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Abstract

In this paper, to solve the time-varying Sylvester tensor equations (TVSTEs) with noise,
we will design three noise-tolerant continuous-time Zhang neural networks
(NTCTZNNs), termed NTCTZNNT, NTCTZNN2, NTCTZNN3, respectively. The most
important characteristic of these neural networks is that they make full use of the
time-derivative information of the TVSTEs' coefficients. Theoretical analyses show that
no matter how large the unknown noise is, the residual error generated by
NTCTZNN2 converges globally to zero. Meanwhile, as long as the design parameter is
large enough, the residual errors generated by NTCTZNN1T and NTCTZNN3 can be
arbitrarily small. For comparison, the gradient-based neural network (GNN) is also
presented and analyzed to solve TVSTEs. Numerical examples and results
demonstrate the efficacy and superiority of the proposed neural networks.

Keywords: Time-varying Sylvester tensor equations; Noise-tolerant continuous-time
Zhang neural network; Gradient-based neural network; Global convergence

1 Introduction

Asis well known, tensors are higher order generalizations of matrices, which are common
tools to construct the mathematical models of systems in high dimension. For example,
a black and white image (including width and height) can be stored as a matrix, while an
RGB image (including width, height and brightness) is often stored as a three-order tensor,
and a color video image (including width, height, brightness and time) must be stored
as a four-order tensor. An mth-order real tensor A = (a;,4,..i,,) (@iyiy..iry € R, 1 < §; < I,
je€ (m)={1,2,...,m}) is a multidimensional array with [ 15 - - - I,, entries. Clearly, an order
one tensor is a vector, and an order two tensor is a matrix. Let R/1**/n be the set of order
n, dimension I; x - -- x I, tensors over R. For any two tensors A € RI1xxInxKix-xKn qpnd
B € REv<->xKnxJix>Jm the Einstein product A *, B is defined by [1]

(Asn Bligcigjsoojm = D Bigeoiakr s Dk s o (1)
ky-kn

which indicates that A %, B € RAax>xInx/ixxJm Tt is obvious that, when m = n = 1, the

Einstein product (1) reduces to a matrix product.
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In practice, various kinds of tensor equations arise from physics, mechanics, Markov
process and partial differential equations. In this paper, we are interested in the following
time-varying Sylvester tensor equations (TVSTEs) via the Einstein product:

A@) *, X + X %, B(t)=C(t), t>0, (2)

where .A(t) c Rllx---xlnxllxmxln, B(t) c Rklx---x](mx](lxmx](m’ C(t) c Rllx---xlnxl(lx»»»xl(m are
input tensors, and X e RAX*ixKix-xKm jg an unknown tensor to be determined.
TVSTESs can be used to discrete a linear partial differential equation by the finite element
and finite difference. For example, for noncentrosymmetric materials in physics, the linear
piezoelectric equation is expressed as [2]:

A*zsz;

where A € R3*3*3 is a piezoelectric tensor, and X € R3*3 is a stress tensor, and p € R3 is
an electric change density displacement. The two-dimensional (2D) Poisson problem is

—VI=f, in2={wy)]|0<xy<1},
v=0, on 052,

3)

where f is a given function, and the Laplace operator V?v is defined as

v2 %v 9%
V= — + —.
axz  9y?

By the standard central difference approximations, Poisson’s equation (3) in two dimen-
sions can be depicted as the following four-order tensor representation [3]:

A*QXZC,

where A € R X € R and C € R™*" are the discretized functions v and f on the
unit square mesh. Similarly, the three-dimensional (3D) discretized Poisson problem can
be depicted as [3]:

A*3X=C,

where A € Rrxnxnxnxnxn ' and C e Rrxnxn,
TVSTEs include the following special cases:
(1). If m = n =1, TVSTEs reduce to the time-varying Sylvester matrix equations
(TVSMEs) [4]:

AX + XB(t) = C(t), t>0, )
where A(t), B(t), C(t), and X are matrices with compatible dimension; and if A(¢),
B(¢), and C(t) are further time invariant, TVSMEs reduce to the following classic

Sylvester matrix equations (SMEs):

AX +XB=C, (5)

Page 2 of 19



Min and Jing Advances in Difference Equations (2019) 2019:465 Page 3 of 19

which again includes the well-known Lyapunov matrix equations and the Stein
matrix equations as its special cases [5-7]. The SMEs serves as a basic model
arising from control theory, system theory, stability analysis etc.

(2). If A(2), B(t) and C(¢) are time invariant, TVSTEs reduce to the Sylvester tensor
equations (STEs) [8]:

Ax, X + X %, B=C, (6)

which comes from the finite difference, finite element or spectral methods [9, 10]
and plays an important role in discretization of the linear partial differential
equations in high dimension.

A very basic and important problem in the study of the above equations concerns their
solutions. In the past several decades, many researchers have carried out their work to
find analytical and numerical solutions of SMEs, TVSMEs and STEs. For example, Ding
and Chen [11] presented a gradient-based iterative algorithm for SMEs. Zhang et al. [4]
introduced a recurrent neural network with implicit dynamics for the approximate solu-
tion of TVSMEs. Wang and Xu [12] developed some iterative algorithms for solving some
tensor equations, which were generalized by Huang and Ma [13] to solve STEs. When the
above equations are inconsistent, Lvand Zhang [14] designed an iterative algorithm to find
the least squares solutions of SMEs. Sun and Wang [7] extended the conjugate gradient
method to get the least squares solution with the least Frobenius norm of the generalized
periodic SMEs. Specifically, during the past ten years, Hajarian et al. have conducted in-
tensive research on the iterative method for solving various matrix equations, such as the
generalized conjugate direction algorithm for solving the general coupled matrix equa-
tions over symmetric matrices [15], the finite algorithm for solving the generalized non-
homogeneous Yakubovich-transpose matrix equation [16], and the symmetric solutions
of general Sylvester matrix equations via the Lanczos version of the biconjugate residual
algorithm [17]. A tensor form of the conjugate gradient method was given to solve incon-
sistent tensor equations [12, 13]. Furthermore, by virtue of the Moore—Penrose inverse
and the {1}-inverse of the tensor, Sun et al. [8] obtained analytic solutions of some special
linear tensor equations. Other iterative methods for matrix/tensor equations and their
applications can be found in [18-27] and the references therein.

To the best of the authors’ knowledge, no research has been devoted to the solutions
of the TVSTEs. In this paper, we are going to extend a special kind of recurrent neural
networks, i.e., the continuous-time Zhang neural network (CTZNN), to solve TVSTEs.
ZNN was proposed by Yunong Zhang in March 2001 [4], which is quite suitable to
solve various time-varying problems, such as time-varying nonlinear optimization [28—
30], time-varying convex quadratic programming [31], time-varying matrix pseudoinver-
sion [32] and time-varying absolute value equations [33]. Motivated by [4, 12, 13], we
design three noise-tolerant CTZNNs (NTCTZNN1-3) for solving TVSTEs (2). Conver-
gence analysis shows that: (1) the residual error || A(¢) *, X + X *,, B(t) — C(¢)|| generated
by NTCTZNN1 and NTCTZNN3 can be arbitrarily small if their design parameters are
large enough; (2) the residual error of NTCTZNN2 converges to zero globally no mat-
ter how large the unknown noise is, where the Frobenius norm | - || of A is defined as
AN = Qi iy 1Bt i i [2)/2 for a tensor A € RV XInxJ1xxJn

The remainder of this paper is organized as follows. In Sect. 2, we introduce some neces-
sary notations that are essential to derive main results of this paper. In Sect. 3, we propose
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three NTCTZNNs and GNN methods to solve TVSTEs, and establish their convergence.
In Sect. 4, to verify the effectiveness of NTCTZNN to solve TVSTEs, we present two nu-

merical examples. Finally, some brief conclusions are drawn in Sect. 5.

2 Preliminaries
In this section, we introduce some useful notations and recall some known results.

Definition 2.1 ([12, 34])
(1) Let A= (ail"'injl"'/m) € RIleXI”XhXWX]m, B= (bil“‘j
@iy vijrovom = Djijpmin iry» then the tensor B is called the transpose of A4, denoted by
AT
(2) A tensor D = (djy...i,j,..j,) € RI>In/1xxJn i 3 diagonal tensor if dj, .1, ., = 0 in

the case that the indices #; - - - i, are different from j; - - - j,,. Furthermore, in this case

) c lex»»»x]mxllx---xln, lf

mi1-in

if all the diagonal entries d;,...;,;;...;, = 1, then D is called a unit tensor, denoted by 7.
Specially, if all the entries of a tensor are zero, we say this tensor a zero tensor,
denoted by O.

(3) The trace of a tensor A € RIV<xInxhix-xIn js defined as

tr(A) = Zil“i”il“i” Ay cveigiyooeig -
(4) Let A, B € RivexInxlix—xIn the inner product of A, B is defined by

(A, B) =tr(BT %, A). )

In the following, weset [ =115 ---1,, ] = i)+ - Ju, K = K1 Ky - - - K}, Motivated by Defi-

nition 2.3 in [12], we give the following definition.

Definition 2.2 Define the transformation @y : RV XIxKixxKm _y RIXK  with

@k (A) = A defined component-wise as
(A)il--»inkl---km - (A)St) (8)

where A € RI-xnixKixxKm A ¢ RIXK ¢ = 4 ;:i((ip _ 1)1‘[Z:p+11q) and t = k,, +
Z;”:_ll((kp - DT}, Ky). Note we use the convention 22:1 a, = 0.

Example 2.1 Let A = (ajiyk k) € R?**2*2%2 be a tensor such that

[1 2 5 6 9 10
A, 1,1,1) = , A, 1,1,2) = , A, 1,2,1) = ,
3 4 7 8 11 12
(13 14] 17 18
A(:) 5 1127 2) = ) A(:1 ) 2; 17 1) = )
15 16 19 20
(21 22] 25 26
A, 2,1,2) = , A(,:2,2,1) = ,
23 24 27 28
(29 30]
AG,52,2,2) =
31 32

Page 4 of 19
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By Definition 2.2, we have

9 13 17 21 25 29
10 14 18 22 26 30
11 15 19 23 27 31
12 16 20 24 28 32

Bw N -
[o >IN e V) |

Remark 2.1 Given the positive integers I3, ...,1,, K3, ..., K,,, we can define an inverse func-
tion of @y : R xInxKixxKim _y RIXK defined in Definition 2.2 as follows:

-1, pIxK Iy XX Iy X K7 X -+ X Ky
DR —- R ,

with (A)ss = (A)iy..ink -k, » Wwhere the jth column of the matrix A consists the jth element
in the set {A(G,...,5 k..., k) | Yki,..., k). Here we sort all the elements in this set in
lexicographic order, that is, from (1,...,1) to (K, ..., Ky,).

It is well known that using the Kronecker product and the vectorization operator, one
can transform a linear matrix equations into a linear equations. Similarly, the following
proposition indicates that the transformation @k can transform a linear tensor equations

into a linear matrix equations.
Proposition 2.1 ([12]) Let @y be defined as Definition 2.2. Then

Ax, X=C < &y(A)P(X)=2K(C), &)
where the tensors A € RI<-xInxJix=Ju x @ R xJnxKix--xKm @ e RIx-xlnxKix-+xKn

The following lemma is a direct generalization of the derivative principle of a matrix.

Lemma 2.1 Let A(¢) € RIxxInx/ixxJu Y (t) ¢ RI*InxKixxKnm We hgve
(A®) %2 X(8)), = (AD)), %0 X(&) + A) 5, (X (2)).. (10)

Proof Assume that @y (A(2)) = A(f), @ (X (¢)) = X(¢). Then, by Definition 2.2, one has
A(t) e RY, X(t) € R’X. By the derivative principle of a matrix, we have

!

((A(t) *n X(t))t)il---in/q-"km
= ((A® % XO),, o)

/

Z Aiy iy o (t)xil"'inkl"'km (t))

J1+jn

J
= D Aa®Xou t))
v=1

J

Z (Aa(OX (1)),

V=

t

!/

t
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(A (®) X0 (8) + A (8) (X0 (2)))

: i

(A0X®),),,
(A®),X(2) +A(t)(X(t)) )ew

t
) X(
P [(A0) X0 + AOXO),D), oty
@ [(25(AM)), P (X (1) + Dy (AD) (2 (X (1))),])
D [Drc((A®), 54 X(8)) + Prc(AB(X D)) ik
(A®), %0 X () + A(E) %4 (X(2))})

i1+ inky -k

(
(
(
(
(
= (

i inky ki

where s, v and w are defined as in Definition 2.1, and the second-to-last equality comes
from Proposition 2.1. This completes the proof. g

3 NTCTZNNs and GNN for TVSTEs
In this section, we will present three noise-tolerant continuous-time Zhang neural net-
works (NTCTZNNSs) and a gradient-based neural network (GNN) for TVSTEs, and we
analyze their convergence property.

Firstly, following Zhang et al.’s design method [4], we define a tensor-valued indefinite
error-function as follows:

E(t) = At) %, X + X %, B(t) — C(t) € R InxKixoxkm (11)

where every entry denoted by e;,...;, 4.k, (£) € R may be negative or unbounded.
Then, let us recall the Zhang neural network (ZNN) design formula (also termed Zhang
et al’s design formula)

E(t) = —yF(E®),

where y > 0 is a design parameter, F(-) is a tensor activation function defined on every
entry of the error-function £(¢), and Et) is a component-wise derivative of the error-
function £(¢). By (10) in Lemma 2.1, substituting the error-function £(¢) into the above
Zhang neural network (ZNN) design formula, we get a continuous-time ZNN (CTZNN):

A(t) %, X + X x, B(£)

=~y F(A®) X + X s Bt) = C(£)) = A(t) %0 X = X 5, B@) + C(2), (12)
where A(?), B@),C (£) denote the time-derivatives of tensors A(¢), B(t), C(t), respectively.

Remark 3.1 Let f(-) be the entry of the tensor-valued function F(-). The function f(-) can
be set as any odd and strictly monotone increasing function. There are six basic types
of activation functions in the literature, i.e., the linear activation function, the power ac-
tivation function, the bipolar sigmoid activation function, the power-sigmoid activation
function, the sign-bi-power activation function and the power-sum activation function
[35]. Note that different activation functions result in different numerical performance of
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CTZNN (12). Generally speaking, the performance of CTZNN with power-sigmoid acti-
vation function is better than that of CTZNN with linear activation function, and CTZNN
with sign-bi-power activation function often converges in a limited time.

CTZNN (12) is suitable to solve TVSTEs without noise. However, noise is ubiquitous,
which should not be ignored in real life. In the following, we only consider the constant
noise for simplicity, which is denoted by n(£) = n. Setting 7 = (1) € RA > xInxKix>xKn
whose entries all equal to 7. Based on the results about CTZNNs in the literature [36—38],

we are going to propose three noise-tolerant CTZNNs for TVSTEs.
(1) Setting e(£) = £(¢) in the following improved Zhang design formula:

et)=-yet)+n, y>0, (13)
we get the first noise-tolerant CTZNN (NTCTZNNT1) for TVSTEs:

A(R) %, X + X 5, B(£)
=~y (A() %5 X + X 5 B(E) = C(£)) = A(8) % X = X 5 B(2) + C(2) + 7, (14)

whose convergence is given in the following theorem.

Theorem 3.1 NTCTZNN1 (14) converges to the theoretical solution of TVSTEs with the
limit of the residual error being ~/IKn/y .

Proof Obviously, NTCTZNNI (14) can be written as
E@) =-yE@®) +17,
which can be decoupled into the following IK differential equations:
8iipky oy (E) = =V @iy iy ke (&) + 1, Vi, kg p € (1), q € (m),
which has a closed-form solution:
ik (D) = iy iy ko (0) eXP(=y ) + g Vi kpop € (1), € (m).
Furthermore, we can have

. n .
tggeilwinklwkm(t) = ;y le;qup € (”),q € (Vl’l)

So
VIK
Jim [[€@)] = Tn

This completes the proof. d
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(2) Setting e(t) = £(¢) in the following improved Zhang design formula [36]:

é(t) = —yre(t) — y2 /Ote(s) ds+1, y1>0,72>0, (15)
we get the second noise-tolerant CTZNN (NTCTZNN?2) for TVSTEs:
A(t) %5 X + X 5, B(E)
=—y (A(t) %, X + X *,, B(t) - C(t)) ) /:(A(s) *, X + X %, B(s) — C(s)) ds
— A(t) 0 X = X 5, B(£) + C(O) + 1. (16)

Theorem 3.2 No matter how large the unknown noise n is, NTCTZNN2 (16) converges to
the theoretical solution of TVSTESs globally.

Proof Obviously, NTCTZNN2 (16) can be written as

E(6) = -mEWD - f £(s)ds + 7,
0

which can be decoupled into /K differential equations:

t
é,‘lml‘nklmkm (t) = =V1€iqinky ki (t)) — )/2/ (eilml‘nklmkm (S)) ds + n. (17)
0

Taking Laplace transformation on both sides of (17), one has

V2 n
&4y iyl (8) = €igveipiey -l (0) = = V1Eip iy (S) — :851.4.,»"/(1..4/(,”(5) + 5 (18)

where &;,...;,4 -k, (£) is the image function of e;, ...;,k, ...k, (£). From (18), we have

€y ik (0) + 17
Eip ik ko (S) = 2 4 S+ .

Two poles of its transfer function are

Y )
Sl,2 = f:

which are located on the left half-plane for any y;,y, > 0. Thus the system (17) is stable
and the final value theorem holds. That is,

S%€iyiyky -k (0) + 57

lim e;;...i k; -k, (£) = imse;;..; k. k,, (§) = lim 0.
P i1-inky km( ) =0 i1-inky km( ) 50 S2 TS+ )
This completes the proof. 0

Remark 3.2 If y, = 0, then NTCTZNN2 (16) reduces NTCTZNN1 (14). Though
NTCTZNN2 (16) is more complicate than NTCTZNN1 (14) when y, > 0, Theorems 3.1
and 3.2 indicate that NTCTZNN2 (16) is more stable than NTCTZNNT1 (14) in this case.
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Remark 3.3 In the practical computation, to avoid the integral manipulation, we would
better transform the integro-differential equations NTCTZNNT1 (14) into the following
differential equations:

A@) %0 X + X 5, B(8) = =1 (A() %5 X + X 5, B(E) = C(2) = 12 V(D)
— A(t) %, X = X %,, B(t) + C(2) + 7, (19)
V() = A(t) 5, X + X 5, B(£) = C(2).

(3) Setting e(£) = £(¢) in the following improved Zhang design formula:

t
e(t) = —ylF(e(t)) - y2G<e(t) + 1 / F(e(s)) ds) +17, Y1>0,9%>0, (20)
0
where F(-), G(-) are two activation-function arrays, we get the third noise-tolerant CTZNN
(NTCTZNNS3) for TVSTEs:
A(t) 50 X + X 5, B(2)

= —ylF(A(t) *, X + X %, B(t) - C(t))
- ng(A(t) %, X + X %, B(t) - C(¢t)
+y1 /tF(A(s) %, X + X %, B(s) —C(s)) ds)
0
— A(t) s, X + X 50, B(£) + C(£) + 7. (21)

Obviously, NTCTZNN3 (21) can be written as

t
E@) = —ylF(E(t)) - yZG<5(t) + 9 / F(E(s)) ds) +1,
0
which can be decoupled into IK differential equations:
éil"'inkl"'km (¥) = —Vlf(eil---z’nkl---km (t))

- V2g<ei1mi,,k1mkm(t) + )’1/0 S €yt (9)) dS) +1). (22)

Define an intermediate variable y;, ...k, ..k, (£) as follows:

t
YViy-inky--kom (t) = €1 -w-ipky -k )+ / f(eil"'inkr--km (S)) ds. (23)
0

To establish the convergence of NTCTZNN3 (21), we make the following assumption
about the constant noise 7.

Assumption 3.1 The constant noise 7j = (1) € R >l xKixxKu gatisfies
’nyil“‘in]<1“‘km (t)| S oY Yiqwinky -k (t)g(yilminklmkm (t)), t>0,

where a € (0,1), and g(-) is the entry of the activation function G(-).

Page 9 of 19
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Theorem 3.3 Under Assumption 3.1, NTCTZNN3 (21) converges to the theoretical solu-
tion of TVSTEs with the limit of the residual error being ~/IKg™ (n/y).

Proof Taking the time-derivative of (23) on both sides, one has

Viteeit-kon () = €y i ki (8) + V1 (€01l -l (£)).- (24)
Then substituting (24) into (22), we have

Vi iy ko &) = =VoZ Wiy iy o) + 1+ (25)
For the differential equation (25), let us define a Lyapunov function candidate

Vigcikyion (6) = Vo ik i /2 = 0,

whose time-derivative is

Vi eeipky -l ()
= Vi eveihy o E)Tig iy -l (E)
= Y Yircinkr - kon O (Vi il ke (£)) + N3 eyl (£)
< (1= @)Y Yiy iy kon OG Vi i i (£)) -

Since g(-) is an odd and monotone increasing function, we have y;..; -k, () X
EWiy iy ki (£)) > O £OF i ity ke (£) # 0, and ¥i, ity ke ()G Wiy iy -k (£)) = O if and only
if ¥y ipky ko () = 0. This indicates the negative definiteness of V;,..,k,...k,, (£). Then, by
Lyapunov stability theory, equilibrium g=!(n/y») of (25) is globally asymptotically stable.
Then, by the definition of ¥;,...i,k; ...k, (£) in (23), one has

tl_ifgo<ei1---ink1---km(t) + )/1/0 f(eil---inkl---km(s)) ds) :gfl(n/)/z). (26)

Since f(-) is also an odd and monotone increasing function, one has

t
€i1wipky ko (E) + V1 f f(ei1~~~ink1~~~km (s)) ds
0

’el’lminkl.“km (t)‘ <

This and (26), n > 0, 1, y» > 0 imply that
tl_i}l;)‘eil“‘l'nkl“‘km(t” <g ')

So
lim [E@)] < VIKg™ (/).

This completes the proof. g
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Remark 3.4 Obviously, when F(-) and G(-) are identity mappings, NTCTZNN3 (21) re-
duces to NTCTZNN?2 (16).

At the end of this section, we develop a gradient-based neural network (GNN) to solve

TVSTEs for comparison. Define a scalar-valued norm-based energy function:
E(X) = [ A@) 50 X + X 5, B(2) - C(2)|* /2.

Then, based on Theorem 3.1 in [13], the gradient of the energy function & (X)) is

% = AT(t) %, E(t) + (£) %,, BT (¢),

where £(t) = A(t) %, X + X %, B(¢) = C(t). Thus, we get the following GNN:
X = Y (AT(®) %, E@) + E) % BT (£)) + 7, (27)
where y > 0 is a design parameter.

Remark 3.5 The most difference between GNN (27) and NTCTZNN1-3 lies in the former
do not make use of the time-derivative information .A(¢), B(¢) and C(¢) to enhance its
efficiency.

In the following, the following theorem establishes the convergence of GNN (27) for
static Sylvester tensor equations, i.e., A = O, B = O, C = O, whose proof is motivated by
Theorems 1 and 2 in [38].

Theorem 3.4 As for the convergence of GNN (27), we have the following conclusions:
(1) GNN (27) exponentially converges to the theoretical solution of static Sylvester tensor
equations without noise;
(2) the computational error of GNN (27) for static Sylvester tensor equations with noise
is upper bounded. Furthermore, if the design parameter y tends to positive infinite,
the steady-state solution-error diminishes to zero.

Proof Set @(A) = A, @i (X () = X(t), Pxx(B) =B, @ (C) = C, i (€) = E, Py (77) = 6.
Then TVSTEs can be written as

E=AX+XB-C,
ie.,

vec(E) = (IK ®A+B"® 11) vec(X(t)) —vec(C) = (A EBBT) vec(X(t)) —vec(C).
So GNN (27) can be vectorized as

vee(X(t)) =~y (Ik ® AT + B I;)((A ® B") vec(X(2)) - vec(C)) + vec(d)

=—y(AT ®B)((A®B") vec(X(t)) - vec(C)) + vec(9).
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Assume X'* is one solution of TVSTEs, and set @ (X*) = X*. Then
(A @ BT) Vec( *(t)) =vec(C).
From the above equations, one has

vec(X()) = -y (AT @ B)(A @ B")(vec(X(2)) - vec(X™)) + vec(6),

vec(X(2)) - vec(X*) = —y M M(vec(X(2)) — vec(X*)) + vec(9),
where M =A@® B'. Setting y(£) = vec(X(£)) — vec(X™), we have
(t) = —yMTMy(t) + vec(0).

Suppose « is the minimum eigenvalue of M M, which is assumed to be positive definite.
(1) For the static Sylvester tensor equations without noise,

V(y(t),t) < —yay' (Oy(t) = —yav(y(),t).
Thus,

lvee(X(#)) — vec(X*) 1

v(y(®),t) = 5 < v(y(0),0) exp(~aryt),

which implies that the neural state X'(£) converges to the theoretical solution X'* with the
exponential rate oy /2.

(2) For the static Sylvester tensor equations with noise,

(y(0),1) < —ya|y@)] +y7 () vec(®)
<= @) (ey|yie)] - |(vec(®)),]).

(i) f oy ly:i(2)] — |(vec(0));] = 0, Vi, t, then according to the Lyapunov stability theory [39],
the time-varying vector y(t) converges towards to zero as time evolves. Thus X(¢) con-
verges to the theoretical solution X™*(t).

(ii) If ay |yi(£)] — [(vec(9));| <0, 3i, ¢, then the function v(y(t), t) maybe increasing. How-
ever, from the inequality ay |y;(¢)| — |(vec(f));| <0, it is easy to deduce that

< |(Vec(9))i|.

’J’i(t” oy

Overall, one has

VIK||7]
ol ===

This completes the proof. O
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4 Numerical results

In this section, two examples are presented to show the efficiency of the proposed
NTCTZNNI1-3 and GNN for solving TVSTEs. All experiments are performed on a
Thinkpad laptop with Intel Core 2 CPU 2.10 GHZ and RAM 4.00 GM and written in
Matlab R2014a. All first-order ordinary equations encountered are solved by the built-in
function ode45.

Example 4.1 Consider the time-varying Sylvester tensor equations (m=n=2,1; =1, =
](1 = ](2 = 2)

A(t) %, X + X %, B(t) =C(¢t), t€][0,10], (28)

where

A, 1,1) =

0

Al 2 |:2—c0s(2t Oj|
2 —sin(2t) 0i|, B,1,2) = |: :|
0 0 0

B(,:2 |: 0] B(,:2,2) = |:0 0i| )
1+cos(2t) O 01

C=A

(=)

2 + cos(2t) 0:|

0

— sin(2t)
))12) ’
0
y;22
1 +sin(2¢)

B(:;1,1) =

We set the noise = 1 and the initial state tensor Xy = Z.

Firstly, we use the GNN with y = 1000 or y = 1000 to solve problem (28), and the gener-
ated residual errors || £(¢)|| are shown in Fig. 1. The final residual errors generated by the
GNN with y = 1000 and the GNN with y = 1000 are 0.0047 and 0.0024, respectively. Fur-
thermore, the number of iterations of the GNN with y = 1000 and the GNN with y = 1000
are 136,041 and 272,077, respectively.

Secondly, we use NTCTZNNI to solve problem (28). Figure 2 shows the residual error
IE(2)|| generated by NTCTZNNTI, and the final residual errors generated by NTCTZNN1
with y = 500 and NTCTZNN1 with y = 1000 are 0.0080 and 0.0040, respectively. From
Fig. 2 we can see that the performance of NTCTZNNI1 with y = 1000 is better than that
of NTCTZNNI1 with y = 500, which is in accordance with Theorem 3.1. In addition, the
number of iterations of the NTCTZNNI1 with y = 1000 and the NTCTZNN1 with y =
1000 are 6541 and 12,561, respectively, which are only about 4% of those generated by
GNN. Therefore, NTCTZNNI computational cost is reduced greatly though it is a little
less accurate than GNN.

Thirdly, we use NTCTZNN? to solve problem (28). The residual error ||£(£)|| generated
by NTCTZNN2 with y; = y» = 10 is displayed in Fig. 3, and the final residual error is
1.5972 x 107%, In addition, the number of iterations of the NTCTZNN2 with y = 10 is
373, which is much less than that of NTCTZNNI1.

Generally speaking, large design parameter can enhance the efficiency of NTCTZNN.
However, we also observed that NTCTZNN with large design parameter often takes
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Figure 1 The trajectory of the residual error ||E(t)|| synthesized by GNN
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Figure 2 The trajectory of the residual error || E(t)|| synthesized by NTCTZNN1

more CPU time because the larger the design parameter is, the smaller the step-size of
ode45 is. In fact, the CPU times of NTCTZNN?2 with y; = ¢ = 10 and NTCTZNN2
with y; = y» = 100 are 1.4219 and 1.8594, respectively. Comparing Figs. 2 and 3, we
find that: (1) NTCTZNN?2 with y; = y» = 10 is more efficient than NTCTZNN1 with
y = 1000, because the final residual error generated by NTCTZNN2 with y; = y, = 10
is about 1074, while the final residual error generated by NTCTZNN1 with y = 1000 is
about 1073; (2) the final residual error generated by NTCTZNN1 becomes stable quickly,
but the final residual error generated by NTCTZNN2 is shrinking during the tested
time period [0, 10], which is in accordance with Theorem 3.2. Overall, NTCTZNN2 can
get more accurate solution but not increase the computational cost. The neural states
X(#)(1,1,1,1), X(#)(1,2,1,2), X(£)(2,1,2,1), X(¢£)(2,2,2,2) computed by NTCTZNN? are
plotted in Fig. 4, which shows that the neural states converge to the corresponding entries
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Figure 4 The trajectory of some neural states synthesized by NTCTZNN2

of the theoretical solution. (Here the theoretical solution X*(¢) is denoted by *-dotted
blue curves, and the neural-network solutions are denoted by +-dotted red curves.)
Fourthly, we use NTCTZNN3 with y; = y, = 10 to solve problem (28), and the activation

function is set as the sign-bi-power activation function [37]:
L. L. i
flx)=gx) =k 5 sig"(x) + 5 Sig Tx)), k>0,

where 7 € (0,1) and sigﬁ(x) is defined as

lx|, ifx>0,
sigh(x) = {0, ifx=0, =sign(x)x|".
—|x|", ifx<O.
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HE(®I

Figure 5 The trajectory of the residual error || E(t)|| synthesized by NTCTZNN3

We set 77 = 0.5, k = 1. The residual error ||E(t)|| generated by NTCTZNN3 with y; =y, =2
is displayed in Fig. 5, and the final residual error is 9.8868 x 107°. Furthermore, its number
of iterations is 1097. Comparing the accuracy and the number of iterations, we can find
that NTCTZNN?2 is more efficient than NTCTZNNS3.

Overall, taking the two criteria, i.e., accuracy and number of iterations, into considera-

tion, we can rank the proposed four neural-networks as follows:
NTCTZNN2 > NTCTZNN3 > NTCTZNNI1 > GNN,

in which a > b means that a is more efficient than b.

NTCTZNN1-3 and GNN are customized to solve TVSTEs, and they can also be ex-
ploited to solve static Sylvester tensor equations, which can be viewed as a special case of
TVSTEs (ie., A = B = C = 0). For simplicity, we only apply NTCTZNN3 to solve the static

Sylvester tensor equations, which is given in the following example.

Example 4.2 Let us consider a static Sylvester tensor equation with (m=n=2,5 =1, =

1(1 = I(Q = 2)
A, X + X %, B=C, (29)
where

A, 1,1) = |:; _14:| , A, 1,2) = |:_11 1:| ,

A(:,:,2,1)=[3 10:|, A(:,:,2,2)=[6 9:|,
-12 -8 3 10

B(,:,1,1) = |:_22 _51:| , B(,:1,2) = |:_51 _33:| s
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Figure 6 Convergence of NTCTZNNS3 for the solution of problem (29)
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We set the noise = 1 and the initial state tensor Xy = Z. The numerical results gener-
ated by NTCTZNN3 with y; = y, = 10 are plotted in Fig. 6, and the final residual error is
2.1473 x 107,

As shown in Fig. 6, the neural state computed by NTCTZNN3 converges to the the-
oretical solution. In addition, the sequence {||£(¢)||} of the residual errors converges to
zero. These demonstrate the effectiveness of NTCTZNN3 for the static Sylvester tensor
equations. Furthermore, the convergence property of GBB also needs to be investigated.

5 Conclusion
By following Zhang et al’s design method, we have proposed three noise-tolerant
continuous-time Zhang neural networks (NTCTZNNs) and a gradient-based neural net-
work (GNN) to solve the time-varying Sylvester tensor equations with noise, and have
established their various convergence results. These complement some existing results.
Numerical results substantiate the efficacy and superiority of the proposed NTCTZNNs .
It is possible to extend the ideas in this paper for other type tensor equations, such as
time-varying periodic Sylvester tensor equations, or time-varying coupled Sylvester ten-
sor equations. Furthermore, we will apply the designed neural networks to realize the
path-tracking control of different robot manipulators in the future.
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