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Abstract
In this paper, we present analytical-approximate solution to the time-fractional
nonlinear coupled Jaulent–Miodek system of equations which comes with an
energy-dependent Schrödinger potential by means of a residual power series
method (RSPM) and a q-homotopy analysis method (q-HAM). These methods
produce convergent series solutions with easily computable components. Using a
specific example, a comparison analysis is done between these methods and the
exact solution. The numerical results show that present methods are competitive,
powerful, reliable, and easy to implement for strongly nonlinear fractional differential
equations.

Keywords: Partial fractional differential equations; Fractional derivatives; Residual
power series method

1 Introduction and preliminaries
The term fractional calculus which involves fractional derivatives and fractional integral
is nothing new. As stated in the letter L’Hospital wrote to Leibniz, in 1695, he asked him
“what is the meaning of the expression dny/dxn when n = 1/2?” Leibniz replied to the
L’Hospital letter telling him that “d1/2x will be equal to x

√
dx : x.” In reality, this is an appar-

ent paradox, from this evident paradox, one day useful consequences will be drawn [1–4].
Since then, mathematicians have investigated this concept, the like of Riemann–Liouville,
Caputo–Hadamard, Erdélyi–Kober, Grünwald–Letnikov, Fourier, Marchaud, Riesz, and
Weyl, to mention a few. Most of these derivatives are defined on the basis of the corre-
sponding fractional integral in the Riemann–Liouville sense. Recently, fractional calculus
has attracted the attention of researchers in the various field of natural science and engi-
neering due to it wide applications in these various mention fields. The applications can
be found in anomalous transport, control theory of dynamical systems, signal and image
processing, nanotechnology, financial modeling, viscoelasticity, random walk, nanopre-
cipitate growth in solid solutions, modeling for shape memory polymers, and anomalous
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diffusion just to mention a few. We refer the reader to [5–20] and the references therein
for more details.

Nonlinear partial differential equations (NPDEs) have been attracting attention of en-
gineers, physicists and mathematicians in recent years. Among such NPDEs, we have the
Jaulent–Miodek system of equations which comes with energy-dependent Schrödinger
potential [21]. These systems of equations are extensively used as a model in solving many
real world problems in various fields of engineering and natural sciences; see [22–25] and
the references therein for more details. Due to the momentous and special position these
equations have in the above-mentioned fields, it is important to understand the solutions
(both the analytic-approximate and the numerical solutions) to these nonlinear partial
differential equations (NPDEs). Comprehensive mathematical analysis of the nonlinear
fractional-order coupled Jaulent–Miodek equations are still under study and it plays an
important role in many parts of science and engineering such as plasma physics [25] and
condensed matter physics [26, 27].

There are several methods used in obtaining approximate solutions to linear and non-
linear FPDE such as the Adomian decomposition method (ADM) [28, 29], the homotopy-
perturbation method (HPM) [30–34], the variational iteration method (VIM) [35], the
q-homotopy analysis transform method (q-HATM) [36, 37], the fractional natural decom-
position method (FNDM) [38], the fractional multi-step differential transformed method
(FMsDTM) [39], the new iterartive method (NIM) [40–42] and the homotopy analysis
method (HAM) [43–46]. In a recent development, [47–53], a modified homotopy anal-
ysis method was established which has potential applications in a wide range of systems
of differential equations. This method provides a convenient way to ascertain the con-
vergence of approximation series and even exact solutions. This modification is called
a q-homotopy analysis method (q-HAM), we refer this method as one of the most effi-
cient methods of obtaining analytical-approximate and exact solutions for nonlinear par-
tial fractional differential equations as well as the classical type.

Nonlinear time-fractional coupled Jaulent–Miodek sytem of equations where 0 < α ≤ 1,
is defined as follows:

∂αu
∂tα

+
∂3u
∂x3 +

3
2

v
∂3v
∂x3 +

9
2

∂v
∂x

∂2v
∂x2 – 6u

∂u
∂x

– 6uv
∂v
∂x

–
3
2

∂u
∂x

v2 = 0,

∂αv
∂tα

+
∂3v
∂x3 – 6

∂u
∂x

v – 6u
∂v
∂x

–
15
2

∂v
∂x

v2 = 0, (1)

which comes with energy-dependent Schrödinger potential [54–56]. Recently, the
Sumudu transform homotopy-perturbation method (STHPM) [54], the Hermite wavelets
method (HWM) and the optimal homotopy asymptotic method (OHAM) [57], the in-
variant subspace method [58], the q-homotopy analysis transform method (q-HATM)
[59], and others [60–62] have been used to obtain approximate solutions of the nonlinear
time-fractional Jaulent–Miodek system of equations.

In this paper, we present approximate solutions to time-fractional coupled Jaulent–
Miodek equations using the residual power-series method (RSPM) and the q-homotopy
analysis method (q-HAM). The paper is organized as follows. In Sect. 2, we explain resid-
ual power-series method (RSPM) and the q-homotopy analysis method (q-HAM), de-
scribe its convergence analysis, and we present example that shows reliability and effi-
ciency of this method in order to obtain its stable numerical results. In Sect. 3, we obtain
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approximate solutions of the time-fractional nonlinear coupled Jaulent–Miodek system of
equations using both the residual power-series method (RSPM) and the q-homotopy anal-
ysis method (q-HAM). In Sect. 4, we discuss the results obtained by RSPM and q-HAM,
and Sect. 5 gives our conclusion.

Definition 1.1 The real function f (t), t > 0 is said to be in the space of Cμ (μ > 0) when
there exists a real number p (> μ) such that f (t) = tpf1(t) in which f1 ∈ C[0,∞) and it is
said to be in the space of Cm

μ when f (m) ∈ Cμ, m ∈ ℵ [3, 63].

Definition 1.2 The Riemann–Liouville fractional integral operator (Jα) of order α ≥ 0 of
a function f ∈ Cμ, μ ≥ –1 is defined as [3, 63]

Jαf (t) =
1

Γ (α)

∫ t

0
(t – τ )α–1f (τ ) dτ , α, t > 0, (2)

and J0f (t) = f (t), where Γ is the well-known Gamma function. Then the following prop-
erties hold for the function f :

f ∈ Cμ, μ ≥ –1, α,β ≥ 0 and λ > –1.

Also, these general properties have been itemized as follows:
(a) JαJβ f (t) = Jα+β f (t),
(b) JαJβ f (t) = Jβ Jαf (t),
(c) Jαtλ = Γ (λ+1)

Γ (λ+1+α) tλ+α .

Definition 1.3 The fractional derivative of a function f of order α in the Caputo sense,
for f ∈ Cm

–1, m ∈ ℵ ∪ {0} is defined as [3]

Dmαf (t) = Jm–αf (m)(t) =
1

Γ (m – α)

∫ t

0
(t – τ )m–α–1f (m)(τ ) dτ , α, t > 0, (3)

where m – 1 < α < m and the function f satisfies some defined properties as follows:
(a) Dα(af (t) + bg(t)) = aDαf (t) + bDαg(t), a, b ∈ 	,
(b) DαJαf (t) = f (t),
(c) JαDαf (t) = f (t) –

∑m–1
j=0 f (j)(0) tj

j! , t > 0.

2 Analysis of approximate methods
2.1 Algorithm and convergence of RPSM
Here, using the RPS method, series solutions for the Jaulent–Miodek system of equations
are obtained. The RPS method [64–68] consists of expressing the solution of Eq. (1) as
a fractional power-series expansion about the initial point t = t0. It is worth mentioning
that the proposed method can reduce the computational time and work as compared with
other traditional techniques while maintaining the efficiency of the results obtained [69].
We have

u(t, x) =
∞∑

m=0

Dmα
t um(x, t0)
Γ (mα + 1)

(t – t0)mα , 0 < α ≤ 1, x ∈ [a, b], 0 ≤ t < 	, (4)
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and

v(t, x) =
∞∑

m=0

Dmα
t vm(x, t0)

Γ (mα + 1)
(t – t0)mα , 0 < α ≤ 1, x ∈ [a, b], 0 ≤ t < 	. (5)

The zeroth RPS approximate solutions of u(t, x) and v(t, x) can be written as follows:

u0(t, x) = f0(x) = f (x),

v0(t, x) = g0(x) = g(x). (6)

Next, let uk(t, x) and vk(t, x) denote, respectively, the kth truncated series of u(t, x) and
v(t, x) given as

uk(t, x) =
k∑

n=0

fn(x)
tnα

Γ (1 + nα)
, (7)

vk(t, x) =
k∑

n=0

gn(x)
tnα

Γ (1 + nα)
. (8)

Substitution of the kth truncated series uk(t, x) and vk(t, x) of Eqs. (7) and (8) into the main
equation Eq. (1) leads to the kth residual function denoted by Res uk(t, x) and Res vk(t, x)
given by

Res uk(t, x) = Dα
t u(t, x) + (uk)xxx(t, x) +

3
2

(vk)xxx(t, x)vk(t, x) +
9
2

(vk)x(t, x)(vk)xx(t, x)

– 6uk(t, x)(uk)x(t, x) – 6uk(t, x)(uk)x(t, x) – 6uk(t, x)vk(t, x)(vk)x(t, x)

–
3
2

(uk)x(t, x)v2
k(t, x), (9)

Res vk(t, x) = Dα
t v(t, x) + (vk)xxx(t, x) – 6(uk)x(t, x)vk(t, x) – 6uk(t, x)(vk)x(t, x)

–
15
2

(vk)x(t, x)v2
k(t, x).

Also, we obtain

Res u(t, x) = lim
k→∞

Resk(t, x). (10)

It is noticed that Res u(t, x) = 0 for all values of x ∈ [a, b]. This means that Res u(t, x) is in-
finitely many times differentiable at x = a. Besides, dk

dxk–1 Res u(0, x) = dk

dxk–1 Res uk(0, x) = 0.
In fact, this equation is a fundamental rule in RPS method in order to apply it on many lin-
ear and nonlinear problems. To obtain the kth approximate solutions, we consider Eqs. (7)
and (8) and then we differentiate both sides of these equations with respect to independent
variables x and t and then we substitute t = 0 in order to find f and g constant parameters.
After substituting these constant parameters in uk(t, x), we can obtain the kth truncated
series and by putting it in Eq. (1), we get our favorite approximate solution. This proce-
dure can be iterated for other arbitrary order of coefficients with RPS solutions of Eq. (1).
Now, regarding the convergence of the above iteration scheme, we present the following
theorem.
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Theorem 2.1 If there exists a fixed constant 0 < K < 1 such that

∥∥un+1(t, x)
∥∥ ≤ K

∥∥un(t, x)
∥∥

for all n ∈ N and 0 < t < R < 1, then the sequence of approximate solution converges to an
exact solution.

Proof For all 0 < t < R < 1, we have

∥∥u(t, x) – un(t, x)
∥∥ =

∥∥∥∥∥
∞∑

i=n+1

ui(t, x)

∥∥∥∥∥

≤
∞∑

i=n+1

∥∥ui(t, x)
∥∥

≤ ∥∥f (x)
∥∥ ∞∑

i=n+1

Ki

=
Kn+1

1 – K
∥∥f (x)

∥∥ n→∞−→ 0. (11)
�

2.2 Fundamentals of the q-HAM
Here, we give a brief analysis of the q-homotopy analysis method as applied to differential
equations. Generally, we consider the following differential equation:

N
[
Dα

t w(t, x)
]

– f (t, x) = 0, (12)

whereDα
t is the fractional derivative in time,N denotes the nonlinear operator, f is a given

function and w(t, x) is an unknown function. This is the the zeroth-order deformation
equation

(1 – nq)L
(
ϕ(t, x; q) – w0(t, x)

)
= qhH(t, x)

(
N

[
Dα

t ϕ(t, x; q)
]

– f (t, x)
)
, (13)

where n ≥ 1, q ∈ [0, 1
n ] denotes the so-called embedded parameter, h �= 0 is an auxiliary

parameter, H(t, x) is a non-zero auxiliary function, L is an auxiliary linear operator.
The following equations are obtained for q = 0 and q = 1

n , respectively:

ϕ(t, x; 0) = w0(t, x) and ϕ

(
t, x;

1
n

)
= w(t, x). (14)

So, starting from 0, as q approaches 1
n , the solution ϕ(t, x; q) varies from the initial guess

w0(t, x) to the solution w(t, x). We need to carefully choose w0(t, x),L, h, H(t, x) to ascertain
the existence of the solution ϕ(t, x; q) of Eq. (12) for q ∈ [0, 1

n ]. The Taylor series expansion
of ϕ(t, x; q) gives

ϕ(x, t; q) = w0(t, x) +
∞∑

m=1

wm(t, x)qm, (15)
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where

wm(t, x) =
1

m!
∂mϕ(t, x; q)

∂qm

∣∣∣∣
q=0

. (16)

Assume that the auxiliary linear operator L, the initial guess c0, the auxiliary parameter h
and H(t, x) are properly chosen such that the series Eq. (15) converges at q = 1

n , then we
have

w(t, x) = w0(t, x) +
∞∑

m=1

wm(t, x)
(

1
n

)m

. (17)

Let the vector �wn be defined as follows:

�wn =
{

w0(t, x), w1(t, x), . . . , wn(t, x)
}

. (18)

First, differentiate Eq. (13) m times with respect to the parameter q, then evaluate at
q = 0 and finally divide them by m!. We have what is known as the mth-order deformation
equation [52, 70]

L
[
wm(t, x) – χ∗

mwm–1(t, x)
]

= hH(t, x)Rm(�wm–1), (19)

with initial conditions

w(k)
m (0, x) = 0, k = 0, 1, 2, . . . , m – 1, (20)

where

Rm(�wm–1) =
1

(m – 1)!
∂m–1(N [Dα

t ϕ(t, x; q)] – g(t, x))
∂qm–1

∣∣∣∣
q=0

(21)

and

χ∗
m =

{
0, m ≤ 1,
n, otherwise.

(22)

3 Solutions of time-fractional coupled Jaulent–Miodek system of equations
This section presents application of the above approximate methods for obtaining solu-
tions of the time-fractional coupled Jaulent–Miodek system of equations.

3.1 RPSM solution
Consider the following time-fractional coupled Jaulent–Miodek (JM) system of equations:

∂αu
∂tα

+
∂3u
∂x3 +

3
2

v
∂3v
∂x3 +

9
2

∂v
∂x

∂2v
∂x2 – 6u

∂u
∂x

– 6uv
∂v
∂x

–
3
2

∂u
∂x

v2 = 0,

∂αv
∂tα

+
∂3v
∂x3 – 6

∂u
∂x

v – 6u
∂v
∂x

–
15
2

∂v
∂x

v2 = 0, (23)
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subject to the initial conditions

u(0, x) = f (x), v(0, x) = g(x). (24)

The method reveals the solution of the problem as a fractional power series around the
initial value t = 0 as

u(t, x) =
∞∑

n=o
fn(x)

tnα

Γ (1 + nα)
, (25)

v(t, x) =
∞∑

n=o
gn(x)

tnα

Γ (1 + nα)
. (26)

Next, let uk(t, x) and vk(t, x) denote the kth truncated series of u(t, x) and v(t, x), respec-
tively, we have

uk(t, x) =
k∑

n=o
fn(x)

tnα

Γ (1 + nα)
, (27)

vk(t, x) =
k∑

n=o
gn(x)

tnα

Γ (1 + nα)
. (28)

We define the kth residual functions as

Res uk(t, x) = Dα
t u(t, x) + (uk)xxx(t, x) +

3
2

(vk)xxx(t, x)vk(t, x) +
9
2

(vk)x(t, x)(vk)xx(t, x)

– 6uk(t, x)(uk)x(t, x) – 6uk(t, x)(vk)x(t, x)vk(t, x)

–
3
2

(uk)x(t, x)v2
k(t, x), (29)

Res vk(t, x) = Dα
t v(t, x) + (vk)xxx(t, x) – 6(uk)x(t, x)vk(t, x) – 6uk(t, x)(vk)x(t, x)

–
15
2

(vk)x(t, x)v2
k(t, x). (30)

Since Res u(t, x) = 0 and limk→∞ Res uk(t, x) = Res u(t, x) for all x ∈ I and t ≥ 0 [71, 72],
Dmα

t Res u(t, x) = 0, because the fractional derivative of a constant is 0 in the Caputo sense.
Also, the fractional derivative Dmα

t Res u(t, x) = 0 and Res uk(t, x) is matching at t = 0 for
each m = 0, 1, 2, . . . , k. We first substitute uk(t, x) and vk(t, x) into Eq. (1) and find the frac-
tional derivative formula D(k–1)α

t Res u(0, x) = 0 for k = 1, 2, 3. Solving these algebraic equa-
tions gives the fn(x) and gn(x) coefficients.

For the first step, we consider k = 1,

u1(t, x) = f (x) + f1(x)
tα

Γ (α + 1)
, (31)

v1(t, x) = g(x) + g1(x)
tα

Γ (α + 1)
, (32)
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and

Res u1(0, x) = f1(x) – 6f ′(x)f (x) –
3
2

f ′(x)g2(x) – 6f (x)g(x)g ′(x) +
9
2

g ′(x)g ′′(x)

+ f (3)(x) +
3
2

g(3)(x)g(x), (33)

Res v1(0, x) = g1(x) – 6f ′(x)g(x) – 6f (x)g ′(x) –
15
2

g2(x)g ′(x) + g(3)(x). (34)

Therefore

f1(x) =
1
2
(
–2f (3) + 3g2f ′ + 12ff ′ + 12fgg ′(3)g – 9g ′g ′′), (35)

g1(x) =
1
2
(
12gf ′ + 12fg ′(3) + 15g2g ′), (36)

and

u1(t, x) = f (x) +
tα(12f (x)f ′(x) + 3f ′(x)g2(x) + 12f (x)g(x)g ′(x))

2Γ (α + 1)

–
tα(9g ′(x)g ′′(x) + 2f (3)(x) + 3g(x)g(3)(x))

2Γ (α + 1)
, (37)

v1(t, x) = g(x) +
tα(12f ′(x)g(x) + 12f (x)g ′(x) + 15g2(x)g ′(x) – 2g(3)(x))

2Γ (α + 1)
.

To obtain f2(x) and g2(x), we substitute the second truncated series,

u2(t, x) = f (x) + f2(x)
t2α

Γ (2α + 1)
+ f1(x)

tα

Γ (α + 1)
, (38)

v2(t, x) = g(x) + g2(x)
t2α

Γ (2α + 1)
+ g1(x)

tα

Γ (α + 1)
, (39)

into the second residual functions Res u2(t, x) and Res v2(t, x) and applying Dα
t on both

sides for t = 0 yields

Res u2(0, x) = f2(x) – f (6)(x) + 12f (4)(x)g(x)2 + 12f (x)f (4)(x) + 84f (3)(x)g(x)g ′(x)

+ 108f ′′(x)g ′′(x)g(x) + 108f ′′(x)g ′2(x) –
9
4

′′2
f ′′(x)g4(x)

+ 18f ′′2 – 36f (x)2f ′′(3)(x)f ′3f ′(x)g ′(x)g(x) – 252f (x)f ′(x)g ′(x)g(x)

+ 225f ′(x)f ′2(x)g ′(x)g ′′2 – 72f (x)f ′2 + 30f (3)(x)f ′(4)(x)g(x)

– 54f (x)g(x)3g ′′2g(x)g ′′(x) + 72f (x)g ′′2 – 180f (x)g(x)2g ′2(x)

– 72f (x)2g ′2(x) + 102f (x)g(3)(x)g ′(x) – 3g(6)(x)g(x) +
27
2

g(4)(x)g3(x)

–
33
2

g(3)(x)2 + 108g(x)2g ′′2(x) +
135

2
g ′4(x) + 432g(x)g ′2(x)g ′′(x)

–
27
2

g(5)(x)g ′(4)(x)g ′′(3)(x)g(x)2g ′(x), (40)
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Res v2(0, x) = g2(x) + 12f (4)(x)g(x) + 30f (3)(x)g ′(x) + 36f ′′(x)f ′′(x)g ′′3(x)

– 72f (x)f ′′(3)(x)f ′2g ′′3(x)f ′(x)g ′(x)g(x) – 144f (x)f ′(x)g ′(x)

– 72f ′2(x)g(x) + 12f (x)g(4)(x) – 126f (x)g(x)2g ′′2(x)g ′′(x)

– 252f (x)g(x)g ′2(x) – g(6)(x) + 24g(4)(x)g(x)2 –
225

4
g(x)4g ′′(x)

+ 72g(x)g ′′2(x) – 225g(x)3g ′2(x) + 120g(3)(x)g(x)g ′(x) + 117g ′2g ′′(x), (41)

and

f2(x) = f (6) – 12f (4)g2 – 12ff (4) – 84f (3)gg ′ +
9g4f ′′

4
+ 54fg2f ′′2gg ′′

– 108gf ′′g ′′ – 108f ′′(g ′)2 + 72f 2(g ′)2 – 18
(
f ′′)2 + 36f 2f ′′(3)gf ′2(f ′)2

+ 252fgf ′g ′3f ′g ′ – 225f ′g ′g ′′ + 72f
(
f ′)2 – 30f (3)f ′(4)g – 72f

(
g ′′)2

+ 54fg3g ′′(3)g ′2(g ′)2 + 3g(6)g +
33
2

(
g(3))2 – 108g2(g ′′)2, (42)

g2(x) = –30f (3)g ′2g ′′3(6f ′′ + 25
(
g ′)2) – 9g ′′(4f ′′ + 13

(
g ′)2) – 30g(3)f ′

+ 12f
(
12f ′g ′(4)) + 6g2(48f ′g ′ + 21fg ′′(4))

+ 12g
(
–f (4) + 6ff ′′ + 6

(
f ′)2 + 21f

(
g ′)2 – 6

(
g ′′)2 – 10g(3)g ′)

+ g(6) +
225g4g ′′

4
. (43)

Therefore

u2(t, x) = f (x)

+
tα(–2f (3)(x) + 12f (x)(f ′(x) + g(x)g ′(x)) + 3g(x)2f ′(3)(x)g(x) – 9g ′(x)g ′′(x))

2Γ (α + 1)

+
1

4Γ (2α + 1)
(4f (6)(x)t2α – 48f (4)(x)g(x)2t2α – 48f (x)f (4)(x)t2α

– 336f (3)(x)g(x)t2αg ′2αf ′′(x)g ′′2αf ′′(x)g ′2 + 9g(x)4t2αf ′′2t2αf ′′2αf ′′2

+ 144f (x)2t2αf ′′(3)(x)t2αf ′3t2αf ′(x)g ′2αf ′(x)g ′2αf ′(x)g ′(x)g ′′2t2αf ′2

+ 288f (x)t2αf ′2 – 120f (3)(x)t2αf ′(4)(x)t2α – 288f (x)t2αg ′′2

+ 216f (x)g(x)3t2αg ′′2g(x)t2αg ′′2t2αg ′2 + 720f (x)g(x)2t2αg ′2

– 408f (x)g(3)(x)t2αg ′(6)(x)t2α – 54g(x)3g(4)(x)t2α + 66g(3)(x)2t2α

– 432g(x)2t2αg ′′2 – 270t2αg ′4

+ 54g(5)(x)t2αg ′(4)(x)t2αg ′′2g(3)(x)t2αg ′2αg ′2g ′′(x), (44)

v2(t, x) = g(x) +
tα(12g(x)f ′(x) + 12f (x)g ′(3)(x) + 15g(x)2g ′(x))

2Γ (α + 1)

+
1

4Γ (2α + 1)
(–48f (4)(x)g(x)t2α – 120f (3)(x)g ′(x)t2α – 144f ′′(x)g ′′3f ′′(x)t2α

+ 288f (x)g(x)f ′′(3)(x)f ′2f ′(x)g ′(x)t2α + 576f (x)f ′(x)g ′(x)t2α + 288g(x)f ′2t2α
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– 48f (x)g(4)(x)t2α + 504f (x)g(x)2g ′′2g ′′(x)t2α + 1008f (x)g(x)g ′2t2α

+ 4g(6)(x)t2α – 96g(4)(x)g(x)2t2α + 225g(x)4g ′′(x)t2α – 288g(x)g ′′2t2α

+ 900g(x)3g ′2t2α – 480g(3)(x)g(x)g ′(x)t2α – 468g ′2g ′′(x)t2α). (45)

Applying the same procedure we finally calculated the following values:

u3(t, x) = f (x) +
f1(x)tα

Γ (α + 1)
+

f2(x)t2α

Γ (2α + 1)
+

t3α

2Γ (α + 1)2Γ (3α + 1)

× (
6Γ (α + 1)2g(x)g2(x)f ′(x)

+ 6αΓ (2α)g1(x)2f ′2f2(x)f ′2f2(x)g(x)g ′2f (x)g2(x)g ′(x)

+ 24αΓ (2α)f1(x)g1(x)g ′2g(x)2f ′2
2 f (x)g(x)g ′

2(x) + 12αΓ (2α)g(x)g1(x)f ′
1(x)

+ 24αΓ (2α)f1(x)g(x)g ′
1(x) + 24αΓ (2α)f (x)g1(x)g ′2

1 f (x)f ′
2(x)

+ 24αΓ (2α)f1(x)f ′2
1 f (3)

2 (x) – 3Γ (α + 1)2g2(x)g(3)(x)

– 9Γ (α + 1)2g ′
2(x)g ′′2g ′(x)g ′′

2 (x) – 18αΓ (2α)g ′
1(x)g ′′2

1 g(x)g(3)
2 (x)

– 6αΓ (2α)g1(x)g(3)
1 (x)

)
, (46)

v3(t, x) = g(x) +
g1(x)tα

Γ (α + 1)
+

g2(x)t2α

Γ (2α + 1)
+

t3α

2Γ (α + 1)2Γ (3α + 1)

× (
12Γ (α + 1)2g2(x)f ′2f2(x)g ′2g(x)f ′2

2 f (x)g ′
2(x) + 24αΓ (2α)g1(x)f ′

1(x)

+ 24αΓ (2α)f1(x)g ′2
1 g(x)g2(x)g ′(x) + 30αΓ (2α)g1(x)2g ′2g(x)2g ′

2(x)

+ 60αΓ (2α)g(x)g1(x)g ′2
1 g(3)

2 (x)
)
. (47)

3.2 q-HAM solution
Consider the same Eq. (23), we use initial approximations

u0(t, x) := u(0, x) = f (x)

and

v0(t, x) := v(0, x) = g(x).

We apply q-HAM and obtain the following:

Rm(�um–1) = Dα
t um–1 + u(m–1)xxx + 1.5

m–1∑
k=0

vkv(m–1–k)xxx + 4.5
m–1∑
k=0

vkxv(m–1–k)xx

– 6
m–1∑
k=0

uku(m–1–k)x – 6
m–1∑
k=0

k∑
j=0

ujvk–jv(m–1–k)x

– 1.5
m–1∑
k=0

k∑
j=0

vjvk–ju(m–1–k)x, (48)
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R̂m(�vm–1) = Dα
t vm–1 + v(m–1)xxx – 6

m–1∑
k=0

vku(m–1–k)x – 6
m–1∑
k=0

ukxv(m–1–k)x

– 7.5
m–1∑
k=0

k∑
j=0

vjvk–jv(m–1–k)x. (49)

Therefore, we have the solution to the system for m ≥ 1

um(t, x) = χ∗
mum–1(t, x) + hJα

[
Rm

(�um–1(t, x)
)]

, (50)

vm(t, x) = χ∗
mvm–1(t, x) + hJα

[
R̂m

(�vm–1(t, x)
)]

. (51)

Hence, the expression of the series solutions by q-HAM are

u(t, x; n; h) = U (M)(t, x, n, h) = u0(t, x) +
M∑
i=1

ui(t, x; n; h)
(

1
n

)i

, (52)

v(t, x; n; h) = V (M)(t, x, n, h) = v0(t, x) +
M∑
i=1

vi(t, x; n; h)
(

1
n

)i

. (53)

The series solutions obtained in Eqs. (52) and (53) are appropriate solutions to the system
Eq. (23) in terms of the convergence parameter h and n.

4 Numerical comparison
For numerical comparison purposes, we consider the system of equations 23 with different
initial data.

4.1 Case I
We begin with a case where exact solutions are known when α = 1. Consider the following
initial conditions:

u(0, x) = f (x) =
1
8
λ2

(
1 – 4 sec h2

(
λx
2

))
,

v(0, x) = g(x) = λ sec h
(

λx
2

)
. (54)

The exact solutions of the problem (α = 1) are given by

u(t, x) =
1
8
λ2

(
1 – 4 sec h2

(
1
2
λ

(
x +

1
2
λ2t

)))
,

v(t, x) = λ sec h
(

1
2
λ

(
x +

1
2
λ2t

))
, (55)

where λ is an arbitrary constant. The absolute errors for this Case I are reported in Ta-
bles 1, 2. In Figs. 1, 2, 3, 4, we present the graphical representation of the obtained results
by RPSM, q-HAM and the exact solutions. We compare solutions, (U (3), V (3)), obtained
by RPSM and q-HAM with the exact solutions by using different values of the parameters
x and t.
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Table 1 Case I Comparison (U(3)): RPSM, q-HAM with the exact solution

t x Absolute error (λ = 0.5) t x Absolute error (λ = 0.5)
RPSM q-HAM RPSM q-HAM

0.1 0.0 7.9472× 10–12 7.9473× 10–12 0.5 0.0 4.9663× 10–9 4.9664× 10–9

1.0 4.2957× 10–12 4.2958× 10–12 1.0 2.6458× 10–9 2.6459× 10–9

2.0 1.6338× 10–12 1.6338× 10–12 2.0 1.0489× 10–9 1.0489× 10–9

3.0 3.8170× 10–12 3.8171× 10–12 3.0 2.3859× 10–9 2.3860× 10–9

Table 2 Case I Comparison (V (3)): RPSM, q-HAM with the exact solution

t x Absolute error (λ = 0.5) t x Absolute error (λ = 0.5)
RPSM q-HAM RPSM q-HAM

0.1 0.0 9.9341× 10–12 9.9341× 10–12 0.5 0.0 6.2082× 10–9 6.2082× 10–9

1.0 6.5476× 10–12 6.5476× 10–12 1.0 4.0547× 10–9 4.0547× 10–9

2.0 1.8840× 10–13 1.8840× 10–13 2.0 8.2357× 10–11 8.2356× 10–11

3.0 3.6721× 10–12 3.6722× 10–12 3.0 2.3069× 10–9 2.3069× 10–9

Figure 1 Comparison for Case I: u(t, x), λ = 0.5, α = 1

Figure 2 Comparison for Case I: v(t, x), λ = 0.5, α = 1

4.2 Case II

u(0, x) = f (x) = eγ x,

v(0, x) = g(x) = eβx, (56)

where γ and β are arbitrary constant. Applying a similar procedure, the series solutions
of RPSM are given by

u1(t, x) =
tα(–12β3e2βx + 3(4β + γ )ex(2β+γ ) – 2γ 3eγ x + 12γ e2γ x)

2Γ (α + 1)
+ eγ x,
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Figure 3 RPSM vs. exact solution for Case I in 2D with λ = 0.5, α = 1

Figure 4 q-HAM vs. exact solution for Case I in 2D with λ = 0.5, α = 1

v1(t, x) =
1
2

eβx
(

tα(–2β3 + 12(β + γ )eγ x + 15βe2βx)
Γ (α + 1)

+ 2
)

,

u2(t, x) = t2α
(
9
(
104β2 + 20βγ + γ 2)ex(4β+γ )

+ 4
(
60β6e2βx – 774β4e4βx + γ 6eγ x – 60γ 4e2γ x) + 108γ 2e3γ x)

/
(
4Γ (2α + 1)

)

+ t2α
(
18(2β + γ )(4β + 5γ )e2x(β+γ )

– 3
(
68β4 + 101β3γ + 72β2γ 2 + 28βγ 3 + 4γ 4)ex(2β+γ ))

/
(
4Γ (2α + 1)

)

+
tα

4Γ (α + 1)
– 24β3e2βx + 6(4β + γ )ex(2β+γ ) – 4γ 3eγ x + eγ x + 24γ e2γ x,

v2(t, x) =
t2αeβx(72(3β + γ )(7β + 3γ )ex(2β+γ ) – 24(β + γ )2(2β2 + βγ + 2γ 2)eγ x)

4Γ (2α + 1)

+
t2αeβx(4β6 – 1332β4e2βx + 1125β2e4βx + 144(β + 2γ )2e2γ x)

4Γ (2α + 1)

+
tαeβx(–4β3 + 24(β + γ )eγ x + 30βe2βx)

4Γ (α + 1)
+ eβx.

5 Conclusion
In this paper, we have employed efficient analytical techniques, called the residual power
series method and the q-homotopy analysis method, to obtain approximate series solu-
tions to the time-fractional coupled Jaulent–Miodek system of equations which comes
with energy-dependent Schrödinger potential with different initial conditions. The nu-
merical results are compared with the known exact solutions when α = 1. From our nu-
merical results, see Tables 1, 2 and Figures 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, we demonstrate
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Figure 5 RPSM vs. q-HAM for Case II for U(2)(t, x) with β = 0.1, γ = 0.1 and α = 0.35

Figure 6 RPSM vs. q-HAM for Case II for U(2)(t, x) with β = 0.1, γ = 0.1 and α = 0.45

Figure 7 RPSM vs. q-HAM for Case II for U(2)(t, x) with β = 0.1, γ = 0.1 and α = 0.55

the fast convergence rate of the present methods even after computing a few iterations
in solving a system of strongly nonlinear fractional differential equations. Although these
methods are different, the results are similar and the resulting errors are comparable. Both
methods are elegant and do not require any transformations, perturbations or discretiza-
tion. Our numerical results further show that the methods are reliable, powerful and easy
to implement when compared to other numerical and approximate methods. Since the
time-fractional coupled Jaulent–Miodek system of equations is a complex system, the re-
sults prove that the present methods could be applied to various complex fractional linear
and nonlinear models occurring in various fields of science and engineering, respectively.
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Figure 8 RPSM vs. q-HAM for Case II for U(2)(t, x) with β = 0.1, γ = 0.1 and α = 1

Figure 9 RPSM vs. q-HAM for Case II for V (2)(t, x) with β = 0.1, γ = 0.1 and α = 0.35

Figure 10 RPSM vs. q-HAM for Case II for V (2)(t, x) with β = 0.1, γ = 0.1 and α = 0.45

Appendix
The components of the series solutions obtained by qHAM given in Eqs. (52) and (53) are
obtained for Case I and Case II, successively below.
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Figure 11 RPSM vs. q-HAM for Case II for V (2)(t, x) with β = 0.1, γ = 0.1 and α = 0.55

Figure 12 RPSM vs. q-HAM for Case II for V (2)(t, x) with β = 0.1, γ = 0.1 and α = 1

Case I

u1(t, x) = χ∗
1 u0(t, x) + hJα

[
R1

(�u0(t, x)
)]

= hJα
[
Dα

t u0 + u0xxx + 1.5v0v0xxx + 4.5v0xv0xx
]

– hJα[6u0u0x + 6u0v0v0x + 1.5v0v0u0x]

= –
hλ5 tanh( λx

2 ) sech2( λx
2 )

4Γ (α + 1)
tα ,

v1(t, x) = χ∗
1 v0(t, x) + hJα

[
R̂1

(�v0(t, x)
)]

= hJα
[
Dα

t v0 + v0xxx – 6v0u0x – 6u0v0x – 7.5v0v0v0x
]

=
hλ4 tanh( λx

2 ) sech( λx
2 )

4Γ (α + 1)
tα ,

u2(t, x) = χ∗
2 u1(t, x) + hJα

[
R2

(�u1(t, x)
)]

= nu1 + hJα
[
Dα

t u1 + u1xxx + 1.5v0v1xxx + 1.5v1v0xxx + 4.5v0xv1xx + 4.5v1xv0xx
]

– hJα[6u0u1x + 6u1u0x + 6u0v0v1x + 6u0v1v0x + 6u1v0v0x

+ 1.5v0v0u1x + 1.5v0v1u0x + 1.5v1v0u0x]

= (n + h)u1 + hJα[u1xxx + 1.5v0v1xxx + 1.5v1v0xxx + 4.5v0xv1xx + 4.5v1xv0xx]

– hJα[6u0u1x + 6u1u0x + 6u0v0v1x + 6u0v1v0x + 6u1v0v0x
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+ 1.5v0v0u1x + 1.5v0v1u0x + 1.5v1v0u0x]

= –
hλ5(n + h) tanh( λx

2 ) sech2( λx
2 )

4Γ (α + 1)
tα –

h2λ8(cosh(λx) – 2) sech4 ( λx
2 )

16Γ (2α + 1)
t2α ,

v2(t, x) = χ∗
2 v1(t, x) + hJα

[
R̂2

(�v1(t, x)
)]

= nv1 + hJα
[
Dα

t v1 + v1xxx – 6v0u1x – 6v1u0x – 6u0v1x – 6u1v0x

– 7.5v0v0v1x – 7.5v0v1v0x – 7.5v1v0v0x
]

= (n + h)v1 + hJα[v1xxx – 6v0u1x – 6v1u0x – 6u0v1x – 6u1v0x

– 7.5v0v0v1x – 7.5v0v1v0x – 7.5v1v0v0x]

=
hλ4(h + n) tanh( λx

2 ) sech( λx
2 )

4Γ (α + 1)
tα +

λ7h2(cosh(λx) – 3) sech3 ( λx
2 )

32Γ (2α + 1)
t2α ,

u3(t, x) = χ∗
3 u2(t, x) + hJα

[
R3

(�u2(t, x)
)]

= nu2 + hJα
[
Dα

t u2 + u2xxx + 1.5v0v2xxx + 1.5v1v1xxx + 1.5v2v0xxx

+ 4.5v0xv2xx + 4.5v1xv1xx + 4.5v2xv0xx
]

– hJα[6u0u2x + 6u1u1x + 6u2u0x + 6u0v0v2x + 6u0v1v1x

+ 6u1v0v1x + 6u0v2v0x + 6u1v1v0x + 6u2v0v0x]

– hJα[1.5v0v0u2x + 1.5v0v1u1x + 1.5v1v0u1x

+ 1.5v0v2u0x + 1.5v1v1u0x + 1.5v2v0u0x]

= (n + h)u2 + hJα[u2xxx + 1.5v0v2xxx + 1.5v1v1xxx + 1.5v2v0xxx

+ 4.5v0xv2xx + 4.5v1xv1xx + 4.5v2xv0xx]

– hJα[1.5v0v0u2x + 1.5v1v1u1x + 1.5v1v0u1x

+ 1.5v0v2u0x + 1.5v1v1u0x + 1.5v2v0u0x]

= –
hλ5(h + n)2 sinh(λx) sech4( λx

2 )
8Γ (α + 1)

tα –
h2λ8(h + n)(cosh(λx) – 2) sech4 ( λx

2 )
8Γ (2α + 1)

t2α

+
[(

h3λ11[3Γ (2α + 1)
(
20 cosh(λx) – cosh(2λx) – 43

)

– 2Γ (α + 1)2(cosh(2λx) + 28 cosh(λx) – 165
)]

tanh

(
λx
2

)
sech6

(
λx
2

))

/
(
1024Γ (α + 1)2Γ (3α + 1)

)]
t3α ,

v3(t, x) = χ∗
3 v2(t, x) + hJα

[
R̂3

(�v2(t, x)
)]

= nv2 + hJα
[
Dα

t v2 + v2xxx – 6v0u2x – 6v1u1x – 6v2u0x

– 6u0xv2x – 6u1xv1x – 6u2xv0x
]

– hJα[7.5v0v0v2x + 7.5v0v1v1x + 7.5v1v0v1x

+ 7.5v0v2v0x + 7.5v1v1v0x + 7.5v2v0v0x]

= (n + h)v2 + hJα[v2xxx – 6v0u2x – 6v1u1x – 6v2u0x
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– 6u0xv2x – 6u1xv1x – 6u2xv0x]

– hJα[7.5v0v0v2x + 7.5v0v1v1x + 7.5v1v0v1x

+ 7.5v0v2v0x + 7.5v1v1v0x + 7.5v2v0v0x]

=
hλ4(h + n)2 tanh( λx

2 ) sech( λx
2 )

4Γ (α + 1)
tα +

λ7h2(h + n)(cosh(λx) – 3) sech3 ( λx
2 )

16Γ (2α + 1)
t2α

+
[(

h3λ10[12Γ (2α + 1)
(
3 cosh(λx) – 7

)

+ Γ (α + 1)2(cosh(2λx) – 92 cosh(λx) + 147
)]

tanh

(
λx
2

)
sech5

(
λx
2

))

/
(
512Γ (α + 1)2Γ (3α + 1)

)]
t3α .

Case II

u1(t, x) = χ∗
1 u0(t, x) + hJα

[
R1

(�u0(t, x)
)]

= hJα
[
Dα

t u0 + u0xxx + 1.5v0v0xxx + 4.5v0xv0xx
]

– hJα[6u0u0x + 6u0v0v0x + 1.5v0v0u0x]

= –
h[3(γ + 4β)e(γ +2β)x – 2(γ 3eγ x – 6γ e2γ x + 6β3e2βx)]

2Γ (α + 1)
tα ,

v1(t, x) = χ∗
1 v0(t, x) + hJα

[
R̂1

(�v0(t, x)
)]

= hJα
[
Dα

t v0 + v0xxx – 6v0u0x – 6u0v0x – 7.5v0v0v0x
]

= –
heβx[12(γ + β)eγ x – 2β3 + 15βe2βx]

2Γ (α + 1)
tα ,

u2(t, x) = χ∗
2 u1(t, x) + hJα

[
R2

(�u1(t, x)
)]

= nu1 + hJα
[
Dα

t u1 + u1xxx + 1.5v0v1xxx + 1.5v1v0xxx + 4.5v0xv1xx + 4.5v1xv0xx
]

– hJα[6u0u1x + 6u1u0x + 6u0v0v1x + 6u1v1v0x + 6u1v0v0x

+ 1.5v0v0u1x + 1.5v1v1u0x + 1.5v1v0u0x]

= (n + h)u1 + hJα[u1xxx + 1.5v0v1xxx + 1.5v1v0xxx + 4.5v0xv1xx + 4.5v1xv0xx]

– hJα[6u0u1x + 6u1u0x + 6u0v0v1x + 6u1v1v0x + 6u1v0v0x

+ 1.5v0v0u1x + 1.5v1v1u0x + 1.5v1v0u0x]

= –
h(n + h)[3(γ + 4β)e(γ +2β)x – 2(γ 3eγ x – 6γ e2γ x + 6β3e2βx)]

2Γ (α + 1)
tα

–
(

3h2e(γ +2β)x[4γ 4 + 28γ 3β + 72γ 2β2 + 101γβ3 – 84γβe(γ x)

– 15γβe(2βx) + 68β4 – 78β2e(2βx)]

/
(
Γ (2α + 1)

))
t2α

+
(

h2[4γ 6e(γ x) – 240γ 4e(2γ x) + 9γ 2(40e2(γ +β)x + e(γ +4β)x + 48e3γ x)
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+ 24β2e2βx(24e2γ x + 10β4 – 129β2e2βx)]

/
(
4Γ (2α + 1)

))
t2α ,

v2(t, x) = χ∗
2 v1(t, x) + hJα

[
R̂2

(�v1(t, x)
)]

= nv1 + hJα
[
Dα

t v1 + v1xxx – 6v0u1x – 6v1u0x – 6u0v1x – 6u1v0x

– 7.5v0v0v1x – 7.5v1v1v0x – 7.5v1v0v0x
]

= (n + h)v1 + hJα[v1xxx – 6v0u1x – 6v1u0x – 6u0v1x – 6u1v0x

– 7.5v0v0v1x – 7.5v1v1v0x – 7.5v1v0v0x]

= –
h(n + h)eβx[12(γ + β)eγ x – 2β3 + 15βe2βx]

2Γ (α + 1)
tα

+
h2eβx[–48eγ x(γ 4 + β4) + 576γ 2e2γ x + 4β6 – 1332β4e2βx + 1125β2e4βx]

4Γ (2α + 1)
t2α

+
(

6h2e(γ +β)x[6βeγ x(4γ + β) – γβ
(
5γ 2 + 6γβ + 5β2)

+ 3e2βx(γ + 3β)(3γ + 7β)
]

/Γ (2α + 1)
)

t2α .
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Computer Science & Information System, California University of Pennsylvania, California, USA. 3Department of
Mathematics and Statistics, Islamic Azad University, Central Tehran Branch, Tehran, Iran. 4Department of Mathematics,
Ohio University, Athens, USA.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 12 July 2019 Accepted: 29 October 2019

References
1. Leibniz, G.W.: Letter from Hanover, Germany to G.F.A. L’Hospital, September 30, 1695. In: Leibniz Mathematische

Schriften, pp. 301–302. Olms-Verlag, Hildesheim (1962) (first published in 1849)
2. Leibniz, G.W.: Letter from Hanover, Germany to Johann Bernoulli, December 28, 1695. In: Leibniz Mathematische

Schriften, p. 226. Olms-Verlag, Hildesheim (1962) (first published in 1849)
3. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential

Equations, to Methods of Their Solution and Some of Their Applications. Mathematics in Science and Engineering,
vol. 198. Academic Press, San Diego (1998)

4. Ross, B.: The development of fractional calculus 1695–1900. Hist. Math. 4(1), 75–89 (1977)
5. Baleanu, D., Guvenc, Z.B., Machado, J.T.: New Trends in Nanotechnology and Fractional Calculus Applications.

Springer, Berlin (2010)
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