
C
κ

)∫

Ω

(∇ × uh)2 dx + r(1 – α)
∫

Ω

(∇ · εuh)2 dx

+ (1 – 2δ – α)
∫

Fh

σa
[
uh]2

T ds + (1 – α)
∫

FI
h

σa
[
εuh]2

N ds. (35)

Now, we choose δ, κ , and α such that the right side in the previous inequality is greater
than zero, and the coercivity result follows immediately. �

3.3 Inf–sup condition
This section is devoted to prove an inf–sup condition of the bilinear form B. The following
lemma is necessary for this proof.

3.3.1 Lemma
For all v ∈ H1(Πh)3, there exists an interpolant Rh ∈ D2 such that

∫

K
(∇ · εv – Rh)qh dx = 0, ∀qh ∈ P1(K),∀K ∈ Πh, (36)

∫

f
(εv – Rh) ds = 0, ∀f ∈ Fh. (37)

Proof The proof follows from Theorem 1 in [30] since εv ∈ H1(Πh)3 for all v ∈ H1(Πh)3 if
ε is sufficiently regular. �

Now the inf–sup condition is given in the following theorem

3.3.2 Theorem
There exists a constant β independent of h such that

inf
q∈Qh\{0} sup

v∈Vh\{0}
B(v, q)

‖q‖h‖v‖h
≥ β > 0. (38)

Proof Let us first remark that for all q ∈Qh, we have

‖qh‖2
0,Ω =

1
3
‖qh‖2

0,Ω +
1
3
‖qh‖2

0,Ω +
1
3
‖qh‖2

0,Ω . (39)
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Using the inverse inequality (25), since σc = 1
σa

, we get

‖qh‖2
0,Ω ≥ 1

3
‖qh‖2

0,Ω + C
∥∥∥
∥

1√
σa

[q]
∥∥∥
∥

2

0,Fh

+ C
∥∥∥
∥

1√
σa

{q}
∥∥∥
∥

2

0,Fh

≥ 1
3
‖qh‖2

0,Ω + C
∥
∥√

σc[q]
∥
∥2

0,Fh
+ C

∥
∥√

σc{q}∥∥2
0,Fh

≥ C‖q‖2
h. (40)

Let qh ∈ Qh. There exists ṽh ∈ H1(Ω)3 such that

∇ · ε̃vh = qh and ‖̃vh‖1,Ω ≤ C‖qh‖0,Ω . (41)

We set vh = Rh (̃vh), where Rh is the operator due to the previous lemma. Therefore

B(vh, qh) =
∑

K∈Πh

∫

K
qh∇ · Rh (̃vh) =

∑

K∈Πh

∫

K
qh∇ · ε̃vh = ‖qh‖2

0,Ω ≥ C‖qh‖2
h. (42)

As Rh is continuous, we have ‖vh‖h = ‖Rh (̃vh)‖h ≤ C‖̃vh‖1,Ω ≤ C‖qh‖0,Ω ≤ C‖qh‖h, and the
inf–sup condition immediately follows.

Since the bilinear forms A, B, and C are continuous, A is coercive on the discrete space
Vh ×Vh, and together with the inf–sup condition shown in (38), we can show the following
a priori error estimate result; we refer to [21] for details. �

3.4 Theorem
Let (uh, ph) be the discrete solution of (19), and let (u, p) be the exact solution of (2). Sup-
pose that u ∈ Ht+1(Πh)3 and p ∈ Hs–1(Πh) with t ≥ 1 and s ≥ 2. Then

‖u – uh‖2
h + ‖p – ph‖2

h ≤ C
(
h2 min(2,t)‖u‖2

t+1,Πh
+ h2 min(2,s)–2‖p‖2

s,Πh

)

with a positive constant independent of the mesh size h.

4 Numerical results
In this section, we present numerical experiments obtained for the three-dimensional
problem (2). For simplicity, we suppose that the coefficients ε and μ are constants, and so
μ ≡ ε ≡ 1. Additionally, in formulation (19), there appear two constants r and κ . For the
parameter r, there is no restriction, and every nonnegative real number may be considered.
The parameter κt should be considered sufficiently large to guarantee the coercivity, but it
cannot be chosen too large since otherwise the matrix associated with the bilinear form A
would be ill conditioned. Here we have chosen r = 1, κ = 100, and Ω = [0, 1]× [0, 1]× [0, 1].

Example 1 In this example, we choose a current density J so that the true solution of (2)
is

u(x, y, z) =

⎛

⎜
⎝

(y2 – y)(z2 – z) exp(yz)
(x2 – x)(z2 – z) exp(xz)
(y2 – y)(x2 – x) exp(xy)

⎞

⎟
⎠
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Table 1 Table of errors in the L2(Ω ) and energy norms

h ‖u – uh‖L1(Ω ) ‖u – uh‖0,Ω ‖u – uh‖h ‖p – ph‖L1(Ω ) ‖p – ph‖L2(Ω ) ‖p – ph‖h
0.4367 0.3471E–01 0.2109E–01 0.1305E+00 0.7633E–01 0.1045E+00 0.8891E+00
0.2184 0.6913E–02 0.2540E–02 0.3875E–01 0.1325E–01 0.1700E–01 0.2229E+00
0.1733 0.3846E–02 0.8845E–03 0.2051E–01 0.8522E–02 0.1134E–01 0.1700E+00
9.268E–02 0.1434E–02 0.9734E–04 0.4521E–02 0.5440E–02 0.7059E–02 0.6283E–01
7.703E–02 0.6172E–03 0.5080E–04 0.3111E–02 0.5277E–02 0.6941E–02 0.4660E–01

Figure 1 Errors ‖u – uh‖h

and

p(x, y, z) =
(
y2 – y

)(
z2 – z

)(
x2 – x

)
exp(xyz).

The numerical values of errors for this example are written in Table 1. In Figs. 1 and 2, we
have plotted the errors of ‖u – uh‖h and ‖p – ph‖h, respectively.

Example 2 In this example, we choose the following manufactured solution (u, p) of (2)
together with the boundary conditions:

u(x, y, z) =

⎛

⎜
⎝

(y2 – y)(z2 – z) sin(yz)
(x2 – x)(z2 – z) sin(xz)
(y2 – y)(x2 – x) sin(xy)

⎞

⎟
⎠

and

p(x, y, z) =
(
y2 – y

)(
z2 – z

)(
x2 – x

)
sin(xyz).

We obtain the numerical values of errors in Table 2.
From the error Tables 1 and 2 and Figs. 1 and 2, we remark that the errors decrease as

h decreases, and we get the true solution u, p with errors less than 10–3 and 10–2, respec-
tively. These results show the convergence of the numerical solution to the exact solution
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Figure 2 Errors ‖p – ph‖h

Table 2 Table of errors and order of convergence

h ‖u – uh‖h Order ‖p – ph‖h Order

0.4367 0.1102E+00 – 0.7005E+00 –
0.2184 0.3162E–01 1.80 0.2201E+00 1.75
0.1733 0.1808E–01 2.41 0.1504E+00 1.64
9.268E–02 0.4451E–02 2.23 0.6111E–01 1.43
7.703E–02 0.3052E–02 2.04 0.4803E–01 1.30

according to the rate O(h2) for ‖u – uh‖h and O(h) for ‖p – ph‖h, and they confirm the
theoretical result.

5 Concluding remarks
In this paper, we introduced a new mixed discontinuous Galerkin scheme for the approx-
imation of the electrostatic field and analyzed and its errors. Some numerical results are
given confirming the optimal convergence rates as functions of the mesh size h.
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