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Abstract
In this paper, we use operational matrices of Chebyshev polynomials to solve
fractional partial differential equations (FPDEs). We approximate the second partial
derivative of the solution of linear FPDEs by operational matrices of shifted
Chebyshev polynomials. We apply the operational matrix of integration and fractional
integration to obtain approximations of (fractional) partial derivatives of the solution
and the approximation of the solution. Then we substitute the operational matrix
approximations in the FPDEs to obtain a system of linear algebraic equations. Finally,
solving this system, we obtain the approximate solution. Numerical experiments
show an exponential rate of convergence and hence the efficiency and effectiveness
of the method.
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1 Introduction
We consider a fractional partial differential equation (FPDE) of the form

ρ1
∂αu(x, y)

∂xα
+ ρ2

∂βu(x, y)
∂yβ

+ ρ3
∂u(x, y)

∂x
+ ρ4

∂u(x, y)
∂y

+ ρ5u(x, y) = f (x, y), (1)

on (x, y) ∈ [0, 1] × [0, 1], with initial conditions:

u(0, y) = g(y), u(x, 0) = h(x)
(
with consistency condition h(0) = g(0) = h0

)
,

where ρi for i = 1, . . . , 5 are constants real numbers, f , g and h are known continuous func-
tions and u is unknown functions with 0 ≤ α,β ≤ 1. Here, ∂αu(x,y)

∂xα and ∂β u(x,y)
∂yβ are fractional

derivatives in Caputo sense, defined by

∂αu(x, y)
∂xα

:=
1

Γ (1 – α)

∫ x

0

ux(τ , y)
(x – τ )α

dτ

and

∂βu(x, y)
∂yβ

:=
1

Γ (1 – β)

∫ y

0

uy(x, τ )
(y – τ )β

dτ .
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The study of FPDE (1) motivated us with many applications. We study in this paper two
instances of these applications. First, we generalize the advection equation to include the
dissipating of energy due to the friction and other possible factors that may not be con-
sidered in their model easily. Second, we solve the Lighthill–Whitham–Richards equation
[1] arose in vehicular traffic flow on a finite-length highway. This equation is a particular
case of Eq. (1) and is obtained by putting ρ3 = ρ4 = ρ5 = 0, ρ1 = 1 and f = 0 in Eq. (1).

The memory terms in FPDEs make them completely different from integer order partial
differential equations (PDEs) and solving FPDEs numerically or analytically is more chal-
lenging than PDEs. However, the memory term in the integral form has its advantages
and is useful in the modeling of a physical or chemical phenomenon in which the recent
data depends completely on the data of the whole past time. In this respect, for example,
the fractional model of the Ambartsumian equation was generalized for describing the
surface brightness of the Milky Way [2]. Other recent advantages for these types of appli-
cations can be found in [3–11]. Therefore, it is of paramount importance to find efficient
methods for solving FPDEs [12–15].

Recently, new methods for solving FPDEs have been developed in the literature. These
methods include the variational iteration method [16], the Laplace transform method [17],
the wavelet operational method [18–21], the Haar wavelet method [22], the Adomian de-
composition method [23], the homotopy analysis method [24], the Legendre base method
[25], Bernstein polynomials [26] and converting to a system of fractional differential equa-
tions [27]. The finite-difference methods are mostly studied for the numerical solution of
partial differential equations [28, 29]. The advantage of these methods over other meth-
ods is that it can be used for nonlinear type of equations. However, for linear equations,
the spectral methods are highly recommended because of the simplicity and efficiency
[30]. Clearly, the finite-difference methods introduced in [28, 29] can be generalized for
solving nonlinear fractional differential equations, but they cannot be essential for linear
equations.

The spectral methods using Chebyshev polynomials are well known for ordinary and
partial differential equations with rapid convergence property [30–40]. An important ad-
vantage of these methods over finite-difference methods is that computing the coefficient
of the approximation completely determines the solution at any point of the desired in-
terval. Therefore, in this paper, we introduce an operational matrix spectral method using
Chebyshev polynomials for solving FPDEs.

Orthogonal polynomials play important roles in the spectral methods for fractional
differential equations. A novel spectral approximation for the two-dimensional frac-
tional sub-diffusion problems has been studied in [41]. New recursive approximations
for variable-order fractional operators with applications can be found in [42]. Recovery
of a high order accuracy in Jacobi spectral collocation methods for fractional terminal
value problems with non-smooth solutions can be found in [43]. Highly accurate numeri-
cal schemes for multi-dimensional space variable-order fractional Schrödinger equations
are in [44]. Operational matrices were adapted for solving several kinds of fractional dif-
ferential equations. The use of numerical techniques in conjunction with operational ma-
trices of some orthogonal polynomials for the solution of FDEs produced highly accurate
solutions for such equations [45–49].

The discrete orthogonality properties of the Chebyshev polynomials are its advantages
over other orthogonal polynomials like Legendre polynomials. Also, the zeros of the
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Chebyshev polynomials are known analytically. These properties lead to the Clenshaw–
Curtis formula which makes integration easy. We use this formula to obtain the opera-
tional matrix of the fractional integration.

The main aim of this paper is to obtain a numerical solution of general FPDEs (1) by
Chebyshev polynomials. To this end, we first approximate second partial derivatives of
the unknown solution of the FPDEs (1) by Chebyshev polynomials. Then we obtain the
operational matrices corresponding to fractional partial derivatives, partial derivatives,
and an approximate solution. Substituting these operational formulas into FPDEs (1), we
obtain a system of linear algebraic equations. Finally, by solving this system of linear al-
gebraic equations we can find the desired approximate solution. We show also that this
procedure is equivalent to applying the Chebyshev operational matrix method to a multi-
variable Volterra integral equation. Based on this equivalency, we obtain an error analysis.

The major difference of the introduced method in this paper with other methods with
operational matrix is that we have avoided to use the differential operation. Indeed, we
have approximated the second partial derivative of the solution by Chebyshev polynomials
and then we have used the integral operations to obtain the approximate solution.

The structure of this paper is as follows. In Sect. 2, we review important formula and
definitions of the fractional calculus and the Chebyshev polynomials. In Sect. 3, we in-
troduce the approximations of multivariable functions in terms of the shifted Chebyshev
polynomials. In Sect. 4, we obtain the operational matrix for approximating the integral
and fractional integral operators. In Sect. 5, we propose a spectral method based on op-
erational matrix for solving FPDEs of the form (1). In Sect. 6, we provide the related error
analysis. In Sect. 7, some numerical examples are provided to show the efficiency of the
introduced method and in Sect. 8, some applications of FPDE (1) in modeling of the ad-
vection equation and the Lighthill–Whitham–Richards equation are studied.

2 Preliminaries and notations
In this section we review some definitions and theorems for the topics of Chebyshev poly-
nomials and fractional calculus.

2.1 Fractional calculus
In order to define the Caputo-fractional derivative, we first define the Riemann–Liouville
fractional integral.

Definition 2.1 ([3]) A real function f (t), on (0,∞) is said to be in the space Cμ, μ ∈ R if
there exists a real number p > μ such that f (t) = tpf1(t), where f1 ∈ C([0,∞]), and it is said
to be in the space Cn

μ if f (n) ∈ Cμ, n ∈N .

Definition 2.2 ([3]) The Riemann–Liouville fractional integral of order α ≥ 0 of a func-
tion f ∈ Cα , α ≥ –1, is defined as

t0 Iα
t f (t) =

1
Γ (α)

∫ t

t0

f (x)
(t – x)1–α

dx, α > 0, t > 0,

t0 I0
t f (t) = f (t).

(2)
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Therefore, the fractional integral of (t – t0)β is

t0 Iα
t (t – t0)β =

Γ (β + 1)
Γ (α + β + 1)

(t – t0)β+α , β > –1,α > 0.

Definition 2.3 ([3]) Let f ∈ Cm
–1, m ∈ N . Then the Caputo-fractional derivative of f is

defined as

t0 Dα
t f (t) =

⎧
⎨

⎩
t0 Im–αf (m)(t), m – 1 < α < m,
dm

dxm f (t), α = m.
(3)

Thus, for 0 < α < 1, we have

t0 Dα
t f (t) =

1
Γ (1 – α)

∫ t

t0

f ′(x)
(t – x)α

dx. (4)

Some important properties of Caputo-fractional derivative are [3]

t0 Dα
t C = 0,

t0 Dα
t (t – t0)β = 0, β < �α�,

t0 Dα
t (t – t0)β =

Γ (β + 1)
Γ (β + 1 – α)

(t – t0)β–α , β ≥ �α�.

Here, �α� and 	α
 are the floor and the ceiling of α, respectively. Furthermore, it is straight-
forward to show that, for every m ∈ R+ and n ∈ N , we have t0 Dm+n

t f (t) = t0 Dm
t (t0 Dn

t f (t)),
[3]. Moreover, for 0 ≤ α ≤ 1, we have

t0 Iα
t t0 Dα

t f (t) = f (t) – f
(
0+)

(5)

and

t0 Dα
t t0 Iα

t f (t) = f (t). (6)

2.2 Chebyshev polynomials
Definition 2.4 Let x = cos(θ ). Then the Chebyshev polynomial Tn(x), n ∈ N ∪ {0}, over
the interval [–1, 1], is defined by the relation

Tn(x) = cos(nθ ). (7)

The Chebyshev polynomials are orthogonal with respect to the weight function w(x) =
1√

1–x2 and the corresponding inner product is

〈f , g〉 =
∫ 1

–1
w(x)g(x)f (x) dx, for f , g ∈L2[–1, 1]. (8)

The well-known recursive formula

Tn+1(x) = 2xTn(x) – Tn–1(x), n ∈N , (9)
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with T0(x) = 1 and T1(x) = x is important for computing these polynomials, whereas we
may use

Tn(x) =
[n/2]∑

k=0

(–1)k2n–2k–1 n
n – k

(
n – k

k

)

xn–2k , n > 0, (10)

to compute Chebyshev polynomials in analysis. Since the range of the problem (1) is [0, 1],
we use the shifted Chebyshev polynomials T∗

n (x) defined by

T∗
n (x) = Tn(2x – 1)

with corresponding weight function w∗(x) = w(2x – 1). Using, T∗
n (x) = T2n(

√
x), (see [40],

Sect. 1.3) we could compute the shifted Chebyshev polynomials by

T∗
n (x) =

n∑

k=0

(–1)k22n–2k–1 2n
2n – k

(
2n – k

k

)

xn–k , n > 0. (11)

The discrete orthogonality of Chebyshev polynomials leads to the Clenshaw–Curtis for-
mula [40]:

∫ 1

–1
w(x)f (x) dx � π

N + 1

N+1∑

k=1

f (xk), (12)

where xk for k = 1, . . . , N + 1 are zeros of TN+1(x). Also, the norm of T∗
i (x),

γn :=
∥
∥T∗

n (x)
∥
∥2 =

〈
T∗

n (x), T∗
n (x)

〉
=

∫ 1

0
w∗(x)

(
T∗

n
)2(x) dx =

⎧
⎨

⎩

π
4 , n > 0,
π
2 , n = 0,

will be of importance below.

3 Function approximation
A function f defined over the interval [0, 1], may be expanded as

f (x) �
N∑

m=0

cmT∗
m(x) = CTΨ (x), N ∈N , (13)

where C and Ψ are the matrices of size (N + 1) × 1,

CT = [c0, . . . , cN ],

Ψ T (x) =
[
T∗

0 (x), . . . , T∗
N (x)

]
,

(14)

and

ci =
1
γi

∫ 1

0
w∗(x)f (x)T∗

i (x) dx

=
1
γi

∫ 1

0
w(2x – 1)f (x)Ti(2x – 1) dx
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=
1

2γi

∫ 1

–1
w(t)f

(
t + 1

2

)
Ti(t) dt

� π

2γi(N + 1)

N+1∑

k=1

f
(

xk + 1
2

)
Ti(xk), i = 0, . . . , N . (15)

The following error estimate for an infinitely differentiable function f shows that the
Chebyshev expansion of f converges with exponential rate.

Theorem 3.1 ([40] Theorem 5.7) Let g ∈ C[0, T] and g satisfy the Dini–Lipschitz condi-
tion, i.e.,

ω(δ) log(δ) → 0 as δ → 0,

where ω is modulus of continuity. Then ‖g – png‖∞ → 0 as n → ∞.

A similar error estimate exists for the Clenshaw–Curtis quadrature.

Theorem 3.2 Let the hypotheses of Theorem 3.1 be satisfied. Then

∣
∣I(f ) – IN (f )

∣
∣ < 4

∥
∥f – pN (f )

∥
∥∞,

where I(f ) =
∫ 1

–1 w(x)f (x) dx and IN (f ) = π
N+1

∑N+1
k=1 f (xk).

Proof It is clear from Theorem 1 of [50, 51]. �

Let u(x, y) be a bivariate function defined on [0, 1] × [0, 1]. Then it can similarly be ex-
panded using Chebyshev polynomials as follows:

u(x, y) �
N∑

n=0

N∑

m=0

un,mT∗
n (x)T∗

m(y) = Ψ (x)T UΨ (y), N ∈N , (16)

where U = (ui,j) is a matrix of size (N + 1) × (N + 1) with the elements

ui,j =
1

γiγj

∫ 1

0

∫ 1

0
w∗(x)w∗(y)u(x, y)T∗

i (x)T∗
j (y) dx dy

=
1

4γiγj

∫ 1

–1

∫ 1

–1
w(x)w(y)u

(
x + 1

2
,

y + 1
2

)
Ti(x)Tj(y) dx dy

� π2

4γiγj(N + 1)2

N+1∑

r=1

N+1∑

s=1

u
(

xr + 1
2

,
xs + 1

2

)
Ti(xr)Tj(xs). (17)

4 Operational matrices
Theorem 4.1 Let Ψ (x) be the vector of shifted Chebyshev polynomials defined by (14).
Then

∫ x

0
Ψ (τ ) dτ � PΨ (x), (18)



Mockary et al. Advances in Difference Equations        (2019) 2019:452 Page 7 of 20

where the operational matrix P can be defined by

P =

⎛

⎜⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜
⎝

1
2

1
2 0 0 . . . 0 0 0 . . . 0 0

– 1
8 0 1

8 0 . . . 0 0 0 . . . 0 0
– 1

6 – 1
4 0 1

4∗3 . . . 0 0 0 . . . 0 0
...

...
...

...
. . .

...
...

...
. . .

...
...

– (–1)n

2(n+1)(n–1) 0 0 0 . . . – 1
4(n–1) 0 1

4(n+1) . . . 0 0
...

...
...

...
. . .

...
...

...
. . .

...
...

– (–1)N–1

2N(N–2) 0 0 0 . . . 0 0 0 . . . 0 1
4N

– (–1)N

2(N+1)(N–1) 0 0 0 . . . 0 0 0 . . . – 1
4(N–1) 0

⎞

⎟⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟
⎠

.

Proof An easy computation shows that

∫ x

0
T∗

0 (τ ) dτ = x =
1
2

T∗
1 (x) +

1
2

T∗
0 (x)

and
∫ x

0
T∗

1 (τ ) dτ = x2 – x =
1
8

T∗
2 (x) –

1
8

T∗
0 (x),

which can be used to obtain the first and the second rows of the matrix P, respectively.
For n > 1, we can use

∫
Tn(x) dx =

⎧
⎨

⎩

1
2 ( Tn+1(x)

n+1 – T|n–1|(x)
n–1 ), n �= 1,

1
4 T2(x), n = 1,

to obtain
∫ x

0
T∗

n (τ ) dτ =
1
4

(
T∗

n+1(x)
n + 1

–
T∗

n–1(x)
n – 1

)
–

(–1)nT∗
0 (x)

2(n + 1)(n – 1)
,

which shows the structure of the other rows of the matrix P. �

Theorem 4.2 Let 0 < α < 1. Then there exists r > 1 such that

1
Γ (1 – α)

∫ x

0

Ψ (τ )
(x – τ )α

dτ � DαΨ (x); (19)

Dα = (dn,r) is the operational matrix and its elements can be approximated by

(Dα)0,r � π2α–2

γr(N + 1)Γ (2 – α)

N+1∑

j=1

(xj + 1)1–αTr(xj),

for r = 1, . . . , N , and

(Dα)n,r �
n∑

k=0

N+1∑

j=1

(–1)k n2n–k–2+α

2n – k

(
2n – k

k

)
Γ (n – k + 1)

Γ (2 – α + n – k)
π (xj + 1)n–k+1–α

γr(N + 1)
Tr(xj)

for n = 1, . . . , N and r = 0, . . . , N .
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Proof From (11), we get

1
Γ (1 – α)

∫ x

0

T∗
n (τ )

(x – τ )α
dτ

=
1

Γ (1 – α)

n∑

k=0

(–1)k22n–2k–1 2n
2n – k

(
2n – k

k

)∫ x

0

τ n–k

(x – τ )α
dτ

=
n∑

k=0

(–1)k22n–2k–1 2n
2n – k

(
2n – k

k

)

0I1–α
t

(
xn–k)

=
n∑

k=0

(–1)k22n–2k–1 2n
2n – k

(
2n – k

k

)
Γ (n – k + 1)

Γ (2 – α + n – k)
xn–k+1–α , (20)

for n > 0, and

1
Γ (1 – α)

∫ x

0

T∗
0 (τ )

(x – τ )α
dτ =

x1–α

Γ (2 – α)
, (21)

for n = 0. Applying (13) to f (x) = xn–k+1–α , we obtain

xn–k+1–α �
N∑

r=0

π

2γr(N + 1)

N+1∑

j=1

(
xj + 1

2

)n–k+1–α

Tr(xj)T∗
r (x). (22)

Now, by substituting the xn–k+1–α from (22) into (20) and (21) we obtain the desired re-
sult. �

Remark 4.3 For f ∈ C[–1, 1], the maximum error of Clenshaw–Curtis formula is less than
4‖f – pN f ‖∞, [50]. Hence, the Clenshaw–Curtis formula for xn–k+α in the proof of Theo-
rem 4.2 shows convergence and the approximation is exact when N → ∞.

5 Implementation
Considering Ψ (y)T UΨ (x) as an approximation to u(x, y), we will need to compute partial
derivatives of this approximation. But this type of differentiation leads to a reduction of
the order of convergence. Therefore, by considering some regularity conditions, we change
our strategy and we apply the approximation of the form

uxy � Ψ (x)T UΨ (y), (23)

where U is an unknown matrix. To this end, we suppose the regularity condition

uxy(x, y) = uyx(x, y). (24)

Remark 5.1 Schwarz’s theorem (or Clairaut’s theorem) is a well-known result that asserts
that u ∈ C2 is a sufficient condition for (24) to hold.

Now we can obtain the other operators of uxy by using appropriate operational matrices.
From (23) and (24), we have, using initial conditions,

ux(x, y) � Ψ T (x)U
∫ y

0
Ψ (τ ) dτ + ux(x, 0)
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= Ψ T (x)U
∫ y

0
Ψ (τ ) dτ + h′(x)

� Ψ T (x)UPΨ (y) + h′(x), (25)

uy(x, y) �
∫ x

0
Ψ T (τ ) dτUΨ (y) + uy(0, y)

=
∫ x

0
Ψ T (τ ) dτUΨ (y) + g ′(y)

� Ψ T (x)PT UΨ (y) + g ′(y), (26)

and

u(x, y) �
∫ x

0
Ψ T (τ ) dτU

∫ y

0
Ψ (τ ) dτ + h(x) + g(y) – h0

� Ψ T (x)PT UPΨ (y) + h(x) + g(y) – h0. (27)

Consequently, we have

∂αu(x, y)
∂xα

� 1
Γ (1 – α)

∫ x

0

Ψ T (τ )UPΨ (y) + h′(τ )
(x – τ )α

dτ

� Ψ T (x)DT
α UPΨ (y) +

dαh(x)
dxα

(28)

and

∂βu(x, y)
∂yβ

� 1
Γ (1 – β)

∫ y

0

Ψ T (x)PT UΨ (τ ) + g ′(τ )
(y – τ )β

dτ

� Ψ T (x)PT UDβΨ (y) +
dβg(y)

dxβ
. (29)

Substituting from (25)–(29) into (1), we obtain

Ψ T (x)KΨ (y) = ρ1Ψ
T (x)DT

α UPΨ (y) + ρ2Ψ
T (x)PT UDβΨ (y)

+ ρ3Ψ
T (x)UPΨ (y) + ρ4Ψ

T (x)PT UΨ (y)

+ ρ5Ψ
T (x)PT UPΨ (y), (30)

where

k(x, y) = f (x, y) – ρ1
dαh(x)

dxα
– ρ2

dβg(y)
dxβ

– ρ3h′(x) + ρ4g ′(y) – ρ5
(
h(x) + g(y) – h0

)
(31)

is approximated by k(x, y) � Ψ T (x)KΨ (y), using (16). Taking the orthogonality properties
of Ψ T (x) and Ψ (y) into account, we can drop Ψ (x) and Ψ (y) to obtain the following system
of algebraic equations:

K = ρ1DT
α UP + ρ2PT UDβ + ρ3UP + ρ4PT U + ρ5PT UP. (32)
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Finally, the approximate solution can be computed using (27):

uN (x, y) = Ψ T (x)PT UPΨ (y) + h(x) + g(y) – h0, (33)

where uN stands for approximate solution to distinguish it from the exact solution u.

6 Error analysis
Suppose that u ∈ C2 is a unique solution of system (1), and set z := uxy. Then an easy
computation shows that

ux(x, y) =
∫ y

0
z(x, τ ) dτ + h′(x),

uy(x, y) =
∫ x

0
z(τ , y) dτ + g ′(y),

u(x, y) =
∫ y

0

∫ x

0
z(τ , t) dτ dt + g(y) + h(x) – h0,

∂αu(x, y)
∂xα

=
1

Γ (1 – α)

∫ x

0

∫ y

0

z(τ , t)
(x – τ )α

dt dτ +
dαh(x)

dxα
,

(34)

and

∂βu(x, y)
∂yβ

=
1

Γ (1 – β)

∫ y

0

∫ x

0

z(t, τ )
(y – τ )β

dt dτ +
dβg(y)

dyβ
. (35)

Substituting from (34) and (35) into (1), we obtain

ρ1

Γ (1 – α)

∫ x

0

∫ y

0

z(τ , t)
(x – τ )α

dt dτ +
ρ2

Γ (1 – β)

∫ y

0

∫ x

0

z(t, τ )
(y – τ )β

dt dτ

+ ρ3

∫ y

0
z(x, τ ) dτ + ρ4

∫ x

0
z(τ , y) dτ

+ ρ5

∫ y

0

∫ x

0
z(τ , t) dτ dt = k(x, y). (36)

Introducing, the operator L : CL[0, 1] → CL[0, 1] by

L
(
z(x, y)

)
:=

(
ρ1Iα

x Iy + ρ2Iβ
y Ix + ρ3Iy + ρ4Ix + ρ5IyIx

)(
z(x, y)

)

we can write Eq. (36) in the operator form

L
(
z(x, y)

)
= k(x, y). (37)

Here, CL stands for continuous functions satisfying the Dini–Lipschitz condition. Suppose
that

ez(x, y) := z(x, y) – Ψ (x)T ZΨ (y), (38)

ek(x, z) := k(x, y) – Ψ (x)T KΨ (y), (39)

ε(x, z) := L
(
Ψ (x)T ZΨ (y)

)
– LN (Z), (40)
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where the operator LN is defined by

LN (Z) := Ψ (x)T(
ρ1DT

α ZP + ρ2PT ZDβ + ρ3ZP + ρ4PT Z + ρ5PT ZP
)
Ψ (y).

Substituting z(x, y) and k(x, y) from (38) and (39) into (37) we obtain

L
(
Ψ (x)T ZΨ (y)

)
+ L

(
ez(x, y)

)
= Ψ (x)T KΨ (y) + ek(x, z).

Using (40) and the fact that L and LN are linear operators we obtain

LN (Z) + ε(x, z) + L
(
ez(x, y)

)
= Ψ (x)T KΨ (y) + ek(x, z).

Taking into account that

LN (U) = Ψ (x)T KΨ (y)

and denoting by E = Z – U the error function, we obtain

LN (E) = ek(x, z) – ε(x, z) – L
(
ez(x, y)

)
.

If LN is an invertible operator, we obtain

EN = L–1
N

(
ek(x, z) – ε(x, z) – L

(
ez(x, y)

))
. (41)

Supposing L–1
N and L are continuous operators we obtain

‖E‖∞ ≤ c
(∥∥ek(x, z)

∥∥∞ –
∥∥ε(x, z)

∥∥∞ –
∥∥ez(x, y)

∥∥∞
)
, (42)

where c > 0 is constant number not depending on N . We note that by Remark 4.3,
‖ε(x, z)‖∞ → 0 and by Theorem 3.1

∥
∥ek(x, z)

∥
∥∞ → 0

and

∥∥ez(x, y)
∥∥∞ → 0

as N → ∞. Since ‖z – uN‖∞ ≤ c‖E‖∞, the convergence of the approximate solution is
evident. This analysis also shows that the convergence rate depends on the convergence
rate of the Chebyshev polynomials.

Remark 6.1 Since Z is not available, usually in most of the literature, the perturbed term

R(x, z) = L
(
Ψ (x)T UΨ (y)

)
– LN (U)

can be introduced to obtain

R(x, z) = L
(
Ψ (x)T UΨ (y)

)
– Ψ (x)T KΨ (y)
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= L
(
Ψ (x)T UΨ (y)

)
– k(x, z) + k(x, z) – Ψ (x)T KΨ (y)

= L(uN ) – L(z) + ek(x, z)

= L(uN – z) + ek(x, z) (43)

for error estimation. By solving

L(uN – z) = R(x, z) – ek(x, z)

with the given numerical method, an error estimation is obtained.

7 Numerical examples
In this section, we apply the proposed method introduced in the previous sections to ob-
tain numerical solutions to some FPDEs. The maximum errors are computed using

E(N) = max
(x,y)∈D100

∣∣u(x, y) – uN (x, y)
∣∣,

where DM = {(xi, yj)|xi = ih, yj = jh, i, j = 0, . . . , M, h = 1
M }.

Example 7.1 We consider the class of FPDEs

∂αu(x, y)
∂xα

+
∂βu(x, y)

∂yβ
=

Γ (n + 1)
Γ (n + 1 – α)

xn–α

+
Γ (m + 1)

Γ (m + 1 – β)
ym–β , (44)

subjected to the initial conditions

h(x) = xn, g(y) = ym, h0 = 0,

with free parameters m, n, α and β . Using (31) we obtain h ≡ 0 and hence, U = 0N+1 (zero
matrix of dimension N +1), and the approximate solution using (27) is u(x, y) = h(x)+g(y)–
h0 = xn + ym. Therefore, as we expected the proposed method leads to an exact solution.

Example 7.2 We consider the class of FPDEs

∂αu(x, y)
∂xα

+
∂βu(x, y)

∂yβ
=

Γ (n + 1)
Γ (n + 1 – α)

xn–αym

+
Γ (m + 1)

Γ (m + 1 – β)
ym–βxn, (45)

subjected to the initial conditions

h(x) = 0, g(y) = 0, h0 = 0,

with free parameters m ≥ 1, n ≥ 1, α and β . We could examine the numerical solutions
with changing these parameters. The exact solution is u(x, y) = xnym. In Table 1, the max-
imum error E(N) is reported for N = 1, . . . , 6, α = 0.5, β = 2/3 and different parameters of
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Table 1 The maximum error for N = 1, . . . , 6, and different parameters of Example 7.2

N m = n = 1 n =m = 2 n =m = 3 n = 5,m = 1 n =m = 12

1 5.5511.10–16 2.3438.10–01 3.4234.10–01 3.2751.10–01 9.1653.10–01

2 2.2204.10–16 5.5511.10–16 6.1523.10–02 1.1758.10–01 4.9227.10–01

3 4.4409.10–16 6.6613.10–16 5.5511.10–16 2.1827.10–02 1.9605.10–01

4 1.1102.10–15 7.2164.10–16 9.9920.10–16 1.9531.10–03 7.6836.10–02

5 1.2212.10–15 8.8818.10–16 1.5543.10–16 9.9920.10–16 2.9179.10–02

6 1.7764.10–15 1.2212.10–16 4.6881.10–16 1.5543.10–15 8.8058.10–03

Table 2 The maximum error for N = 1, . . . , 6, λ1 = 0.5, λ2 = 0.5, β = 0.5 and different values of the
parameter α in Example 7.3

N α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9

1 3.4243.10–02 1.9167.10–02 4.1523.10–02 3.0790.10–02 2.7848.10–02

2 1.8745.10–03 1.9548.10–03 1.6683.10–03 1.5703.10–03 1.3961.10–03

3 1.0347.10–04 1.5833.10–04 7.8774.10–05 4.5813.10–05 1.0989.10–04

4 1.5305.10–06 5.5149.10–06 4.4306.10–06 2.1457.10–06 1.7219.10–06

5 3.1330.10–08 4.7322.10–06 2.4929.10–07 7.1379.10–08 1.9298.10–08

6 6.0701.10–10 1.4718.10–07 1.3745.10–08 2.6000.10–09 1.1406.10–09

n and m. For m = n = 1 the approximate solution is exact and the truncated error is ob-
served only. For m = n = 2 the approximate solution is exact when N ≥ 2. This pattern is
observed for other parameters of n and m, and the method gives the exact solution when-
ever N ≥ max{n, m}. Finally, we choose m = n = 12 to find the well-known exponential rate
of convergence for Chebyshev spectral methods.

Example 7.3 Consider the class of FPDEs of the form

∂αu(x, y)
∂xα

–
∂βu(x, y)

∂yβ
+ u(x, y)

= λ1x1–αE1,2–α(λ1x)eλ2y

– λ2y1–βE1,2–β(λ2y)eλ1x + eλ1x+λ2y, (46)

subjected to the initial conditions

h(x) = eλ1x, g(y) = eλ2y, h0 = 1,

with free parameters λ1, λ2, α and β . Here, En,m(Z) is the two-parameter function of
Mittag-Leffler type [52, 53]. The exact solution is eλ1x+λ2y. In Table 2, the maximum er-
ror E(N) is reported for N = 1, . . . , 6, λ1 = 0.5, λ2 = 0.5 β = 0.5 and α = 0.1, 0.3, 0.5, 0.7, 0.9.
It shows the exponential rate of convergence for all values of the α. To illustrate this point
we plotted the logarithm of maximum error in Fig. 1. Table 3 shows the maximum error
E(N) for negative parameters λ1 = –0.5, λ2 = –0.5.

Example 7.4 Let us consider a class of FPDEs of the form

∂αu(x, y)
∂xα

+ ν
∂u(x, y)

∂y
+ u(x, y)

= –λ2
1x2–αE2,3–α

(
–λ2

1x2) sin(λ2y)
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Figure 1 The logarithm of maximum error versus N, for Example 7.3

Table 3 The maximum error for N = 1, . . . , 6, λ1 = –0.5, λ2 = –0.5, β = 0.5 and different values of the
parameter α in Example 7.3

N α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9

1 6.6793.10–03 1.4736.10–02 9.1582.10–03 7.1919.10–03 8.6468.10–03

2 4.3318.10–04 4.1717.10–04 3.5892.10–04 3.4776.10–04 3.3983.10–04

3 9.5043.10–05 4.8460.10–05 1.8542.10–05 1.2425.10–05 3.3041.10–05

4 3.5230.10–07 2.6035.10–06 1.4957.10–06 5.1700.10–07 3.8963.10–07

5 7.3145.10–09 2.6550.10–06 1.1231.10–07 2.2479.10–08 8.6745.10–09

6 1.3762.10–10 7.8062.10–08 6.9305.10–09 1.0628.10–09 3.6135.10–10

Table 4 The maximum error for N = 1, . . . , 12, λ1 = π , λ2 = π , and different values of the parameter
α in Example 7.4

N α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1

1 1.1071.10–00 1.0950.10–00 1.1195.10–00 1.1775.10–00 1.24181.10–00

2 2.5455.10–01 2.4974.10–01 2.4349.10–01 2.3504.10–01 2.4172.10–01

3 6.0042.10–02 6.0495.10–02 6.1587.10–02 6.4331.10–02 7.2937.10–02

4 7.0736.10–03 7.0861.10–03 7.1905.10–03 7.4401.10–03 7.7583.10–03

5 1.2911.10–03 1.2991.10–03 1.3180.10–03 1.2873.10–03 1.2696.10–03

6 9.8780.10–05 9.8462.10–05 9.8370.10–05 9.9410.10–05 1.0110.10–04

7 1.4229.10–05 1.4201.10–05 1.4315.10–05 1.4212.10–05 1.3889.10–05

8 7.8316.10–07 7.8472.10–07 7.9093.10–07 7.9484.10–07 8.0049.10–07

9 9.8294.10–08 9.7810.10–08 9.7654.10–08 9.6831.10–08 9.5299.10–08

10 4.3006.10–09 4.2961.10–09 4.3060.10–09 4.3251.10–09 4.3391.10–09

11 4.5641.10–10 4.5733.10–10 4.5784.10–10 4.5211.10–10 4.4670.10–10

12 1.6370.10–11 1.6392.10–11 1.6451.10–11 1.6487.10–11 1.6526.10–11

+ cos(λ1x)
(
λ2 cos(λ2y) + sin(λ2y)

)
(47)

subjected to the initial conditions

h(x) = 0, g(y) = sin(λ2y), h0 = 0,

with free parameters λ1, λ2, and α. This time the exact solution is the sinusoid u(x, y) =
sin(λ1x) cos(λ2y). Table 4 shows the maximum error for α = 0.2, 0.4, 06, 0.8, 1 and λ1 = λ2 =
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Table 5 The maximum error for N = 1, . . . , 12, λ1 = 2π , λ2 = 2π , and different values of the
parameter α in Example 7.4

N α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1

1 2.6066.10–00 2.6051.10–00 2.6049.10–00 2.6092.10–00 2.6246.10–00

2 1.9083.10–00 1.9051.10–00 1.9295.10–00 1.9737.10–00 2.1794.10–00

3 8.3383.10–01 8.4028.10–01 8.6031.10–01 8.9811.10–01 9.8424.10–01

4 2.3551.10–01 2.4255.10–01 2.5659.10–01 2.8087.10–01 3.1023.10–01

5 5.8897.10–02 5.9052.10–02 5.9885.10–02 6.1600.10–02 6.2815.10–02

6 1.4284.10–02 1.4439.10–02 1.5317.10–02 1.6420.10–02 1.6707.10–02

7 2.1730.10–03 2.1986.10–03 2.2402.10–03 2.2673.10–03 2.2771.10–03

8 5.1272.10–04 5.2527.10–04 5.5008.10–04 5.8471.10–04 5.8723.10–04

9 6.0246.10–05 6.0782.10–05 6.1492.10–05 6.1423.10–05 6.1562.10–05

10 1.1860.10–05 1.2164.10–05 1.2624.10–05 1.3296.10–05 1.3345.10–05

11 1.1037.10–06 1.1065.10–06 1.1013.10–06 1.0874.10–06 1.0762.10–06

12 1.9317.10–07 1.9707.10–07 2.0332.10–07 2.1284.10–07 2.1485.10–07

Figure 2 The logarithm of maximum error versus N, for λ1 = λ2 = π , in Example 7.4

π , and Table 5 shows these values for λ1 = λ2 = 2π . Though these tables show that increas-
ing the frequency f = λ

2π
increase the absolute maximum error, the logarithm of maximum

error plotted in Figs. 2 and 3 shows that both experiments of this example are of exponen-
tial rate. To show the effectiveness of the method we also illustrated a numerical solution
in Figs. 4 and 5.

8 Applications
Example 8.1 The advection is the transport of a substance by bulk motion. The model
has been obtained by many restrictions such as neglecting friction and other parameters
which dissipate energy. The dynamics of this phenomenon is described by

∂u(x, t)
∂t

+ ν
∂u(x, t)

∂x
= f (x, t), (48)

where ν is a nonzero constant velocity, f is a source function and u is a particle density.
There is much literature showing how advection–dispersion equations are generalized
by fractional differential equations (see for examples [54, 55]). Therefore, it is reasonable
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Figure 3 The logarithm of maximum error versus N, for λ1 = λ2 = 2π , in Example 7.4

Figure 4 The approximate solution for λ1 = λ2 = π , in Example 7.4

to add a term containing a fractional derivative for dissipating energy in the advection
equations and we have

∂u(x, t)
∂t

+ ν
∂u(x, t)

∂x
+ η

∂αu(x, t)
∂xα

= f (x, t), (49)

where η is a constant and 0 < α ≤ 1.
Now we consider a source function of the form f (x, t) = sin(λx + ωt), with λ = π and

ω = 1. We set η = 1 and ν = 1, and solve the problem with N = 10. We compare the results
without fractional term η = 0 and with the fractional term η = 1, α = 0.7. Figure 6 shows
the density of the substance in x direction at various times. This figure is plotted by solving
Eq. (49) with fractional term (blue lines) and (48) without fractional term (red lines). In
this figure, we observe that blue lines are more accumulated than the red lines with passing
time. This can be interpreted as that the density of the substance in the presence of the
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Figure 5 The approximate solution for λ1 = λ2 = 2π , in Example 7.4

Figure 6 Approximate solutions of the advection equation: the red line shows the approximate solutions
without fractional term and the blue line shows the approximate solutions with a fractional term

fractional term decreases. This reduction in the density of particles can be explained by
considering the dissipating of energy by friction and other physical parameters which we
included by adding fractional terms.

Example 8.2 Lighthill–Whitham–Richards (LWR) equation. The equation

∂βu(x, y)
∂xβ

+ λ
∂βu(x, y)

∂yβ
= 0 (50)

has been extensively studied for describing a vehicular traffic flow on a finite-length high-
way by using local fractional directive [1]. Here, the parameters λ and 0 < β ≤ 1 are known
real numbers. Let us consider an example of this model with parameters λ = 1 and β = 0.5
subjected to the initial conditions h(x) = sinhβ (xβ ), g(y) = – sinhβ (yβ ) and h0 = 0. We recall



Mockary et al. Advances in Difference Equations        (2019) 2019:452 Page 18 of 20

Figure 7 The scaled solution of Lighthill–Whitham–Richards equation with Caputo-fractional derivatives
(markers with blue color) and local fractional derivatives (lines with red color) with β = 0.5 and λ = 1

that

sinhβ (x) :=
x

Γ (β + 1)
+

x3

Γ (3β + 1)
+ · · ·

and

coshβ (x) := 1 +
x2

Γ (2β + 1)
+

x4

Γ (4β + 1)
+ · · ·

are fractional generalizations of hyperbolic functions.
Kumar et al. [1] have obtained the general solution of Eq. (50) with local fractional

derivatives as follows:

u(x, y) = sinhβ

(
xβ

)
coshβ

(
xβ

)
– coshβ

(
xβ

)
sinhβ

(
xβ

)
. (51)

Now, we solve this equation with fractional derivatives in the Caputo sense by our pro-
posed method. We observe that this solution shows a similar behavior to the solution
obtained in (51) despite the differences in their definitions of fractional derivatives. In
Fig. 7, the scaled solutions of Eq. (50) with Caputo-fractional derivatives and local frac-
tional derivatives are depicted. This comparison shows that we can also use the Caputo-
fractional derivatives for describing a vehicular traffic flow in the Lighthill–Whitham–
Richards model.

9 Conclusion
An operational matrix method based on shifted Chebyshev polynomials was introduced
for solving fractional partial differential equations. We avoided differentiation in the in-
troduced method by using some smooth condition and approximating of the higher par-
tial derivatives of the solution. We transformed the fractional partial differential equation
into a singular Volterra integral equation. Then we addressed the approximate solution
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obtained by solving an algebraic equation. The numerical examples show that the intro-
duced method gives the exact solution whenever the solution is a polynomial and the
approximate solution converges very rapidly with an exponential rate for other examples.

A generalization of our introduced method for nonlinear equations is more challenging
than the linear case. Parallel to this work, it seems that the finite-difference methods also
can efficiently be generalized and studied for linear and nonlinear equations. Therefore,
we consider these topics for future studies and investigations.
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