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1 Introduction

Fractional-order differential systems constitute the mathematical models of many real
world problems. Examples include disease models [1-3], anomalous diffusion [4, 5], syn-
chronization of chaotic systems [6, 7], ecological models [8]. For applications in bioengi-
neering, chaos and financial economics, we refer the reader to [9-11]. The details about
rheological models in the context of local fractional derivatives can be found in [12]. In
view of the extensive applications of such systems, many researchers turned to investi-
gation of the theoretical aspects of fractional differential equations. In particular, there
was a special attention on proving the existence and uniqueness of solutions for fractional
differential systems supplemented with a variety of classical and non-classical (nonlocal)
boundary conditions with the aid of modern methods of functional analysis. For details
and examples, see [13—-22] and the references cited therein. It is imperative to mention
that fractional-order models are more practical and informative than their integer-order
counterparts. It has been mainly due to the fact that fractional-order operators can de-
scribe the hereditary properties of the processes and phenomena under investigation.
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In this paper, we study the existence of solutions for a nonlinear coupled system of

Liouville—Caputo type fractional differential equations on an arbitrary domain:

D*x(t) =f(t,x(t),y(t), 3<a<4,tela,b],

1.1
DPy(t) = g(t,x(6),y(1)), 3<B=4t€lab], -y

equipped with coupled non-conjugate Riemann-Stieltjes integro-multipoint boundary

conditions:
¥'(a) =0, x(b) = x'(b) =0,
x(a) = f y(s) dA(s) + Z; Zoy(E), 12)
y(a)= y(b) =0, y(b)=0,

y(ﬂ) = f S) dA Zfl 12 ﬁz El

where ¢D¢ denotes the Caputo fractional derivative of order ¢ with (0 = «,8), f,g:
[a,b] x R x R — R are given continuous functions, a < & <& <---<&,2<b, o, B; €
R,i=1,2,...,n—2and A is a function of bounded variation. In passing we remark that the
present work is motivated by a recent paper [23], where the authors studied the existence
and stability of solutions for a fractional-order differential equation with non-conjugate
Riemann—Stieltjes integro-multipoint boundary conditions.

We arrange the rest of the paper as follows. Section 2 contains an auxiliary result that
plays a key role in analyzing the given problem. Existence results for the problem (1.1)-
(1.2) with the illustrative examples are presented in Sect. 3, while the uniqueness of solu-

tions is discussed in Sect. 4.

2 Auxiliary result
Before giving an auxiliary result for system (1.1)—(1.2), we recall some necessary defini-

tions of fractional calculus [24, 25].
Definition 2.1 Let? be alocally integrable real-valued functionon —co <a <s< b < +oo.

The Riemann-Liouville fractional integral IV of order ¢ € R (¢ > 0) for the function g is
defined as

2qs) = (g% Ko)(6) / (s — )" q(u) du,

T TW)
where Ky = 5, I' denotes the Euler gamma function.

Definition 2.2 The Caputo derivative of fractional order ¥ for an (2 — 1)-times absolutely

continuous function g : [a,00) — R is defined as
‘D’q(s) = Tm = 1})/ )mﬁl(m()du, m-1<9 <mm=[0]+1,

where [¢] denotes the integer part of the real number .
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Lemma 2.3 ([24]) The general solution of the fractional differential equation °D’x(s) =
0,m—-1<9 <m,s€|a,b),is

x$)=vg+vi(s—a) + va(s—a) + -+ Upr(s —a)" 7,

where v; e R,i=0,1,...,m — 1. Furthermore,

m-1

I"D’x(s) =x(s) + Y _vi(s—a)’.
i=0

Lemma 2.4 Forf,@ € C([a, b], R), the solution of the linear system of fractional differential
equations:

‘CD"‘x(t) “7®), 3<a<dtelabl, on

°DPy(t)=3g(t), 3<B<4telab)

supplemented with the boundary conditions (1.2) is equivalent to the system of integral

equations:
t(t_s)a—l (b )a 1 (b S)a 2
0= [ [ s a0 [ L
t) b s (S_u)a—lA( )d dA n-2 & (%.i_s)a—lA( )d
vont) [ ([ 5T ) <s>+;ﬂi/a 0 ds
s b (-5t
¢3()/ B ds= i) | T
b S (e 1\B-1
+¢5<r>[ f < / & FZ;) z(u)du)dA(s)
n-2 5: _ -1
e S g(s)ds}’ 22
Lt-s)Pt b(b-s)* b (h—s5)* 2
70 = [ g - in) [ ELEFods o [ E 0 ds
brors (s—u) - -5
+ ¢s5(t) /( @) f(u)du)dA(s)+Zﬁl/ T f(s)ds
(b -9
v [ O gas vt [ L s as
B-
s t)|:/ (f (5= u) : ()du)dA(s)
= [E (-8
+t2=1:ai/u %) g(s)dsi|, (2.3)
where

Gi(t)=vi+(t—a)ui+t-a)is, i=1,...,6, (2.4)
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w]‘(t) =wjt+ (t - 4)2,01‘ + (t - d)g)nj, ] =1,...,5 (25)
—3(b - a)dy 1-3(b-a)*s
=—  k=1,2,3,4,5, =~ 2.6
Mk 5 JI%3 20—a) (2.6)
-3(b - @)y 1-3(b-a)*rs
=—— m=1,2,3,4, == 2.7
Pm 5 Ps 2b—a) (2.7)
2v; -2 2v, 2v6 + (b —a)
61 = ,8, = , n=2,3,4,5, bg= ———m—, 2.8
Y- (b-ap T b-ap? 29
26(),« 2w4 —2 2&)5 + (b - ﬂ)
A= ——, =1,2,3, Agpg=——, = 2.9
- e T -0 29
¥3 _ _20-a)%y
V1 = VZ(A4. (b-a)3 )’ Vy = (b—a)6—4)/11]/3’
v3 = v5(A; - (b%)g,), v = vs(v2 + glom), (2.10)
_ (b-a)® _ V:
V5 = mab—ayiys’ Ve = a(ya + (b_—i)z):
wy = vs5(Aq — a)s) wy = vs(ya + G1352),
_ 202y _ 2y
w3 = mr ws = w3(A1 — w)r (2-11)

w5 = w3(y2 + Ghm),

_ (b-a)®A1-3(b-a)A2+243 _ Ax—(b-a)*Ay
yl - 2 ’ )/2 - 2(17—&1) ’ (2 12)
_ (b-a)3A4-3(b-a)A5+24, _ As—(b-a)*Aq4 :
5= 2 ’ LG i Y7

A, —f dA(s) + Y1 Az—f (s —a)® dAGs) + Y17 (i — a)?,
As=[l(s—aPdAG) + Y ai& -, Au=[) dAG) + Y0 B
As = [(s - a)*dA(s) + Y17 Bilei — a)?,
Ag = [P(s—a)® dA(s) + Y17 Bilsi — a)’.

(2.13)

Proof By Lemma 2.3, the general solutions of fractional differential equations in (2.1) can

be written as

t (t _ S)a—l

x(t) = Wf(s) ds+co+ it —a) + ca(t — a)* + cs(t — a)?, (2.14)
£+ _ o\B-1
y(£) = / %@(s) ds + bo + by (t — a) + by(t — a)* + bs(t — a)?, (2.15)

where ¢;,b; € R,i=0,1,2,3 are unknown arbitrary constants.
Using the boundary conditions (1.2) in (2.14), (2.15), we obtain ¢; = 0,b; = 0, and

co+(b-a) e+ (b-a)cs =1, (2.16)
by +(b—a)’by + (b-a)’b; = Ki, (2.17)
2b-a)ey +3(b—a)’c; = b, (2.18)
2(b—a)by + 3(b — a)*bs = Ko, (2.19)
co—A1bg — Asby — Asbs = K3, (2.20)

bo —A4C0 —A5C2 —A663 = 13, (221)
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where A; (i = 1,...,6) are given by (2.13) and [;, K; (i = 1,2, 3) are defined by

b b1 b b_s)2.
—/ %f(s)ds, L=- ﬁf(s)ds,

« T(a-1)
b s a— a—
13=f (/ % u)du)dA(s Zﬁlf (E‘_s) Fs)ds,
R N Y RN
K= / Sry 0 K= [ e ds

B bl (s—u)f- i ( ‘—S) A1
Ks = / ( @ g(u) du) dA(s) + Za, / T 2(s) ds.
From (2.16) and (2.18), we find that

es = ﬁ (co G ; ”)12>. (2.22)

Eliminating b, from (2.17) and (2.19), we get

by = ﬁ <b0 _Ki+ (b;—“)Kz). (2.23)
Combining (2.19), (2.20) and (2.23) yields

¢o = Y1b3 + A1 Ky + K, + K. (2.24)
From (2.18), (2.21) and (2.22), we have

by = yscs + Asly + Yalp + I3, (2.25)

where y; (i = 1,...,4) are given by (2.12).
Eliminating b3 from (2.23) and (2.24), and c3 from (2.22) and (2.25), we obtain

2y 2y, Y1
Co = (b — a)B bo + (A1 - (b — a)3>1<1 + ()/2 + m)](g +I(3, (226)
bo=—22 ot (A= Vi o (ur =2 \p+ 1. (2.27)
(b-a) (b-a)’ (b-a)?

Solving (2.26) and (2.27) simultaneously for ¢y and by, we obtain

Co = \)111 + U612 + Vzlg + V3[<1 + U4I<2 + U51(3, (228)

b() = a)111 + a)212 + V513 + w4K1 + a)5K2 + a)31<3, (229)

where v; (i=1,...,6) and w; (i = 1,...,5) are defined by (2.10) and (2.11), respectively.
Using (2.28) in (2.22) and (2.29) in (2.23), we get

C3 = 8111 + 8612 + 8213 + 831(1 + (341(2 + 551(3,
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b3 = )\.111 + )\.2[2 + 8513 + }\.41(1 + )\.51(2 + )\.3[(3,

where §; (i=1,...,6) and &; (i = 1,...,5) are given by (2.8) and (2.9), respectively.
Substituting the values of ¢3 and b3 in (2.18) and 2.19), respectively, we find that

¢y = uily + pely + palz + 3Ky + paky + 45Kz,
by = pily + pala + psd3 + paK + psKy + p3Ks,
where u; (i =1,...,6)and p; (i = 1,...,5) are, respectively, defined by (2.6) and (2.7). Insert-

ing the values of ¢, ¢1, ¢, ¢3 in (2.14) and by, b1, by, b3 in (2.15), we obtain (2.2) and (2.3).
By direct computation, one can obtain the converse. The proof is complete. d

3 Existence results
We define space A = {x|x € C([a, b], R)} equipped with the norm ||x|| = sup,/, ) |%(¢)|. Ob-
viously (A, || - ||) is a Banach space and consequently, the product space (A x A, || - ||) is a
Banach space with norm ||(x, y)|| = |lx|| + ||y|| for (x,y) € A x A.

In view of Lemma 2.4, we define an operator F: A x A — A x A as

F(x,9)(0) == (F1(x,9)(), Falx,3)(0)) (3.1)
where

(t S)a 1
I'(a)

b—s) 2 a-1
~ p6(0) f %f(s, (5),7(5)) ds + t)[ / ( f il ”’

_ o\a-1
x f (1, %(4), y (1)) du) dA( S)+Z,31/ { S) f(s,x(s),y(s)) ds]

b b —g)e-1
6.2(9),7(6) ds — 1 (6) / %f(s,x(sm(s)) ds

b— )P
- 45(0) / O e(sx6)(9) ds

_ )82
—u(t) (Ilf(;) 505,360,909 ds
s _ \B-1
+¢5<t>[ f ([ S gttt ) o
n-2 & (£, _ o\p-1
+Zla,»/a %g(s,x(s),y(s))ds}, (3.2)
t _ )81 b b— a-1
Folwy)(6) = / ¢ F(s;) a(5,%(),5(5)) ds — ¥, (8) / -9 F(S;) F(5x(5),5(6)) ds
b (b— )a—2 ( )a 1
0 | gy 699) s+ 6500 [/ ([
_S)ot 1

x f (u, % (), y(u)) du) dA(s) + Z,Bz/ & f(s,x(s),y(s)) ds:|

I'(a)
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-1

— Ya(t) / F(ﬁ g(s,%(s), ¥(s)) ds

b—s)f=2
s xh) ds

_y)pl
+ Y3t |;/ </ (s—u)™ ) g, x(u), () du) dA(s)

n-2 £ Al
+ ;ai/a %g(&x(s),y(s)) d{|,

- Us(2)

(3.3)

and ¢;(£),i=1,...,6 and ¥;(£),j = 1,...,5 are given by (2.4) and (2.5), respectively.

In the forthcoming analysis, we assume that f,g : [2,5] x R x R — R are continuous
functions satisfying the following conditions:

(O1) Vtela,bland x;,y; € R,j = 1,2, there exist L;,i = 1,2 such that

[f &1, 91) = f (& %2,2)| < Li(ley = 2] + [y1 = p21),

lg(t, %1,51) = g(t,%2,92)| < Lo(1%1 = %2| + [y1 = y21);

(O,) Vt e [a,b],x,y € R there exist real constants ¢;,«; > 0,i = 1,2, &9, ko > 0 such that

If(&:%,9)| < €0 + €1l + &2y,

|g(&:%,9)| < ko + K1 lx] + 2y

For computational convenience, we introduce the following notations:

A b-a) ~ (b a)?  ~ (b-a)*!
ECER) T(a+1) ')
+%<f P40+ EZWz@ )
~ b-a) ~ (b-a)f!
=P TrE D T e
s ([ b= o (E
+%<£ T A §:|Arw )
(b-a) (b-a)*! (3.4)
a ~ —-a
1//11"( TR
+<$5< ;S(_“) (5) + Zm, )
Ay = (b-a)’ LT b-a)f ~ (b-a)!
YTTE+) trg+l) T TR

n-2

&
As) + }:um8 )

. b@—mﬂ
+%<A F(+

Page 7 of 19
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where ¢; = SUP;e(ap) 19:i()],i=1,...,6 and % = SUPefup Vi =1,...,5,

Nj = sup Lf(t, 0, 0)| < 00, < 00, (3.5)
tela,b] tela,b]
A= AL + ALy, A = AsLy + AyLy,
o (3.6)
M=A1N1+A2N2, M=A3N1+A4.N2,
20 = (A1 + Az)eo + (Az + Ag)ko, (3.7)

21 = (A1 + Az)er + (Ag + Agky, 29 = (A1 + Az)es + (Ag + Ag)ko, 38)
2 = max{$21, §25}.

Now we present our main results. The first result, based on the Leray—Schauder alter-
native, deals with the existence of solution for system (1.1)—(1.2).

Lemma 3.1 (Leray—Schauder alternative [26]) Let J:U —> U be a completely continuous
operator (i.e., a map that restricted to any bounded set in U is compact). Let Q(J) = {x €
U : x = nJ(x) for some 0 < 1 < 1}. Then either the set Q(J) is unbounded, or J has at lest one
fixed point.

Theorem 3.2 Assume that f,g : [a,b] x R x R — R are continuous functions satisfying
assumption (O,). Then system (1.1)—(1.2) has at least one solution on [a, b] if §2 < 1, where
2 is given by (3.8).

Proof In the first step, we show that the operator F: A x A — A x A is completely con-
tinuous. Notice that the operator F is continuous in view of continuity of the functions f
and g.

Let V C A x A be bounded. Then there exist positive constants 6; and 6, such that
If(t, %(2), y(t)| < 61, 1g(t,x(2),¥(2))| <62, V(x,y) € V. So, for any (x,y) € V, we have

)~
I'(e)

s _ -1
|¢>6(t)|/ e elds+|¢z(t)|[/ (/ %%)dfl(s)
— Si(Ei—9)!

+;|ﬂi|/a e elds}

b b— B-1 b b— B2
+|¢3(t)!/ (Fis)@zds+|¢4(t)|/ %92613

& _ ,31
+|¢5(t)|[/ (f (Sr(ﬂ «92du)dAS)+Za,/ E-9)™ S) }

< A101 + Ay0,.

Ifl(x,y)(t)IS/ U 91dS+|<b1 t)I/ Hlds

F()

Thus,

[ F1(x,9) | < A161 + Asfy. (3.9)
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Similarly, we can get
||-7:2(?C;)’) ” < A3 + Aybs. (3.10)

Hence, from (3.9) and (3.10), it follows that F is uniformly bounded, since || F(x,y)| <
(A1 + A3)01 + (Ag + Ay)bs.
Next, we show that the operator F is equicontinuous. For t3, ¢, € [a, b] with ) < £;, we

obtain

|J:1(x,y)(t2) - «7:1(96»}’)(51)\
/“ [(fa—5)*" = (t1 —5)*"]
a I'(a)

t -l
+/t1 (tzF(S(j) £ (s,%(5), y(s)) ds

<

£(s5,%(5),5(5)) ds

(b- S)1

+|p1(82) — 1 tl)‘/ I (s,%(5), ¥(s)) | ds

3)2

+ |6 (t2) — ¢6(t1)‘/ LV(S;X(S)J/(S))MS

_ -1
+|¢2(tz)—¢z(tl>}{ f ( [t F;‘O’[) v(u,x<u),y(u))|du>dA<s)

\- Si (& —s)*t
+§|ﬂi'/a r(sa) V(s’x(s)’y@)lds}

b b— p-1
( F(S;) |g(s,%(s), y

(b- S)ﬁ -

+ ’¢3(t2)—¢3(t1)}/ (s))| ds

+ |pa(t2) — daltr) f |g(s,x(s),y(s))‘ds

_ 4)\B-1
+|¢5(f2)—¢5(t1)}|:/( (SF?/;) |g(u,x(u),y(u))|du)dA(s)

& —
+ Z |0lz|/ (&, |g (s, %(s), y(s))|ds]

< F(jl+ 5 [2(8 - 01)* + |(82 — @)* = (t1 — @)% ]
+ 01| (82) - ¢1(t1)|/ F() ds+91|¢>6(t2) ¢6(t1)|/ bis“
+91|¢2<t2>—¢2<t1)|[ / ( / “;2’;1 du)dA(s)
+Z|ﬁ,/ € -9 1dsj|+92|¢3(t2)—¢3(t1)|/ab (b;(sgl ds
+0,|0u(ts) - alty)| RCLi

a F(,B_l)
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b s (e B & (g, 5)b-1
+92|¢5(t2)—¢5(t1)|[/ (/ (Srz‘;) du)dAs)+Zlotz|/ r(;) S}

In consequence, || F1(x,y) — F1(x,%)|| — 0 independent of x and y as ¢, — t;. Also, we can
obtain

| Fa,9)(12) = Fa(x, y)(81)]
0,
rg+1)

=

[2(ta - 11)f + (2 — @)f - (t1 - a)”|]

*91|¢1<f2>—1/f1<t1>|f F() s 01|y - wzm)\/ 0o ds

b s G (g -
+91|¢5(t2)—¢5(t1)|[/ (/ (s F?)) d”)dA(S)+Z|'B‘|/ F(S) s]

_5)B-2

b—s)f1 b
+ 02| Ya(ts) — Yaltr) / (F(S; ds + 02| Y5 (t2) — ¥s(11) / ( T l)d

El _g)81
+ 60 |3(t2) — 3(t1) |:/ (f bow du>dA(S)+Z|a,|f S) ]

which imply that || F,(x,y) — Fa(x,9)|| = 0 independent of x and y as ¢, — #;. Therefore,
the operator F(x,y) is equicontinuous. Then, by Arzeld—Ascoli theorem, the operator F
is completely continuous.
Next, we show that the set P = {(x,y) € A x A|(x,y) = 0 F(x,9),0 < o < 1} is bounded.

Let (x,y) € P, then (x,y) = 0 F(x,y) and for any ¢ € [a, b], we have

x(t) =0 Fi(x,p)(),  y(t) = o Falx, )(2).
In consequence, we have

|x(@)| < A1(eo + e1la] + £2lyl) + Az (o + k1]x] + K2 ]y]),
which leads to

lxll < Ay + Aako + (Arer + Agicr) ||l + (Arez + Aaid) |1yl (3.11)
In a similar manner, we can find that

Iyl < Aszeo + Aako + (Azer + Agkcr) x| + (Azea + Aaicd) Iyl (3.12)

From (3.11) and (3.12) together with the notations (3.7) and (3.8), we get

llll + llyll < [(A1 + As)eo + (Az + As)ko] + [(A1 + As)er + (Az + Ag)kr][1x]]

+[(A1 + Az)es + (Ay + Adia] Iyl
Thus,

||(x,y) H < §2p + max{£2;, .(22}“ () || <2+ || (%,

Page 10 of 19
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which can alternatively be written as

el = 125

This show that the set P is bounded. Therefore, by Lemma 3.1 (Leray—Schauder alterna-
tive theorem), the operator F has at least one fixed point, which implies that there exist
at least one solution for the system (1.1)—(1.2) on [a, b]. O

Example 3.3 Consider the coupled system of fractional differential equations given by

c1~10/3 9sin(t) , 14x(@O)y(®)| , 2siny(5)|tan~! x(z)

D x(t) = st LoD varZ (3.13)
55i 2 ; '

“DI*Fiy(e) = 15«/9+t * &;(I?Z(i(zt))) * 12y1(i)2t2 +sing, tel0,1],

with the boundary conditions

x'(0) =0, x(1) =0, x'(1) =0,
x(0) = [ y(s) dA(s) + YL, iy (&),

(3.14)
¥'(0)=0, y(1) =0, y'(1) =0,
(0) = [ x(s) dA(s) + Y1y Bis(y),
where a = 0,b = 1,a = ,3 = 4,o:l = 51,012 =1l,a3 = %,oa; =28 = %1,,82 =0,8; =
sin(¢ X sin an~lx
3 A= 6= b= 18 = 3.5 = 300, 5(0) = S+ RGP0l and

_ 5sin(x(t)) 2y(2)
g(t,x(2),y(2)) = 15m+ 822+2) | Vo

+ sint.

Let us take A(s) = 26+1 +1 . Using the given data, we have A; ~ 15.8000,A, ~ 7.12188,
As >~ 541674,A4 ~ 14.1667,A5 ~ 6.98090,A¢ =~ 5.40259, 1 ~ 2.63395,y, ~ —4.33906,
ys =~ 201460,y ~ -3.59290,v; ~ -2.64041,v, =~ -0.260460,v3 =~ —-0.520737,
vy = 0.084305,v5 ~ —0.049442,vs ~ 0.411084,w; ~ —0.501226,w; =~ 0.078035,w; =~
—0.199215,w5 ~ -2.09815,w5 ~ 0.339683,8, ~ -7.28082,8, ~ —0.520920,
83 ~ -1.041470,8, =~ 0.168611,8; ~ —-0.098885,8, =~ 1.82217,A; ~ -1.00245,
Ay ~ 0.156071,A3 ~ -0.398430,As =~ -6.19630,A5 ~ 1.67937,47 ~ 10.9212,
wy =~ 0.781380,u5 =~ 1.56220,u4 =~ —0.252916,u5 =~ 0.148328,u =~ -2.23326,
o1 = 1.50368, py ~ —0.234106, p3 =~ 0.597645, ps ~ 9.29445, ps =~ —2.01906, ¢; ~ 2.64041,
B ~ 0.260460,¢5 ~ 0.520737,¢5 =~ 0.084305,¢5 ~ 0.049442,¢¢ ~ 0.411084,
Uh ~ 0.501226,%, =~ 0.078035,15 =~ 0.199215,9, =~ 20981595 =~ 0.339683,
Ay ~0.681978, A, = 0.064064, A3 ~ 0.108960, A4 =~ 0.318420.

Clearly,

2

14 1
(60, 50)| <3+ el + S 9

2 5
g (& %(2), y(2)) <5t e+ 1||y||,

with g9 = 3,61 = %,82 = %,Ko = %,Kl = %, and ky = 1—21 Using (3.8), we find that §2; ~

0.301053, §£2; >~ 0.465012 and £2 = max{£2;, §2;} >~ 0.465012 < 1. Therefore, by Theorem
3.2, the problem (3.13)—(3.14) has at least one solution on [0, 1].

Page 11 of 19
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Our next result is based on the Krasnoselskii fixed point theorem.

Lemma 3.4 (Krasnoselskii) Let X be a closed, bounded, convex and nonempty subset of a
Banach space Y. Let H1, Ha be operators mapping X to Y such that

(@) Hiz1 + Hozo € X where z1,z5 € X;

(b) H;1 is compact and continuous;

(c) Ha is a contraction mapping.
Then there exists z € X such that z = Hiz1 + Hazo.

Theorem 3.5 Assume that f,g : [a,b] x R x R — R are continuous functions satisfying
the condition (O1). Furthermore, we assume that there exist two positive constants By, By
such that Nt € a,b] and x,y € R,

[f(t,x,y)| <B; and |g(t,x,y)| <B,. (3.15)

Then system (1.1)—(1.2) has at least one solution on [a, ), if

(QiL1 + AsLy) + (AsLy + Q2Ly) < 1, (3.16)
B
where Q) = Ay — I"b(ati)l) and Qy = g’( ;21)'

Proof Define a closed ball S, = {(x,5) € A x A ||(x,9)|l < n} which is bounded and convex
subset of the Banach space A x A and select

n= max{A1B; + AyBy, A3By + AyB>}. (317)

In order to verify the hypotheses of Lemma 3.4, we decompose the operator F into four
operators J,1, F12, F2,1 and Fy5 on S, as follows:

_ -1
fn(x,y)(t)-/ ¢ ) 5409509 ds

b a-1
Fualw)0) = -0 / (F(S’) 55146 ds
(b )ot -2 ( )01 1
t)f (5_1  x(5), ())ds+¢2 |:/<f5 u
n-2 & L a-
X f (13020, ())du>dA(S)+;ﬂi | %f(s,x(s),y(s))ds}

—6s(0) / o ﬂ) 2(5,%(5),5()) ds

b— p-2
— ¢a(t) (F(ﬂiszl)g(s’ x(s),y(s)) ds

b s _ B-1
+ ¢s5(2) [ / ( / %g(u,x(u),y(u)) du) dA(s)

& (5 - 5)f1
Ya / (529, 09) ds}
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and
tp  ap-1
Fa1(x,9)(t) = / 4 (S/)g) g(s,%(s),5(s)) ds,
-1
Faalo)t) = - mm/' F()f@ﬂnﬂmm
O CI7 o ae)dssaso| [ [0
0 [ eoooassaso| [ ([ 4755

xf(u x(u) (u)) du) dA(s) + yf:ﬂ /‘Ei (& —S)a—1f(s © (S)) i
T P Ty T

b b— B-1
— () / ﬁg(s,x(s), y(s)) ds

¢5()/ F(ﬂ 1) 2(s,%(s),5(5)) ds

b _ ﬂ—l
+3(t) |:/ < 6 Fl(ltl;) g(w,x(w), y(u)) du) dA(s)

El i~ ) -1
+ Z ép(;) g(s,%(s), () d :|

Notice that F1(x, )(£) = F1,1(x, y)(8) + F12(x, )(£) and Fa (x, y)(£) = Fa,1 (%, )(£) + Fa,2(x, y)(2)
on S,. For verifying condition (a) of Lemma 3.4 we use (3.17) to show that FS, C S,.
Setting x = (x1,%2),y = (y1,¥2),% = (¥1,%2) and ¥ = (1,%2) € S,, and using condition (3.15),

we obtain

||]:1,1(x,)’) + F12(%,9) ||

t(l’— )a—l b (b— )a—l
< sup {/ ﬁBldsﬂq)l(t)’/a %‘X)Blds

tela,b]
a—2 b s _ -1
|¢6(t |/ -5) Bl ds + ‘(Ibz t)||:/ (/ (s Fl(lo)l) B; du) dA(s)
i ! b—s)P- 1
me@S)&4 mm/(”
b _ —! s _ B-1
+ |¢4(t)|/ (1_,(’37511)32 ds + |¢>5(t)| |:/ ( (s FZ;) B, du) dA(s)

b (%-L _S)ﬂ !
+Z”/ ntzﬂ

=A1By + AyBy <.

Similarly, we can find that

| F21(x,9) + Fan(@3)|| < AsBy + AsBy <.
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Clearly the above two inequalities lead to the fact that Fi(x,y) + F2(%,7) € S,,.
Now we prove that the operator (Fi2, F22) is a contraction satisfying condition (c) of

Lemma 3.4. For (x1,91), (x2,92) € S, we have

[ F12(1,01) = Fraa, 30|

= sup | Fi0e1,51)(8) = F12(x2,72)(2)|

tela,b)

tela,b)

< sup {|¢1 “’ 1 (5,21(5),91(5)) — £ (5, %2(5),92(5)) | s

o— 2
+ |t |/ F(aS) D (5,21(8),91(8)) = f (5,%2(5), y2(5)) | ds

_ a1
+|¢2(t)||: L 0 9000) - a0, ) ) s

n-2 E (g _ a1
+ Z |,3i|f (&F(fj) If (s, %1(5), y1(5)) —f(S,xz(S),yz(S))’dSi|

|¢3(t)|/ F(S;)i lg(s,21(5),71(5)) — g (8, %2(5), y2(5)) | ds

-2
+ |¢a(t) ‘/ ﬁS) D |g(s,%1(5), 71(5)) — g(5,%2(5), y2(5)) | ds

_ y\B-1
+|¢5(t)|[ f ( f & FZ;) |g(u,x1(u),y1(u))—g(u,xz(u),yz<u>)|du)dA(s)

2 & (£, _ o\B-1
+;Ia;|/a (EZF(i;) lg(s,1(5), y1(5)) — g (s, %2(5), y2(s |d{|}

~ b-a)® ~b-a)*1 ~ ([’ (s-a)r
S[(‘f’lr(au)“pe I'(@) +¢2</E PR

n-2

Sl a)®
S

b n—
+$5<f ;S(ﬂ”) le (g‘ a) )) 2:|(||x1—x2||+||y1—y2||)

= (QuLy + AzLy) ([l — %21 + [ly1 — 211) (3.18)

~ (b- a)ﬂ (b—a)f
T+ T

and

[ F22(1,01) = Fop(®2,92)|| < (AsLy + QaLa)(Ilx1 — %2l + lly1 = p2ll)- (3.19)
It follows from (3.18) and (3.19) that

|(Fras Fo2) e, 91) = (Frz, Fan)(%2,32) |

< [(QiL1 + AsLy) + (AsLy + QoLy) | (Il%1 — %2l + lly1 — 3211)s

Page 14 of 19
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then by using (3.16) the operator (F7 3, F»,) is a contraction. Therefore, the condition (c)
of Lemma 3.4 is satisfied.

Next we will show that the operator (F7,1, F,,1) satisfies the condition (b) of Lemma 3.4.
By applying the continuity of the functions f, g on [4, b] x R x R, we can conclude that the

operator (Fy,1, Fo,1) is continuous. For each (x,7) € S,,, we can have

t _ -1
/ &f (s,x(s), y(s)) ds

||]:11 x,y)” < sup |f11 x,y)(t)| < sup

telab] I (a)
(b—a)aBl )
=T+ M
and
L(t—s)p1
[F21 0| < JSup Ile(x,y)(t)|<t:;r;] / Tﬁ)g(s,x(s),y(s))ds
(b a)’B, _,
T+
which yield

||(.7:1,1,]-'2,1)(x,y) || =r+rnr.
Thus the set (Fi,1,52,1)S, is uniformly bounded. In the next step, we will show that the

set (F1,1, F2,1)S, is equicontinuous. For ¢y, € [a, b] with ¢ < ¢, and for any (x,y) € S, we

obtain

|J’1,1(x,y)(tz) —~7:1,1(x,)/)(t1)| =

4 el —g)e-1
/a [(£y —s) F(a()tl s) ]f(s,x(s),y(s))ds

t _ a1
+ /n %f(s,x(s),y(s))ds

B
< F(Til)[z(tz —t)* + (2~ )" ~ (b - a)*]].
Analogously, we can get
|]:2,1(x,y)(f2) —fz,l(x,y)(t1)| =< 1"(,3 ) [Z(fz 1)’ + |(t2 -a)f - (t —ﬂ)ﬂ|].

Therefore, |(F1,1, Fo,1)(%, ) (t2) — (F1,1, F21)(*, ¥)(£1)| tends to zero as t; — ¢, independent
of (x,9) € S,. Hence, the set (F1,1, F2,1)S, is equicontinuous. Thus it follows by the Arzeld—
Ascoli theorem that the operator (Fi,1, F3,1) is compact on S,,. By the conclusion of Lemma
3.4, we deduce that system (1.1)—(1.2) has at least one solution on [a, b]. O

Example 3.6 Consider the same problem in Example 3.3 with the coupled boundary con-
ditions (3.14) and

2|x(2)| 2cosy(t) t+2

30+ w@) T vors T2z S0t

f(&x0),5()) =
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and

sinx(t) . y(t) + 36

2(t,x(),y(t)) = Jiin TR

€[0,1].

Clearly, |f(¢,1,y1) — f(t; %2, 32)| < 311 — %2 + 2|y1 = y2, |g(t, 61, 1) — g(t,%2,¥2)| < 7511 —
Xo| + % |y1 — 2| and with the given data, we find that Q; >~ 0.573992, Q, ~ 0.258129, A; =~
0.681978, A, >~ 0.064064, A3 ~ 0.108960, A4 ~ 0.318420. Note that and (Q; + A3)L; +
(Qy + Ay)Ly ~0.482151 < 1. Thus all the conditions of Theorem 3.5 are satisfied and con-
sequently, its conclusion applies to the problem (3.13)—(3.14).

4 Uniqueness of solutions
This section is concerned with the uniqueness of solutions for the problem at hand and
relies on the Banach contraction mapping principle.

Theorem 4.1 Assume that the condition (O1) holds. Then system (1.1)—(1.2) has a unique
solution on [a, b] if

A+Ac<l, (4.1)

where A and A are given by (3.6).

Proof Letussett > 1{4;2’ where A, A, M and M are given by (3.6), and show that FU, C

U, where the operator F is given by (3.1) and

u. = {(x,y)eAxA; ”(x,y)” 5-,;}.

In view of the assumption (O;) together with (3.5), for (x,y) € U;,t € [a, b], we have

(620, 500) | < 720,50

< Ly (llxll + 11
g(t,%(8), y(2)
< Lo(llxll + lI

—f(£,0,0)| + |[f(£,0,0)|

+N; <Lit+Njy,

lg(6x(8),y()| < - 2(£,0,0)| + |g(2,0,0)|

NN NG

+ Ny <Lyt + Ns.
In view of (3.6), we obtain

| F1(x,0)()] < Ar(L1T + Ny) + Ax(LoT +Na)
= (A1L1 + A2L2)‘L' + (A1N1 + A2N2) = AT +M,
IJ:z(x,y)(t)I < A3(LyT + Ny) + Ag(LaT + No)

= (A3L1 + A4L2)‘L' + (A3N1 + A4N2) = ZT + M,

which imply that

|Fip|| <At +M, || Fay)| <At +M. (4.2)

Page 16 of 19
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Thus, it follows from (4.2) that

”f(x,y)” <(AT+M)+(At+M)<(A+AN)t+M+M) <.

Consequently, F U, C U,. Next, we show that the operator F is a contraction. Using the
conditions (O), (3.6) and for any (x1,y1), (x2,¥2) € A X A, t € [a, b], we get

”-7:1(?61,)/1) - ]:1(%2,)’2)”

= sup |Fy(x1,1)(8) — Fi(x2,92)(8)|
tela,b)

t _ -1

b _ a1
+|p1(0)] /a %V(s,xl(S),yl(S)) —f (5, %2(5),72(5)) | ds

b b— -2
+ |¢6(t)| /a (F(asi ) If (5,%1(5), y1(5)) = f (5,%2(5), y2(5)) | s

b S (o 4)2-1
+|¢2(t)|[ / ( / (s FE‘O){) I (2061 (0),31.0) —f(u,xz(u>,yz(u))|du>dA(s)

n-2
+ Z |B;

-1
If (5, 21(5), 31(5)) = f (5,2(5), 2(5)) | dS}

1
+ |ps(0) |/ S) lg(s,1(5), y1(5)) — g(5,%2(5), y2(s)) | ds

+ |6a(0) / ﬁ T 6 919) ~ g5, 22090 209

+|¢5(t)|[ / ( / (S;E‘ﬁ)_ |g(u,x1(u>,y1(u))—g(u,x2<u),y2(u>)|du)dA(s)

12 & (£, _ o\B-1
+ ; |o;] ‘/u (Elr(;)) lg(s,21(5),71(5)) — g(s,%2(5), 72(5)) | ds:| }

< ALy (llx1 = %2l + ly1 = p21l) + AsLa(llxn = %]l + lly1 = 2211)
= (A1Ly + Az L) (Jlxy — %2l + Iy — 2211)

= A(llx1 = %2l + lly1 = p211).

Similarly

|21, 31) = Falwa o) || = sup |]:2(x1;yl)(t) Folx2,72)(2)|

tela,b
< (A3Ly + AyLy)([l%1 = %211 + lly1 = y2ll)

= A(ller = %2l + lly1 = y211).
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Hence we obtain

| FGe1,91) = Fa32) || < (A + A)(Ilx1 = 22l + lly1 = p21)s

which implies that F is a contraction by the assumption (4.1). Hence, we deduce by the
conclusion of contraction mapping principle that there exists a unique solution for the
problem (1.1)—(1.2) on [a, b]. |

Example 4.2 Consider the following system:

¢plOBx(t) = 2@ (tan~' x(¢) + siny(£)) + ﬁ, @3)
cy15/4 _ 2416 et ’
D¥"*y(t) = T (x(2) + cosy(t)) + PN/ te[0,1],

with the coupled boundary conditions (3.14).

Clearly, |f(£,%1,y1) —f (£,%2,72)| < L1(|l%1 = %2l + [ly1 — y2||) with Ly = 2 and |g(£, %1, 1) —
g(t,%2,92)] < La(ller — x2|| + [|y1 — y2|) with Ly = é—g Using the given data in Example (3.3)
and (4.1), we find that A + A ~ 0.422900 < 1. Obviously, the hypothesis of Theorem 4.1
is satisfied. Hence, by the conclusion of Theorem 4.1 there is a unique solution for the
problem (3.13) on [0, 1].
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