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Abstract
Ebola virus disease (EVD) is a severe infection with an extremely high fatality rate
spread through direct and indirect contacts. Recently, an outbreak of EVD in West
Africa brought public attention to this deadly disease. We study the spread of EVD
through a two-patch model. We determine the basic reproduction number, the
disease-free equilibrium, two boundary equilibria and the endemic equilibrium when
the disease persists in the two sub-populations for specific conditions. Further, we
introduce time-dependent controls into our proposed model. We analyse the optimal
control problem where the control system is a mathematical model for EVD that
incorporates educational campaigns. The control functions represent educational
campaigns in their respective patches, with one patch having more effective controls
than the other. We aim to study how these control measures would be implemented
for a certain time period, in order to reduce or eliminate EVD in the respective
communities, while minimising the intervention implementation costs. Numerical
simulations results are provided to illustrate the dynamics of the disease in the
presence of controls.

Keywords: Ebola; Reproduction number; Sensitivity analysis; Educational campaign;
Optimal control

1 Introduction
Ebola virus disease (EVD) is a highly infectious disease caused by the Ebola virus from
the family of Filoviridae viruses. The Ebola virus is believed to be found in mammals of
the family of Pteropodidae (fruit bats) [1]. It is a virus having a filamentous, enveloped
and a non-segmented negative sense with the entry of the virus to living cells facilitated
by its enveloped glycoprotein [2, 3]. The current Ebola virus disease (EVD) outbreak in
West Africa is now the largest documented [4]. Ebola originated in Zaire and Sudan in
1976 with several strains known at present. The outbreak in 2015 affected mainly Guinea,
Liberia and Sierra Leone (West Africa) causing more than 28 000 infections and over
11 100 deaths by December 2015 [5]. The epidemic continued increasing due to socio-
economic disadvantage and shortages in the health systems of the three mainly affected
countries (Guinea, Liberia and Sierra Leone) [4, 6]. Currently, in 2018 the EVD has resur-
faced in the Province of Kivu in the Democratic Republic of Congo (DRC). In Kivu, there
is a military conflict and there are thousands of displaced refugees [7, 8]. The affected
area has a lot of trade among the different communities within, and this leads to massive
inter-community movements. Due to the running battles in the Province of Kivu, health
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care workers and those who might be able to assist in the fight against EVD find it difficult
to reach all the communities [9]. Thus, the respective communities in the affected areas
of the DRC have greatly varying intervention strategies and some are not perfect. In the
Province of Kivu, rebels are against the presence of the health caregivers and UN peace-
keepers, hence EVD might be difficult to curtail in the Democratic Republic of Congo [9,
10].

Partially eaten fruits and pulp dropped by the bats are then eaten by the land mammals
such as monkeys, apes, baboons and gorillas. This chain of events then forms a possible
transmission of the Ebola virus from bats to other mammals [1]. Infection with humans
can occur through direct contact with blood or body fluids (like saliva, sweat, faeces, breast
milk and semen), objects like needles and syringes that have been contaminated with the
virus and infected fruit bats or other mammals [11, 12]. The survival of the virus in the
environment, due to poor hygienic and sanitary conditions, is probably another source of
Ebola infection in many places in Africa [13, 14]. In Africa, and particularly in the regions
that were affected by Ebola outbreaks, people who live close to the rain-forests, hunt bats
and monkeys and harvest forest fruits for food [15, 16]. Africans are sincere to the point
that even a transmittable disease would not stop them from showing compassion for their
relatives at home, caressing them and shaking hands, as this is part of their beliefs and
customs. In addition, in the course of the funerals, they bath and clothe up their lifeless
relatives [17]. They even share without appropriate washing the clothes of their lifeless
relatives. Thus, the virus can be spread directly or indirectly.

Without effective vaccines and treatment, educational campaigns may be implemented
as a countermeasure. One of the primary reasons for the spread of the virus is the poorly
functioning health systems in the part of Africa where the disease occurs. Other rea-
sons are illiteracy, poverty and lack of enough information on the mode of spread of
the virus [18]. People who care for infected individuals have an increased risk of trans-
mission. Recommended measures when caring for the infected include medical isola-
tion through proper use of gloves, masks, gowns, boots and goggles as well as sterili-
sation of equipment and surfaces. Certain control strategies are employed when local,
regional and international associates are informed of an establishment of a possible Ebola
epidemic. The controls among them are and not restricted to the following; assessment
of the worldwide health risk, establishment of social mobilisation and health education
curriculum to listen and address public concerns. The application of such control pro-
cedures leads to the curtailing of the current EVD epidemic of 2014, 2015. Due to the
weaker economies of the affected countries, it was a limiting factor in the fight against
EVD [17]. Resource allocation needs to be optimal and the control strategies need to be
implemented in such a way as to derive maximum benefits. It is worth noting that optimal
control is best described by mathematical modelling. Optimal control theory has proven
to be a successful tool in understanding ways to curtail the spread of infectious diseases
by devising the optimal disease intervention strategies. The method consists of minimis-
ing the cost of infection or the cost of implementing the control, or both. For more on
optimal control theory in epidemiology, we refer the reader to Malik and Sharomi, 2015
[19].

Mathematical modelling remains a powerful tool in describing the dynamics of disease
outbreaks and making predictions. It also enables us to estimate the long term effects of in-
terventions, integrates evidence from different scientific disciplines and investigates how
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health-related practices evolve in complex systems. Statistical and biological studies have
been applied in the study of the complexity of the Ebola virus life ecology [20, 21], and
are worthy of attention. Some dynamic models have been proposed to study and to try
to understand the dynamics of EVD [22–30]. Recently, Berge et al. [29] proposed a de-
terministic mathematical model for the transmission dynamics of EVD which involved a
synergy between the epizootic phase, enzootic phase and the endemic phase. It included
the direct and indirect modes of contamination, between and within the three different
types of populations consisting of humans, animals and fruit bats. Work done by Berge et
al. [29] was an extension of their previous work done in 2015 [26], in which a simple math-
ematical model was developed, which incorporated both the direct and the indirect Ebola
virus transmission in such a way that there is a provision of Ebola viruses. Models have
also been developed to try and understand various intervention strategies in trying to cur-
tail the spread of EVD [31–40]. The impact of vaccination and vaccines was investigated
in [35, 36, 39, 40] and the issue of quarantining analysed in [35, 37] through mathematical
models. Further, Berge et al. [31] developed a mathematical model to understand the im-
pact of contact tracing as a control strategy of EVD. In recent times, optimal control prob-
lems have generated a lot of interest from researchers. Furthermore, various techniques
and intervention strategies have been applied to study optimal control problems related
to EVD [41–46]. In particular, Area et al. [44] proposed an EVD mathematical model with
the vaccination of the susceptible population, with the aim of controlling the spread of the
disease and analysis of two optimal control problems related to the transmission of EVD
with vaccination. A deterministic SEIR type model with additional hospitalisation, quar-
antine and vaccination was developed and studied by Ahmad et al. [43], to understand the
disease dynamics.

Although substantial work has been done on the study of EVD transmission dynamics,
not much consideration of meta-population study has been done; see [47, 48]. The pop-
ulation is subdivided into several discrete patches which are supposed to be well mixed.
Then, in each patch, the population is subdivided into compartments corresponding to
different epidemic status. For more on meta-population patch models, see [49]. In this
work, motivated by the usefulness of and the current investigation on modelling EVD, we
intend to systematically investigate the modelling and analysis of a two-patch model for
the transmission dynamics of EVD. We make use of the model studied by Berge et al. [26]
which takes into account both, the direct and indirect modes of transmission. Thus, in
our model, we distinguish two patches. We assume the susceptible and the recovered in-
dividuals are the only ones who migrate, hence the two sub-populations can vary. This is
consistent with the fact that in African refugee camps refugees move very little between
two camps and only persons that bring them help move within the camps. These limited
migrations on the susceptible individuals have taken place in places such as the Demo-
cratic Republic of Congo [9, 10]. We also support our assumption that the majority of the
infectious individuals do not migrate, due to their state of health. This can also be sup-
ported by the fact that in periods of epidemics, countries tighten people’s movements and
their respective boarders through screening and detection. Both the people who are al-
lowed to cross a border and those who move between two refugee camps/communities
are assumed to be susceptible and recovered. A mathematical model describing the opti-
mal control of an epidemic with educational campaigns have been discussed before [50],
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hence in our two-patch model, we introduce two time-dependent controls in educational
campaigns, which have different effectiveness.

The paper is structured as follows. The EVD transmission model is formulated in Sect. 2
and the analytical results of the model are presented in Sect. 3. In Sect. 4 optimal con-
trol theory has been applied to the model formulated in Sect. 2. Simulation results and
projection profiles of EVD are presented in Sect. 5. A summary and concluding remarks
complete the paper.

2 Model formulation
We consider a two-patch model for Ebola virus disease (EVD). The model consists of two
sub-populations of a large one. The recruitment in each sub-population is only in the
susceptible class, and the migration between the sub-populations is by the susceptible
and recovered. Having the infectious class not migrating, we assume that infection does
not take place during the migration process. Each human sub-population is divided into
four classes: the susceptibles Si(t), infectious Ii(t), recovered Ri(t) and deceased human
individuals Di(t). The Ebola virus in the environment is denoted by Wi(t). For all the pa-
rameters and compartmental classes, we will consider the case for i = 1, 2, representing
patch 1 and 2, respectively. The susceptible human population is replenished by constant
recruitment at rate bi. Death for a reason that is not related to EVD is proportional to the
population size and with a constant rate μi. The additional death due to disease affects
only the class Ii(t), at a rate vi.

It has been shown that human individuals can be infected through the contaminated
environment [51]. Thus, the Ebola virus is transmitted though both direct and indirect
transmission. The susceptible individuals acquire the infection at rate Λi with

Λi = βIi Ii + βDi Di + βWi Wi, i = 1, 2, (1)

the form of incidence is bilinear. βIi Ii + βDi Di is the direct infection from the infectious
individuals and the dead bodies. βWi is the indirect infection from the Ebola virus in the
environment to the susceptible individuals. βIi is the effective contact rate of the infectious
individuals, βDi is the effective contact rate of the deceased individuals and βWi is the
effective contact rate of the Ebola virus (in the environment).

Motivated by the fact that it has never been reported that an individual caught EVD
for the second time, we assume that the infectious individuals recover at rate φi attaining
permanent disease-induced immunity. We assume that the Ebola virus finds its way into
the environment only through the infectious and the deceased human individuals, which
they shed into the environment especially through the urine and stool at rates δi and ρi,
respectively. This assumption is supported by several references [52–54]. This happens
in regions of poor sanitary facilities and/or in the regions where people do not observe
appropriate hygiene practices. The Ebola virus in the environment decays and loses its in-
fectiousness at a rate ri. The deceased human individuals lose their infectiousness through
methods such as proper handling and burial at a rate αi. The migration rates of the suscep-
tible and the recovered individuals, between the two populations, are ai and bi for i = 1, 2
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respectively. This yields the following set of differential equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

S′
i = bi + ajSj – ΛiSi – (μi + ai)Si,

I ′
i = ΛiSi – (μi + vi + φi)Ii,

R′
i = φiIi + bjRj – (μi + bi)Ri,

D′
i = viIi – αiDi,

W ′
i = δiIi + ρiDi – riWi, i = 1, 2; j = 1, 2; i �= j.

(2)

The total human population, the total deceased human individuals and the Ebola virus
pathogens in the environment are given by N(t) = S1(t) + I1(t) + R1(t) + S2(t) + I2(t) + R2(t),
D(t) = D1(t) + D2(t) and W (t) = W1(t) + W2(t), respectively.

Once Si, Ii, Di, Wi, i = 1, 2 are obtained from Eqs. (2)1, (2)2, (2)4, (2)5, the functions Ri,
i = 1, 2 are readily given by Eq. (2)3. Thus without loss of generality, we are led to the
following reduced system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

S′
i = bi + ajSj – ΛiSi – (μi + ai)Si,

I ′
i = ΛiSi – (μi + vi + φi)Ii,

D′
i = viIi – αiDi,

W ′
i = δiIi + ρiDi – riWi, i = 1, 2; j = 1, 2; i �= j.

(3)

2.1 Basic properties of the model
In this section, we study the basic properties of the solutions of system (3) which are es-
sential in the proofs of stability.

Theorem 1 Let the initial data be Si(0) > 0, Ii(0) > 0, Di(0) > 0, Wi(0) > 0, i = 1, 2. Then the
solutions Si(t), Ii(t), Di(t), Wi(t) for system (3) are non-negative for all t > 0.

A complete proof for Theorem 1 has been outlined in Appendix 1.

Theorem 2 System (3) is a dynamical system on the biologically feasible compact set

G =
{

S1(t), I1(t), D1(t), W1(t), S2(t), I2(t), D2(t), W2(t) :

N ≤ b
μ0

, D ≤ vb
αμ0

, W ≤ αδb + ρbv
αμ0r

}

, (4)

where b = b1 + b2, μ0 = min(μ1,μ2), v = max(v1, v2), δ = max(δ1, δ2), ρ = max(ρ1,ρ2), α =
max(α1,α2), α = min(α1,α2), r = min(r1, r2).

A complete proof for Theorem 2 has been outlined in Appendix 2.

3 Analysis of the model
3.1 The disease-free equilibrium and basic reproduction number
The global behaviour for this model crucially depends on the basic reproduction number,
that is, the average number of secondary cases produced by a single infective individual
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which is introduced into an entirely susceptible population. System (3) has an evident
equilibrium E0 = (S0

1, 0, 0, 0, 0, S0
2, 0, 0, 0, 0) when there is no disease, where

⎧
⎨

⎩

S0
1 = (μ2+a2)b1+a2b2

μ1μ2+μ1a2+μ2a1
,

S0
2 = (μ1+a1)b2+a1b1

μ1μ2+μ1a2+μ2a1
.

(5)

We calculate the basic reproduction number, R0, using the next generation method ap-
proach developed in van den Driessche and Watmough [55]. Following [55], the non-
negative matrix F and the non-singular matrix V for the new infection terms and the
remaining transfer terms are respectively given at the disease-free equilibrium by

F =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

βI1 S0
1 βD1 S0

1 βW1 S0
1 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 βI2 S0

2 βD2 S0
2 βW2 S0

2

0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and

V =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

k1 0 0 0 0 0
–v1 α1 0 0 0 0
–δ1 –ρ1 r1 0 0 0
0 0 0 k2 0 0
0 0 0 –v2 α2 0
0 0 0 –δ2 –ρ2 r2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(6)

Then the reproduction number R0 of system (3) is the spectral radius of the next genera-
tion matrix FV –1,

R0 = ρ
(
FV –1) = max{R1,R2}, (7)

where Ri (i = 1, 2) is the basic reproduction number of each sub-population i given by

Ri = RIi + RDi + RWi

=
S0

i βDi vi

kiαi
+

S0
i βIi

ki
+

S0
i βWi (αiδi + μiρi)

(kiriαi)
. (8)

Following the interpretation in [56], Ri for patch i, for i = 1, 2, is the sum of three infection
contributions:

• RIi is the contribution of the infectious human Ii.
• RDi is the contribution of the infected corpses Di.
• RWi is the contribution due to the environmental contamination by the virus Wi.

Biologically R1 and R2 measure the average number of secondary infections generated
by an Ebola virus in patch 1 and patch 2 respectively, when introduced in a disease-free
population. The reproductive number R0 controls the number of equilibria of system (3).

If R0 ≤ 1, then the disease-free equilibrium E0 is the only equilibrium in G . Using Theo-
rem 2 in van den Driessche and Watmough (2002) [55], the following result is established.
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Theorem 3 The disease-free equilibrium (DFE) E0 of system (3) is locally asymptotically
stable (LAS) if R0 < 1 and unstable otherwise.

We now utilise the approach of Lyapunov functions [57–59] in the analysis of the global
asymptotic stability.

Theorem 4 If R0 ≤ 1, the DFE is globally asymptotically stable (GAS) in G . If R0 > 1, the
system is uniformly persistent.

Proof Let Y(t) = (I1, D1, W1, I2, D2, W2). Since
⎧
⎪⎪⎨

⎪⎪⎩

I ′
i ≤ ΛiS0

i – (μi + vi + φi)Ii,

D′
i ≤ (μi + vi)Ii – ρiDi,

W ′
i ≤ δiIi + ρiDi – riWi, i = 1, 2,

(9)

it follows that

Ẏ(t) ≤ (F – V )Y , (10)

where F and V are defined in (6). It is worth noting that F and V –1 are non-negative. By
the Perron–Frobenius theorem [60], the non-negative matrix V –1F has a non-negative
left eigenvector u ≥ 0 with respect to ρ(V –1F) = ρ(FV –1) = R0, that is, uT V –1F = R0uT .
Motivated by [59], we consider the Lyapunov function

L = uT V –1Y . (11)

Differentiating L along solutions of (3), we have

L̇(t) = uT V –1Ẏ

≤ uT V –1(F – V )Y

= (R0 – 1)uTY ≤ 0, if R0 ≤ 1. (12)

It can be easily verified that the largest invariant subset of G where L̇ = 0 is the singleton
{E0}. Therefore, by LaSalle’s invariance principle [61], E0 is globally asymptotically stable
in G when R0 ≤ 1.

If R0 > 1, then, by continuity, L̇ > 0 in a neighbourhood of E0 in the interior of G . Solu-
tions in the interior of G sufficiently close to E0 move away from the DFE, implying that
the DFE is unstable. This completes the proof. �

The result in Theorem 4 shows that R0 = 1 is a sharp threshold for disease dynamics:
the disease will die out when R0 ≤ 1, whereas the disease will persist when R0 > 1. We
now investigate uniform persistence; we claim the following result.

Theorem 5 If R0 > 1, system (3) is uniformly persistent, namely, there exists a constant
ζ > 0 such that

lim
t→∞ inf Si(t) > ζ , lim

t→∞ inf Ii(t) > ζ , lim
t→∞ inf Di(t) > ζ , lim

t→∞ inf Wi(t) > ζ ,

where ζ is independent of the initial data in G .
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Proof We prove that system (3) is uniformly persistent with respect to (X0, ∂X0), where

X =
{

(Si, Ii, Di, Wi) : Si ≥ 0, Ii ≥ 0, Di ≥ 0, Wi ≥ 0, i = 1, 2
}

,

X0 =
{

(Si, Ii, Di, Wi) : Si ≥ 0, Ii > 0, Di > 0, Wi > 0, i = 1, 2
}

,

∂X0 = X/X0.

(13)

By the form of (3), it is very easy to see that both X and X0 are positively invariant and ∂X0

is relatively closed in X. Furthermore, system (3) is point dissipative. Let

M∂ =
{(

Si(0), Ii(0), Di(0), Wi(0)
)|(Si(t), Ii(t), Di(t), Wi(t)

) ∈ ∂X0,∀t ≥ 0, i = 1, 2
}

. (14)

We now show that

M∂ =
{(

Si(t), 0, 0, 0
)|Si(t) ≥ 0, i = 1, 2

}
. (15)

It is worth noting that

{(
Si(t), 0, 0, 0

)|Si(t) ≥ 0, i = 1, 2
} ⊆ M∂ , (16)

so we only need to prove

M∂ ⊆ {(
Si(t), 0, 0, 0

)|Si(t) ≥ 0, i = 1, 2
}

. (17)

Assume {(Si(0), Ii(0), Di(0), Wi(0))} ∈ M∂ , for i = 1, 2. It suffices to show that

Ii(t) = Di(t) = Wi(t) = 0, ∀t ≥ 0.

Suppose not, then there exist an i0, i0 = 2 and t0 ≥ 0 such that

(
I1(t0), D1(t0), W1(t0)

)T = 0,
(
I2(t0), D2(t0), W2(t0)

)T > 0 (18)

without loss of generality, assume

I2(t0) = 0, D2(t0) = 0, W2(t0) > 0, (19)

then we have

dW2(t0)
dt

= r2W2(t0) ≥ 0. (20)

It follows that there is an η > 0 such that W2(t) > 0, for t0 < t < t0 + η. This means that

(
Si(t), Ii(t), Di(t), Wi(t)

)

does not belong to ∂X0, i = 1, 2 for t0 < t < t0 + η, which contradicts the assumption that

(
Si(0), Ii(0), Di(0), Wi(0)

) ∈ M∂ , i = 1, 2.

Thus (15) holds.
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It is worth noting that E0 is globally stable for system (3). It is clear that there is only
an equilibria E0 in M∂ , by the aforementioned claim, it then follows that E0 is an isolated
invariant set in X, W S(E0)∩X0 = ∅. Clearly, every orbit in M∂ converges to E0, E0 is acyclic
in M∂ . Using Theorem 4.6 in Thieme [62], we conclude that system (3) in uniformly per-
sistent with respect to (X0, ∂X0).

By the result of [63–65], system (3) has an equilibrium E∗ = (Si, Ii, Di, W i) ∈ X0, i = 1, 2.
We further claim that Si > 0, i = 1, 2. Suppose that Si = 0, i = 1, 2, from the second equation
of (3), we can get Ii = Di = W i = 0, i = 1, 2. It is a contradiction. Then (Si, Ii, Di, W i, i = 1, 2),
is a component-wise positive equilibrium of system (3). The proof is complete. �

3.2 Existence of equilibria
System (3) has one disease-free equilibrium, E0 = (S0

1, 0, 0, 0, S0
2, 0, 0, 0) and three endemic

equilibria of the forms E∗
1 = (S∗

1, I∗
1 , D∗

1, W ∗
1 , S∗

2, 0, 0, 0), E∗
2 = (S∗∗

1 , 0, 0, 0, S∗∗
2 , I∗∗

1 , D∗∗
1 , W ∗∗

1 )
and E∗ = (S1, I1, D1, W 1, S2, I2, D2, W 2), corresponding respectively to states where the dis-
ease persists in the first sub-population and dies out in the second sub-population, the
disease persists in the second sub-population and disappears in the first sub-population,
and when the disease persists in the two sub-populations.

3.2.1 The first boundary equilibrium
The patch-1 system is obtained by making I2 = D2 = W2 = 0, and it is given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

S′
1 = b1 + a2S2 – Λ1S1 – (μ1 + a1)S1,

I ′
1 = Λ1S1 – k1I1,

D′
1 = v1I1 – α1D1,

W ′
1 = δ1I1 + ρ1D1 – r1W1,

S′
2 = b2 + a1S1 – (μ2 + a2)S2.

(21)

Let E∗
1 = (S∗

1, I∗
1 , D∗

1, W ∗
1 , S∗

2, 0, 0, 0) be the first boundary endemic equilibrium with I1, D1,
W1 > 0. Then the endemic equilibrium E∗

1 can be obtained by setting to zero the right hand
side of Eqs. (21), giving

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

b1 + a2S∗
2 = (βI1 I∗

1 + βD1 D∗
1 + βW1 W ∗

1 )S∗
1 + (μ1 + a1)S∗

1,

b2 + a1S∗
1 = (a2 + μ2)S∗

2,

(βI1 I∗
1 + βD1 D∗

1 + βW1 W ∗
1 )S∗

1 = k1I∗
1 ,

v1I∗
1 = α1D∗

1,

δ1I∗
1 + ρ1D∗

1 = r1W ∗
1 .

(22)

It is straightforward to prove that, when R1 > 1 and R2 ≤ 1, system (3) has exactly one
non-trivial boundary endemic equilibrium E∗

1 = (S∗
1, I∗

1 , D∗
1, W ∗

1 , S∗
2, 0, 0, 0) where S∗

1 , I∗
1 , D∗

1,
W ∗

1 , S∗
2 are given by

⎧
⎨

⎩

S∗
1 = S0

1
R1

, S∗
2 = a1+b2R1

(a2+μ2)R1
, I∗

1 = [(a2+b2)b1+a2b2](R1–1)
(a2+μ2)k1R1

,

I∗
1 = [v1((a2+b2)b1+a2b2)](R1–1)

a1(a2+μ2)k1R1
, I∗

1 = [(α1δ1+v1ρ1)((a2+b2)b1+a2b2)](R1–1)
α1r1k1(a2+μ2)R1

.
(23)
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We now present the local stability of E∗
1 when the reproduction number is close to 1. We

make use of the centre manifold theory [66], but we first present the following lemma.

Lemma 1 Consider the following general system of ordinary differential equations with
parameter φ:

dx
dt

= f (x,φ), f : Rn ×R →R, and f ∈C
2 (

R
n ×R

n), (24)

where 0 is an equilibrium of the system, that is, f (0,φ) = 0 ∀φ, and assume:
A1) A = Dxf (0, 0) = ( ∂fi

∂xj
(0, 0)) is the linearisation of system (24) around the equilibrium

0 and φ evaluated at 0. Zero is a simple eigenvalue of A and other eigenvalues of A have
negative real parts

A2) Matrix A has the right eigenvector u and a left eigenvector v corresponding to the zero
eigenvalue. Let fk be the kth component of f and

a =
n∑

k,i,j=1

qkpipj
∂2fk

∂xi∂xj
(0, 0),

b =
n∑

k,i=1

qkpi
∂2fk

∂xi∂φ
(0, 0).

(25)

The local dynamics of (24) around zero are totally governed by a and b.
i. a > 0, b > 0. When φ < 0 with |φ| � 1, and there exists a positive unstable

equilibrium, when 0 < φ � 1, 0 is unstable and there exists a negative and locally
asymptotically stable equilibrium.

ii. a < 0, b < 0. When φ < 0 with |φ| � 1, 0 unstable; when 0 < φ � 1, 0 is locally
asymptotically stable, and there exists a positive unstable equilibrium.

iii. a > 0, b < 0. When φ < 0 with |φ| � 1, 0 is unstable, and there exists a locally
asymptotically stable negative equilibrium; when 0 < φ � 1, 0 is stable, and a
positive unstable equilibrium appears.

iv. a < 0, b > 0. When φ changes from negative to positive, 0 changes its stability from
stable to unstable. Corresponding a negative unstable equilibrium becomes positive
and locally asymptotically stable.

Theorem 6 The unique patch 1-only boundary equilibrium, E∗
1 , of system (3), is locally

asymptotically stable when R1 > 1 but only if R1 is close to 1.

The proof of Theorem 6 is outlined in Appendix 3.

3.2.2 The second boundary equilibrium
Let E∗∗

2 = (S∗∗
1 , 0, 0, 0, S∗∗

2 , I∗∗
2 , D∗∗

2 , W ∗∗
2 ) be the second boundary endemic equilibrium

with I2, D2, W2 �= 0. Then the endemic equilibrium E∗∗
2 (steady state with I2, D2, W2 > 0)

can be obtained by setting the right hand side of equations in system (3) to zero, that
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is,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

b1 + a2S∗∗
2 = (a1 + μ1)S∗∗

1 ,

b2 + a1S∗∗
1 = (βI2 I∗∗

2 + βD2 D∗∗
2 + βW2 W ∗∗

2 )S∗∗
2 + (μ2 + a2)S∗∗

2 ,

(βI2 I∗∗
2 + βD2 D∗∗

2 + βW2 W ∗∗
2 )S∗∗

2 = k2I∗∗
2 ,

v2I∗∗
2 = α2D∗∗

2 ,

δ2I∗∗
2 + ρ2D∗∗

2 = r2W ∗∗
2 .

(26)

It is straightforward to prove that, when R2 > 1 and R1 ≤ 1, system (3) has exactly one
non-trivial boundary endemic equilibrium E∗∗

2 = (S∗∗
1 , 0, 0, 0, S∗∗

2 , I∗∗
2 , D∗∗

2 , W ∗∗
2 ) where S∗∗

1 ,
S∗∗

2 , I∗∗
2 , D∗∗

2 , W ∗∗
2 are given by

⎧
⎨

⎩

S∗∗
1 = a2+b1R2

(a1+μ1)R2
, S∗∗

2 = S0
2

R2
, I∗∗

2 = [(a1+b1)b2+a1b1](R2–1)
(a1+μ1)k2R2

,

D∗∗
2 = [v2((a1+b1)b2+a1b1)](R2–1)

a2(a1+μ1)k2R2
, W ∗∗

2 = [(α2δ2+v2ρ2)((a1+b1)b2+a1b1)](R2–1)
α2r2k2(a1+μ1)R2

.
(27)

Theorem 7 The unique patch 2-only boundary equilibrium, E∗
2 , of system (3), is locally

asymptotically stable when R2 > 1 but only if R2 is close to 1.

Proof The proof for Theorem 7 follows the same procedure as outlined in Sect. 3.2.1 on
the proof of the stability of patch 1-only boundary equilibrium, and the bifurcation pa-
rameter is computed by setting R2 = 1. �

3.2.3 The interior endemic equilibrium
E∗ = (S1, I1, D1, W 1, S2, I2, D2, W 2) be the interior endemic equilibrium when both infec-
tious of the two sub-populations co-exist, like, Ii �= 0, Di �= 0, Wi �= 0, i = 1, 2. To find this
endemic equilibrium, we equate system (3) to zero and rewrite it as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

bi + ajSj = ΛiSi + (μi + ai)Si,

ΛiSi = kiIi,

viIi = αiDi,

δiIi + ρiDi = riW i, i = 1, 2, j = 1, 2; i �= j.

(28)

Solutions of Eqs. (28) are defined by

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

S1 = S0
1

R1
, I1 = r1α1(μ1+a1)(R�

1–1)
r1v1βD1 +r1α1βI1 +(α1δ1+μ1ρ1)βW1

,

D1 = r1v1(μ1+a1)(R�
1–1)

r1v1βD1 +r1α1βI1 +(α1δ1+μ1ρ1)βW1
, W 1 = (μ1+a1)(α1δ1+μ1ρ1)(R�

1–1)
r1v1βD1 +r1α1βI1 +(α1δ1+μ1ρ1)βW1

,

S2 = S0
2

R2
, I2 = r2α2(μ2+a2)(R�

2–1)
r2v2βD2 +r2α2βI2 +(α2δ2+μ2ρ2)βW2

,

D2 = r2v2(μ2+a2)(R�
2–1)

r2v2βD2 +r2α2βI2 +(α1δ2+μ2ρ2)βW2
, W 2 = (μ2+a2)(α2δ2+μ2ρ2)(R�

2–1)
r2v2βD2 +r2α2βI2 +(α2δ2+μ2ρ2)βW2

,

(29)

where

R�
1 =

a1S0
1 + b1R2

(μ1 + a1)S0
1

R1

R2
and R�

2 =
a2S0

2 + b2R1

(μ2 + a2)S0
2

R2

R1
. (30)
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Note that, when R�
1 > 1 and R�

2 > 1, one has R1 > 1 and R2 > 1. Then system (3) has a
non-trivial interior endemic equilibrium E∗ = (S1, I1, D1, W 1, S2, I2, D2, W 2) when R�

1 > 1
and R�

2 > 1.
We now investigate the local stability of the interior endemic equilibrium (29), and we

shall make use of Lemma 1. We claim the following result.

Theorem 8 The unique interior equilibrium, E∗, of system (3), is locally asymptotically
stable when R0 > 1 but only if the corresponding reproduction number is close to 1.

The proof of Theorem 8 is outlined in Appendix 4.
The existence of the endemic equilibrium of system (3) is summarised in the following

theorem.

Theorem 9 System (3) has:
1. A boundary endemic equilibrium of the form E∗

1 = (S∗
1, I∗

1 , D∗
1, W ∗

1 , S∗
2, 0, 0, 0)

whenever R1 > 1 and R2 ≤ 1. This means that the disease is endemic in the first
sub-population and dies out in the second population.

2. A boundary endemic equilibrium of the form E∗∗
2 = (S∗∗

1 , 0, 0, 0, S∗∗
2 , I∗∗

2 , D∗∗
2 , W ∗∗

2 )
whenever R1 ≤ 1 and R2 > 1. This means that the disease is endemic in the second
sub-population and dies out in the first population.

3. An interior endemic equilibrium of the form E∗ = (S1, I1, D1, W 1, S2, I2, D2, W 2)
whenever R1 > 1 and R2 > 1 which corresponds to the case when the disease persists
in the two sub-populations.

4 Optimal control in educational campaigns
In this section, an optimal control problem is formulated by incorporating two interven-
tion strategies into our basic model (3). Optimal control has been applied in the study of
infectious diseases such as in [67–69]. Stopping the EVD transmission chain is still the
main strategy to limit the spread of the disease. This can be achieved through educational
campaigns that encourage behavioural changes like safe burial practices, self-isolation and
proper hygiene [70]. To include educational campaigns into patch 1 and patch 2 as con-
trols, u1 and u2 respectively, we extend system (3). The controlling effort u1 represents a
time-dependent control in educational campaigns with respect to patch 1 and u2 repre-
senting a time-dependent control in educational campaigns with respect to patch 2. Ed-
ucational campaigns, in this case, are aimed at encouraging the uninfected to have some
protective behaviours. We assume that u1 > u2 since some neighbouring countries or com-
munities might have lesser efforts compared to their neighbours in terms of control efforts.
The extended model is given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

S′
i = bi + ajSj – (1 – ui)ΛiSi – (μi + ai)Si,

I ′
i = (1 – ui)ΛiSi – (μi + vi + φi)Ii,

R′
i = φiIi + bjRj – (μi + bi)Ri,

D′
i = viIi – αiDi,

W ′
i = δiIi + ρiDi – riWi, i = 1, 2; j = 1, 2; i �= j.

(31)

A successful control strategy is one that reduces the number of individuals infected with
Ebola while minimising the costs associated with these efforts. Thus, our goal is to find a
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pair of controls (u∗
1, u∗

2) that minimise the number of infected individuals and the cost of
educational campaigns. Our objective functional is therefore formulated as

J(u1, u2) =
∫ T

0

[
A1I1 + A2I2 + B1u2

1 + B2u2
2
]

dt, (32)

subject to the constraints given by (31) and where A1, A2, B1, B2 are positive balancing
coefficients transferring integrals into monetary quantity over a finite period of time T
weeks. The first two terms in (32) with coefficients A1 and A2 represent the weights of the
individuals I1 and I2, respectively. The coefficients B1 and B2 represent the cost associated
with the efforts in educational campaigns for patch 1 and 2, respectively. We seek the pair
(u∗

1, u∗
2) ∈ U such that

J
(
u∗

1, u∗
2
)

= inf
(u1,u2)∈U

J (u1, u2)

subject to the state system given by (31), where

U =
{(

u1(t), u2(t)
)

: is Lebesgue measurable on [0, T], 0 ≤ ui(t) ≤ ui max, i = 1, 2
}

(33)

is the control set. Next, we derive the optimality system.

4.1 The optimality system
Using the Pontryagin maximum principle [71], we now derive the necessary conditions
that an optimal control and corresponding states must satisfy. This principle converts
(31)–(33) into a problem of minimising pointwise a Hamiltonian H, with respect to
(u1(t), u2(t)):

H =
[
A1I1 + A2I2 + B1u2

1 + B2u2
2
]

+ λ1
[
b1 + a2S2 – (1 – u1)Λ1S1 – (μ1 + a1)S1

]

+ λ2
[
(1 – u1)Λ1S1 – (μ1 + v1 + φ1)I1

]

+ λ3
[
φ1I1 + b2R2 – (μ1 + b1)R1

]
+ λ4[v1I1 – α1D1] + λ5[δ1I1 + ρ1D1 – r1W1]

+ λ6
[
b2 + a1S1 – (1 – u2)Λ2S2 – (μ2 + a2)S2

]

+ λ7
[
(1 – u2)Λ2S2 – (μ2 + v2 + φ2)I2

]

+ λ8
[
φ2I2 + b1R1 – (μ2 + b2)R2

]
+ λ9[v2I2 – α2D2] + λ10[δ2I2 + ρ2D2 – r2W2],

where λi, i = 1, 2, . . . , 10. are the adjoint variables. In the following theorem, we present the
adjoint system and control characterisation.

Theorem 10 Given an optimal control (u∗
1, u∗

2) and corresponding state solutions Si, Ii, Ri,
Di, Wi of the corresponding state system (31) that minimises J (u1, u2) over U , there exist
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adjoint variables (functions), λi(t), for i = 1, 2, . . . , 10, satisfying

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ′
1(t) = (1 – u1)(λ1 – λ2)Λ1 + a1(λ1 – λ6) + μ1λ1,

λ′
2(t) = –A1 + (1 – u1)βI1 S1(λ1 – λ2) + φ1(λ2 – λ3) + v1(λ2 – λ4) – δ1λ5 + μ1λ2,

λ′
3(t) = b1(λ3 – λ8) + μ1λ3,

λ′
4(t) = (1 – u1)βD1 S1(λ1 – λ2) – ρ1λ5 + α1λ4,

λ′
5(t) = (1 – u1)βW1 S1(λ1 – λ2) + r1λ5,

λ′
6(t) = (1 – u2)(λ6 – λ7)Λ2 + a2(λ6 – λ1) + μ2λ6,

λ′
7(t) = –A2 + (1 – u2)βI2 S2(λ6 – λ7) + φ2(λ7 – λ8) + v2(λ8 – λ9) – δ2λ10 + μ2λ7,

λ′
8(t) = b2(λ8 – λ3) + μ2λ8,

λ′
9(t) = (1 – u2)βD2 S2(λ6 – λ7) – ρ2λ10 + α2λ9,

λ′
10(t) = (1 – u2)βW2 S2(λ6 – λ7) + r2λ10,

(34)

with terminal conditions

λi(t) = 0, i = 1, 2, . . . , 10. (35)

Furthermore, the optimal controls u∗
1 and u∗

2 are represented by

⎧
⎨

⎩

u∗
1(t) = max{0, min(u1 max, (λ2–λ1)Λ1S1

2C1
)},

u∗
2(t) = max{0, min(u2 max, (λ7–λ6)Λ2S2

2C2
)}.

(36)

Proof The existence of optimal control follows from Corollary 4.1 of [72] since the inte-
grand of J is a convex function of (u1, u2) and the state system satisfies the Lipshitz prop-
erty with respect to the state variables. The following can be derived from the Pontryagin
maximum principle [71]:

λ′
1 =

∂H
∂S1

, λ′
2 =

∂H
∂I1

, . . . , λ′
10 =

∂H
∂W2

, (37)

with λi(T) = 0 for i = 1, 2, . . . , 10 evaluated at the optimal controls and corresponding
states, which results in the adjoint system (34). The Hamiltonian H is minimised with
respect to the controls at the optimal controls, so we differentiate H with respect to u1

and u2 on the set U , respectively, giving the following optimality conditions:

⎧
⎨

⎩

∂H
∂u1

= (λ1 – λ2)Λ1S1 + 2C1u1 = 0,
∂H
∂u2

= (λ6 – λ7)Λ2S2 + 2C2u2 = 0.
(38)

Hence, we obtain

⎧
⎨

⎩

u∗
1(t) = (λ2–λ1)Λ1S1

2C1
,

u∗
2(t) = (λ7–λ6)Λ2S2

2C2
.

(39)

Taking into account the bounds on the controls, we obtain the desired characterisations. �
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Table 1 Model parameters, i = 1, 2, for patch 1 and 2 respectively. The time unit is in weeks

Definition Symbol Baseline values Source

Effective contact rate of human individuals βIi 0.16 [74]
Effective contact rate of deceased human individuals βDi 0.489 [74]
Effective contact rate of Ebola virus βWi 0.062 [74]
Rate of migration from first sub-population to the
second sub-population (susceptible)

ai (0, 0.3) Assumed

Rate of migration from first sub population to the
second sub population (recovered)

bi (0, 0.3) Assumed

Natural death rate of human individuals μi (0, 1) [75]
Recovery rate of human individuals φi 0.018 (0.16–0.202) [76]
Disease-induced death rate of human individuals vi 0.5 [74]
Decay rate of Ebola virus in the environment ri (0,∞) [77, 78]
Shedding rate of infectious human individuals δi (0,∞) Assumed
Shedding rate of deceased human individuals ρi (0,∞) Assumed
Burial rate of deceased human individuals αi (0,∞) [79, 80]

5 Numerical simulations
In this section, we now provide some numerical simulations. The existence of an opti-
mal control is provided and the behaviour of the optimality system made of 10 ordinary
differential equations is evaluated through numerical simulations done with Matlab. The
optimality system is solved using an iterative method with the Runge–Kutta fourth order
scheme. Starting with a guess for the adjoint variables, the state equations are solved for-
ward in time. Then these state values are used to solve the adjoint equations backward in
time, and the iterations continue until convergence.

To illustrate the results of the foregoing analysis, we have simulated system (3) using the
parameters in Table 1. Parameters in Table 1 are taken from the recent works on the West
African Ebola outbreaks. We then assume some of the parameters in the realistic range for
illustrative purposes. We are using the same table of parameters for both patches. Among
the estimated parameters, are the balancing coefficients which have been arbitrarily cho-
sen for illustration purposes. These weight parameters determine the importance of vari-
ables in the objective functional [73]. Thus A1 = 100, A2 = 100, B1 = B2 = 90.

We first consider a scenario where we have net migration on a2, thus, a2 > a1 imply-
ing that we have R1 > R2 > 1. We take a1 = 0.03, a2 = 0.3 and we assume that all other
parameters take the same values for the two patches (see Table 1).

Figures 1(a) and 1(b) generally show that the controls have an impact on the control
of EVD. Figure 1(a) shows that the controls are highly effective in patch 1 since in the
presence of the control the infected population is very low for the whole period under
study. Figure 1(b) depicts that the controls are effective only after 9 weeks. Figure 1(c)
and 1(d) represents the controls u1 and u2 respectively. Both controls are at the upper
bound for the whole period under study, 32 weeks. Thus under the given scenario, a2 > a1,
both controls are feasible and effective for the whole period under study, hence more effort
should be devoted to both controls in implementation.

We now consider a scenario where we have 0 net migration, thus a2 = a1, implying that
we have R1 = R2 > 1. We take a1 = 0.165, a2 = 0.165 and we assume that all other param-
eters take the same values for the two patches (see Table 1).

Figure 2(a) and 2(b) shows that the controls are effective in the reduction of EVD. Fig-
ure 2(a) shows that the control u1 becomes effective after 14 weeks and Fig. 2(a) shows
that control u2 becomes effective after 2 weeks. It is worth noting that Fig. 2(a) and 2(b)
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Figure 1 Time series plots showing the effects of optimal control on the (a) infected individuals for patch 1
(I1), (b) infected individuals for patch 2 (I2); also the optimal control graphs for the two controls,
(c) educational campaigns for patch 1 and (d) educational campaigns for patch 2

shows that the controls are significant to a certain extent in the reduction of EVD. Fig-
ure 2(c) and 2(d) shows that the controls may not be sustainable for certain time intervals.
In Fig. 2(c) the control u1 is at the lower bound for 14 weeks. Thus, the control u1 is ini-
tiated after 14 weeks under this scenario. Control u2 starts at the upper bound and stays
at the upper bound for the rest of the period under study. In this scenario, a2 = a1, more
effort should be devoted to control u2. It is worth noting that control u2 is the less efficient
one, hence devoting more effort to control u2 in controlling EVD might not be ideal.

Lastly, we consider a scenario where we have a net migration in a1, thus a1 > a2, imply-
ing that we have R2 > R1 > 1. We take a1 = 0.3, a2 = 0.03 and we assume that all other
parameters take the same values for the two patches (see Table 1).

Figures 3(a) and 3(b) depict that the controls are only effective up to a certain extent.
Figure 3(a), shows that the controls are effective during the last 28 weeks of the whole of
32 weeks under study. Figure 3(b) shows that the controls are only effective in the first 28
weeks only. Figure 3(c) and 3(d) also shows that the controls may not be sustainable for
certain time intervals. Figure 3(c) shows that the control u1 starts at the lower bound and
is initiated after 26 weeks. Figure 3(d) shows that control u2 is at the upper bound for the
rest of the period under study. Under this scenario, a1 > a2, it is worth noting that more
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Figure 2 Time series plots showing the effects of optimal control on the (a) infected individuals for patch 1
(I1), (b) infected individuals for patch 2 (I2); also the optimal control graphs for the two controls,
(c) educational campaigns for patch 1 and (d) educational campaigns for patch 2

effort should be devoted to control u2. Under the given scenario control, u1, which is the
most effective, it is not feasible.

6 Discussion
Several countries in West Africa, in particular, Sierra Leone, Guinea and Liberia experi-
enced morbidity and mortality during the Ebola epidemic from 2013–2015. At the time of
this epidemic there was no known vaccine or drug, so effective disease control required
coordinated efforts that include both standard strategies, such as hospitalisation, as well as
community efforts, such as safe burial practices, proper hygiene in hospitals, etc. Not only
are such efforts difficult to implement in practice, but there is also added complexity with
connectivity between populations that have different policies in place. These complexi-
ties may affect some communities, that is, neighbouring communities might have lesser
efforts compared to their neighbours in terms of control strategies. Currently, starting in
August 2018 EVD is terrorising North Kivu in the Democratic Republic of Congo, a place
with high mobility among the traders from different communities [7, 8].

In this manuscript, we formulated and analysed a differential equation-based two-patch
model, with the patches connected by migration. EVD features and dynamics within a
population such as the infectious environment, deceased individuals and the infectious
individuals are incorporated in both patches. The susceptible and recovered individuals
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Figure 3 Time series plots showing the effects of optimal control on the (a) infected individuals for patch 1
(I1), (b) infected individuals for patch 2 (I2); also the optimal control graphs for the two controls,
(c) educational campaigns for patch 1 and (d) educational campaigns for patch 2

are the only ones who migrate. The basic reproductive number,R0, for the model has been
computed. Our results show thatR0, can provide a sharp threshold for the disease dynam-
ics when R0 ≤ 1 the disease-free equilibrium is globally stable indicating that the disease
would die out, but when R0 > 1 the disease persists. Subsequently, we have performed an
optimal control study on this two-patch model to effectively design control strategies to
control EVD. The control u1 represents educational campaigns in patch 1 and the control
u2 represents educational campaigns in patch 2, with u1 > u2. We considered two com-
munities with the same control strategy, which differ in their levels of efficacy. Our major
aim is to assess the spread of the EVD epidemic within two communities connected by
migration, with these communities employing the same control strategy which only differ
in efficiency. The technical tool used to determine the optimal strategy is the Pontrya-
gin maximum principle. Numerical simulations results show that the implementation of
the optimal control has a huge impact on the reduction of the infected individuals in both
patches, and that the outcome of the control from each patch may be different due to their
different characteristics. We also realised that, given our controls u1 > u2, it is advisable
to have a2 > a1, as in the net migration is into patch 1, so as to control EVD faster and
with maximum effort for fewer resources. It is worth noting that for the scenario a2 > a1

we have R1 > R2 > 1. Thus, in the case of an EVD epidemic, we can manage to move the
people who are not infected from places that have inefficient intervention strategies to



Mhlanga Advances in Difference Equations        (2019) 2019:458 Page 19 of 27

places with higher efficient intervention strategies, regardless of the relative magnitude of
the respective reproduction numbers in both communities. Generally, the study finds that
EVD can be controlled if optimal educational campaigns are implemented, although this
might not be appropriate for certain time intervals.

However, just like any other model, we cannot say the model is complete, it can be ex-
tended to include the aspect of the refugees, rebels and health care workers, like the case
in the Democratic Republic of Congo.

Appendix 1

Proof of Theorem 1 Rewriting system (3) in expanded form, we have the following system
(system (3) is still the same as system (40)):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S′
1 = b1 + a2S2 – Λ1S1 – (μ1 + a1)S1,

I ′
1 = Λ1S1 – (μ1 + v1 + φ1)I1,

D′
1 = v1I1 – α1D1,

W ′
1 = δiIi + ρiDi – riWi,

S′
2 = b1 + a1S1 – Λ2S2 – (μ2 + a2)S2,

I ′
2 = Λ2S2 – (μ2 + v2 + φ2)I2,

D′
2 = v2I2 – α2D2,

W ′
2 = δ2I2 + ρ2D2 – r2W2.

(40)

It is worth noting that, since (40)1 and (40)5 are first order linear equations in S1 and S2,
respectively, it is easy to see that S1(t) > 0 if and only if S2(t) > 0. With this remark in mind,
we shall prove below that S1(t) > 0 for t ≥ 0. To this end, put t0

1 = sup{t > 0, S1(t) > 0} and
t0
2 = sup{t > 0, S2(t) > 0}.

If t0
1 = +∞ and t0

2 = +∞, we use the above-mentioned remark to conclude that both S1(t)
and S2(t) are positive for all t ≥ 0. If t0

1 < ∞ and t0
2 < ∞, we are going to prove that this

leads to a contradiction. By a continuity argument, the solution functions S1(t) and S2(t)
change sign at least once in the intervals J1 = [t0

1 , +∞) and J2 = [t0
2 , +∞), respectively.

Denote by tm
1 ∈ J1 and tm

2 ∈ J2 the first real numbers such that S1(tm
1 ) = 0 and S2(tm

2 ) = 0,
respectively. We then have

∀t, 0 < t < tm1
1 , S1(t) > 0, S1

(
tm
1
)

= 0 and

∀t, 0 < t < tm2
2 , S2(t) > 0, S2

(
tm
2
)

= 0.
(41)

Without loss of generality, suppose that tm
1 ≤ tm

2 . Then, from system (40), we have

S′
1
(
tm
1
)

= b1 + a2S2
(
tm
1
)

> 0. (42)

Equation (42) implies that there exists a positive number tm1
1 > tm

1 such that

S1(t) > 0, ∀0 < t < tm1
1 . (43)
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Putting Eqs. (41) and (43) together and using the continuity of S1(t), we conclude that tm
1

is an extremum of S1(t). Moreover, since S1(t) is a differentiable function on R, one has
S′(tm

1 ) = 0. This is a contradiction to (42). Therefore, t0
1 = +∞, which implies that t0

2 = +∞
as well.

To prove that I1(t), D1(t), W1(t), I2(t), D2(t), W2(t) ≥ 0 for all t ≥ 0, whenever

I1(0), D1(0), W1(0), I2(0), D2(0), W2(0) ≥ 0,

we rewrite the corresponding equations in (40) in the form

x′(t) = Mx(t), where x(t) =
(
I1(t), D1(t), W1(t), I2(t), D2(t), W2(t)

)T , (44)

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

βI1 S1 – (μ1 + v1 + φ1) βD1 S1 βW1 S1 0 0 0
v1 –α1 0 0 0 0
δ1 ρ1 –r1 0 0 0
0 0 0 βI2 S2 – (μ2 + v2 + φ2) βD2 S2 βW2 S2
0 0 0 v2 –α2 0
0 0 0 δ2 ρ2 –r2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(45)

Since S1(t) > 0, S2(t) > 0 as established above, M is a Metzler matrix. Thus (44) is a mono-
tone system. Therefore R

6
+ is invariant under the flow of system (44). This completes the

proof of positivity of the solutions. �

Appendix 2

Proof of Theorem 2 Adding the total human population we have

N ′ = b1 + b2 – (μ1 + v1 + φ1)I1 – (μ2 + v2 + φ2)I2 – μ1S1 – μ2S2

≤ b – μ0N . (46)

Applying the Gronwall inequality to Eq. (46), we have

N(t) ≤ b
μ0

+
(

N(0) –
b
μ0

)

e–μ0t , ∀t ≥ 0, (47)

which implies that 0 ≤ N(t) ≤ b
μ0

for all t ≥ 0 if N(0) ≤ b
μ0

. Furthermore, it follows from
Eq. (3)3 that we have the relation

D′ ≤ vb
μ0

– α1D, (48)

to which another application of the Gronwall inequality yields the bounds

0 ≤ D(t) ≤ vb
α1μ0

+
(

D(0) –
vb

α1μ0

)

e–vt ≤ vb
α1μ0

, ∀t ≥ 0, (49)

where D(0) ≤ vb
α1μ0

.
The boundedness of W (t) is proved similarly. �
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Appendix 3

Proof of Theorem 6 To apply Lemma 1, the following simplifications and change of vari-
ables are carried out. Let S1 = x1, I1 = x2, D1 = x3, W1 = x4, S2 = x5, S0

1 = x0
1. Furthermore,

by using the vector notation X = (f1, f2, f3, f4, f5), system (21) can be written in the form
dX
dt = F(x), with F = (f1, f2, f3, f4, f5)T , such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1
dt = f ′

1 = b1 + a2x5 – (βI1 x2 + βD1 x3 + βW1 x4)x1 – (μ1 + a1)x1,
dx2
dt = f ′

2 = (βI1 x2 + βD1 x3 + βW1 x4)x1 – k1x2,
dx3
dt = f ′

3 = v1x2 – α1x3,
dx4
dt = f ′

4 = δ1x2 + ρ1x3 – r1x4,
dx5
dt = f ′

5 = b2 + a1x1 – (μ2 + a2)x2.

(50)

The Jacobian matrix of system (50) at E0 is given by

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

–(μ1 + a1) –βI1 x0
1 –βD1 x0

1 –βW1 x0
1 a2

0 βI1 x0
1 – k1 βD1 x0

1 βW1 x0
1 0

0 v1 –α1 0 0
0 δ1 ρ1 –r1 0
a1 0 0 0 –(μ2 + a2)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

from which it can be shown that

R1 =
x0

1βD1 v1

k1α1
+

x0
1βI1

k1
+

x0
1βW1 (α1δ1 + μ1ρ1)

(k1r1α1)
, (51)

with S0
1 = x0

1 as defined in Eq. (5).
Now, we consider 
1βI1 = βD1 and 
2βW1 = βD1 regardless of whether 
1,
2 ∈ (0, 1) or


1,
2 ≥ 1. Taking βD1 as the bifurcation parameter and considering that R1 = 1 and solv-
ing for βD1 , we have

β∗ = βD1 =
k1α1r1

x0
1(v1r1 + 
1r1α1 + 
2(α1δ1 + μ1ρ1))

. (52)

The transformed system (50), with βD1 = β∗, has a hyperbolic equilibrium point (like, the
linearised system has a simple eigenvalue with zero real part, and all other eigenvalues
have negative real part), so that the centre manifold theory [66] can be used to analyse the
dynamics of (50) near βD1 = β∗. It can be shown that the Jacobian of system (50) has a right
eigenvector associated with the zero eigenvalue given by p = (p1, p2, p3, p4, p5)T , where

⎧
⎨

⎩

p1 = – μ2+a2
μ2(μ1+a1)+μ1a2

Hp3 < 0, p2 = α1
v1

p3 > 0, p3 = p3 > 0,

p4 = ( δ1α1+ρ1v1
r1v1

)p3 > 0, p5 = – a1
μ2(μ1+a1)+μ1a2

Hp3 < 0,
(53)

where

H =
(

α1r1βI1 x0
1 + r1v1βD1 x0

1 + βW1 (δ1α1 + ρ1v1)x0
1

r1v1

)

. (54)
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The left eigenvectors of J(E0) associated with the zero eigenvalue at βD1 = β∗ is given by
q = (q1, q2, q3, q4, q5)T , where

q1 =
a1

(μ1 + a1)
q5, q2 =

r1

βW1 S0
1

q4 +
a1

(μ1 + a1)
q5,

q3 =
(

r1βD1 + ρ1βW1

βW1

)

q4, q4 = q4 > 0, q5 = q5 > 0.
(55)

Computation of the bifurcation parameters a and b. For the sign of a, it can be shown
that the associated non-vanishing partial derivatives of F are given by

∂2f1

∂x1∂x2
=

∂2f1

∂x2∂x1
= –βI1 ,

∂2f1

∂x1∂x3
=

∂2f1

∂x3∂x1
= –βD1 ,

∂2f1

∂x1∂x4
=

∂2f1

∂x4∂x1
= –βW1 ,

∂2f2

∂x1∂x2
=

∂2f2

∂x2∂x1
= βI1 ,

∂2f2

∂x1∂x3
=

∂2f2

∂x3∂x1
= βD1 ,

∂2f2

∂x1∂x4
=

∂2f2

∂x4∂x1
= βW1 .

(56)

From (56) it follows that

a = 2p1(p2βI1 + p3βD1 + p4βW1 )
r1

βW1 x0
1

q4 < 0. (57)

This excludes the possibility of a backward bifurcation since a < 0. For the sign of b, it is
associated with the following non-vanishing partial derivatives of F :

∂2f1

∂x2∂β∗ = –
1βD1 x0
1,

∂2f1

∂x3∂β∗ = –βD1 x0
1,

∂2f1

∂x4∂β∗ = –
2βD1 x0
1,

∂2f2

∂β∗∂x2
= 
1βD1 x0

1,
∂2f2

∂β∗∂x3
= βD1 x0

1,
∂2f2

∂β∗∂x4
= 
2βD1 x0

1.
(58)

It follows from the expressions in (58) that

b = (p2βI1 + p3βD1 + p4βW1 )
r1

βW1 S0
1

q4 > 0. (59)

Thus, a < 0 and b > 0 and applying Lemma 1 item (iv), we have established our result. The
proof is complete. �

Appendix 4

Proof of Theorem 6 To apply Lemma 1, it is convenient to make the following change of
variables:

let S1 = x1, I1 = x2, D1 = x3, W1 = x4, S2 = x5, I2 = x6, D2 = x7, W2 = x8, S0
1 = x0

1, S0
2 = x0

2.
Further, by using the vector notation X = (f1, f2, f3, f4, f5, f6, f7, f8), system (3) can be written
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in the form dX
dt = F(x), with F = (f1, f2, f3, f4, f5, f6, f7, f8)T , such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1
dt = f ′

1 = b1 + a2x5 – (βI1 x2 + βD1 x3 + βW1 x4)x1 – (μ1 + a1)x1,
dx2
dt = f ′

2 = (βI1 x2 + βD1 x3 + βW1 x4)x1 – k1x2,
dx3
dt = f ′

3 = v1x2 – α1x3,
dx4
dt = f ′

4 = δ1x2 + ρ1x3 – r1x4,
dx5
dt = f ′

5 = b2 + a1x1 – (βI2 x6 + βD2 x7 + βW2 x8)x5 – (μ2 + a2)x5,
dx6
dt = f ′

6 = (βI2 x6 + βD2 x7 + βW2 x8)x5 – k2x6,
dx7
dt = f ′

7 = v2x6 – α2x7,
dx8
dt = f ′

8 = δ2x6 + ρ2x7 – r2x8.

(60)

The Jacobian matrix of system (60) at E0 is given by

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

–(μ1 + a1) –βI1 x0
1 –βD1 x0

1 –βW1 x0
1 a2 0 0 0

0 βI1 x0
1 – k1 βD1 x0

1 βW1 x0
1 0 0 0 0

0 v1 –α1 0 0 0 0 0
0 δ1 ρ1 –r1 0 0 0 0
a1 0 0 0 –(μ2 + a2) –βI2 x0

2 –βD2 x0
2 –βW2 x0

2
0 0 0 0 0 βI2 x0

2 – k2 βD2 x0
2 βW2 x0

2
0 0 0 0 0 v2 –α2 0
0 0 0 0 0 δ2 ρ2 –r2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

from which it can be shown that R0 = max{R1,R2}, where

Ri =
S0

i βDi vi

kiαi
+

S0
i βIi

ki
+

S0
i βWi (αiδi + μiρi)

(kiriαi)
, i = 1, 2. (61)

Now, we consider 
1βI1 = βD1 , 
2βW1 = βD1 , 
3βI2 = βD2 , 
4βW2 = βD2 regardless of
whether 
1,
2,
3,
4 ∈ (0, 1) or 
1,
2,
3,
4 ≥ 1. Taking βD1 as the bifurcation parame-
ter and considering that R0 = 1 and solving for βD1 , we have

β∗ = βD1 =
k1α1r1

S0
1(v1r1 + 
1r1α1 + 
2(α1δ1 + μ1ρ1))

. (62)

Note that the linearised system of the transformed equation (60) with the bifurcation
point β∗ has a zero eigenvalue. Hence, the centre manifold theory [66] can be used
to analyse the dynamics of system (60) near βI1 = β∗. It can be shown that the Jaco-
bian of system (60) has a right eigenvector associated with the zero eigenvalue given by
p = (p1, p2, p3, p4, p5, p6, p7, p8)T , where

⎧
⎪⎪⎨

⎪⎪⎩

p1 = – μ2+a2
μ2(μ1+a1)+μ1a2

Hp3 < 0, p2 = α1
v1

p3 > 0, p3 = p3 > 0,

p4 = ( δ1α1+ρ1v1
r1v1

)p3 > 0, p5 = – a1
μ2(μ1+a1)+μ1a2

Hp3 < 0, p6 = α2
v2

p7,

p7 = p7 > 0, p8 = ( δ2α2+ρ2v2
r2v2

)p7 > 0,

(63)

with H as defined in Eq. (54).
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The left eigenvectors of J(E0) associated with the zero eigenvalue at βD1 = β∗ is given by
q = (q1, q2, q3, q4, q5, q6, q7, q8)T , where

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

q1 = a1
(μ1+a1) q5 > 0, q2 = r1

βW1 S0
1

q4 + a1
(μ1+a1) q5 > 0,

q3 = ( r1βD1 +ρ1βW1
βW1

)q4 > 0, q4 = q4 > 0, q5 = q5 > 0,

q6 = q5 + r2
βW2 S0

2
q8 > 0, q7 = ( r2βD2

α2βW2
+ ρ2

α2
)q8 > 0, q8 = q8 > 0.

(64)

Computation of the bifurcation parameters a and b. For the sign of a, it can be shown
that the associated non-vanishing partial derivatives of F are given by

∂2f1

∂x1∂x2
=

∂2f1

∂x2∂x1
= –βI1 ,

∂2f1

∂x1∂x3
=

∂2f1

∂x3∂x1
= –βD1 ,

∂2f1

∂x1∂x4
=

∂2f1

∂x4∂x1
= –βW1 ,

∂2f2

∂x1∂x2
=

∂2f2

∂x2∂x1
= βI1 ,

∂2f2

∂x1∂x3
=

∂2f2

∂x3∂x1
= βD1 ,

∂2f2

∂x1∂x4
=

∂2f2

∂x4∂x1
= βW1 ,

∂2f5

∂x5∂x6
=

∂2f5

∂x6∂x5
= –βI2 ,

∂2f5

∂x5∂x7
=

∂2f5

∂x7∂x5
= –βD2 ,

∂2f5

∂x5∂x8
=

∂2f5

∂x8∂x5
= –βW2 ,

∂2f6

∂x5∂x6
=

∂2f6

∂x6∂x5
= βI2 ,

∂2f6

∂x5∂x7
=

∂2f6

∂x7∂x5
= βD2 ,

∂2f6

∂x6∂x8
=

∂2f6

∂x8∂x5
= βW2 .

(65)

From (65) it follows that

a = 2p1(p2βI1 + p3βD1 + p4βW1 )
r1

βW1 S0
1

q4

+ 2p5(p6βI2 + p7βD2 + p8βW2 )
r2

βW2 S0
2

q8 < 0. (66)

This excludes the possibility of a backward bifurcation since a < 0. For the sign of b, it is
associated with the following non-vanishing partial derivatives of F :

∂2f1

∂x2∂β∗ = –
1βD1 x0
1,

∂2f1

∂x3∂β∗ = –βD1 x0
1,

∂2f1

∂x4∂β∗ = –
2βW1 x0
1,

∂2f2

∂β∗∂x2
= 
1βI1 x0

1,
∂2f2

∂β∗∂x3
= βD1 x0

1,
∂2f2

∂β∗∂x4
= 
2βW1 x0

1,

∂2f5

∂x6∂β∗ = –
3βI2 x0
2,

∂2f2

∂x7∂β∗ = –βD2 x0
2,

∂2f2

∂x4∂β∗ = –
2βW2 x0
2,

∂2f6

∂β∗∂x6
= 
3βI2 x0

2,
∂2f6

∂β∗∂x7
= βD2 x0

2,
∂2f6

∂β∗∂x8
= 
4βW2 x0

2.

(67)

It follows from the expressions in (67), and after some algebraic manipulations, we have

b = (p2βI1 + p3βD1 + p4βW1 )
r1

βW1 x0
1

q4 + (p6βI2 + p7βD2 + p8βW8 )
r2

βW2 x0
2

q8 > 0. (68)
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Thus, a < 0 and b > 0 and applying Lemma 1 item (iv), we have established our result. The
proof is complete. �

Remark Suppose that βD2 is chosen as a bifurcation parameter. By using the same ap-
proach as was used when βD1 was taken as the bifurcation parameter in the proof of The-
orem 6, we arrive at the same conclusion, that is, a < 0 and b > 0.
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