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Abstract
In this paper, the coupled space fractional Ginzburg–Landau equations are
investigated numerically. A linearized semi-implicit difference scheme is proposed.
The scheme is unconditionally stable, fourth-order accurate in space, and
second-order accurate in time. The optimal pointwise error estimates, unique
solvability, and unconditional stability are obtained. Moreover, Richardson
extrapolation is exploited to improve the temporal accuracy to fourth order. Finally,
numerical results are presented to confirm the theoretical results.
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1 Introduction
The Ginzburg–Landau equation (GLE) has been used to model a wide variety of physi-
cal systems [1]. The fractional Ginzburg–Landau equation (FGLE) was first suggested by
Tarasov and Zaslavsky [2, 3] for fractal media. The FGLE has been exploited to describe
many physical situations [2, 4, 5], where the FGLE is characterized by the fractional power
of the Laplacian. Recently, the coupled fractional Ginzburg–Landau equation (CFGLE)
with stochastic noise was discussed by Shu et al. [6].

There are quite a lot of numerical studies for the classical GLE and FGLE, see [7–15] and
the references therein. To the authors’ best knowledge, there are not too many numerical
studies for the CFGLE. As far as we are aware, only very recently, Li and Huang [16] pro-
posed a second-order implicit midpoint scheme for CFGLE. However, the method in [16]
is a nonlinear scheme which requires some iterations at each time step, and only L2-norm
error estimates are provided.

In this paper, we consider the following CFGLE:

ut + (υ1 + iη1)(–�)
α
2 u

+
(
(κ1 + iζ1)|u|2 + (δ1 + iβ1)|v|2)u – γ1u = 0, x ∈R, 0 < t < T , (1)

vt + (υ2 + iη2)(–�)
α
2 v

+
(
(κ2 + iζ2)|u|2 + (δ2 + iβ2)|v|2)v – γ2v = 0, x ∈R, 0 < t < T , (2)
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with the initial condition

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ R, (3)

where i =
√

–1 is the complex unit, u(x, t), v(x, t) are complex-valued functions of time
variable t and space variable x, υ1 > 0, υ2 > 0, κ1, κ2, δ1, δ2, η1, η2, ζ1, ζ2, γ1, γ2, β1, β2

are given real constants, u0(x), v0(x) are complex-valued functions satisfying certain reg-
ularity, and 1 < α ≤ 2. The fractional Laplacian can be regarded as the Riesz fractional
derivative [17–22]

(–�)
α
2 f (x) = –∂α

x f (x) =
1

2 cos(απ/2)
(

–∞Dα
x + xDα

+∞
)
f (x), (4)

where –∞Dα
x f (x) denotes the left Riemann–Liouville fractional derivative

–∞Dα
x f (x) =

1
Γ (2 – α)

d2

dx2

∫ x

–∞
f (ξ )

(x – ξ )α–1 dξ , (5)

and xDα
+∞f (x) denotes the right Riemann–Liouville fractional derivative

xDα
+∞f (x) =

1
Γ (2 – α)

d2

dx2

∫ +∞

x

f (ξ )
(ξ – x)α–1 dξ . (6)

If υ1 = κ1 = δ1 = γ1 = υ2 = κ2 = δ2 = γ2 = 0, Eqs. (1)–(2) reduce to the coupled nonlinear
Schrödinger equation [19].

The objective of this paper is to develop an unconditionally stable linearized scheme
with optimal pointwise error estimates for the above CFGLE. The method, which uses
three time levels, is shown to be fourth-order convergence in space variable and second-
order convergence in time variable in the sense of L∞-norm. Moreover, Richardson ex-
trapolation is exploited to improve the temporal accuracy to fourth order. And the method
is also shown to be almost unconditionally stable (the time step is not related to the spatial
meshsize).

The rest of this paper is organized as follows. Section 2 gives the linearized implicit finite
difference method. Section 3 provides the theoretical analysis for the proposed scheme,
which includes the convergence and stability. Section 4 presents the numerical results
which confirm the theoretical results. And the conclusion is given in the final section.

2 A three-level linearized implicit difference scheme
2.1 Spatial discretization
In this paper, we adopt the fourth-order central difference scheme proposed by [17] to the
spatial discretization for the Riesz fractional derivative, where the method is based on the
Ortigueira’s second-order scheme and an average operator [17, 23].

Lemma 1 (see [23, 24]) For α > –1, the fractional centered difference is defined by

�α
h f (x) =

1
hα

∞∑

k=–∞
cα

k f (x – kh), (7)
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where

cα
k =

(–1)kΓ (α + 1)
Γ ( α

2 – k + 1)Γ ( α
2 + k + 1)

=
(

1 –
α + 1
α
2 + k

)
cα

k–1 for k ∈ Z. (8)

The coefficients cα
k have the following properties:

cα
0 > 0, cα

k = cα
–k ≤ 0 for k = ±1,±2, . . . . (9)

Lemma 2 (see [24]) Let f (x) ∈ C5(R) ∩ L1(R) and all spatial derivatives of f (x) up to order
five belong to L1(R). Then

(–�)
α
2 f (x) = �α

h f (x) + O
(
h2) (10)

for 1 < α ≤ 2.

Lemma 3 ([17]) Let f ∈ C7(R)∩L1(R) and all derivatives up to order seven belong to L1(R)
and 1 < α ≤ 2, then

1
hα

∞∑

k=–∞
cα

k f (x – kh) = Aα
x
(
(–�)

α
2 f (x)

)
+ O

(
h4), (11)

where the average operator Aα
h is defined as

Aα
x f (x) =

α

24
f (x – h) +

(
1 –

α

12

)
f (x) +

α

24
f (x + h).

2.2 Fractional Sobolev norm
Under certain conditions, the solution of problem (1)–(3) converges to zero when |x| →
∞. Thus, in practical numerical computation, we truncate the original problem on a
bounded interval and take the following homogeneous Dirichlet boundary conditions:

u(x, t) = 0, v(x, t) = 0, x ∈ R/(a, b), t ∈ [0, T], (12)

where a and b are usually chosen sufficiently large negative and positive numbers.
In the numerical computation, the solution domain is defined as {(x, t) | a ≤ x ≤ b, 0 ≤

t ≤ T}, which is covered by a uniform grid {(xj, tn) | xj = a + jh, tn = nτ , j = 0, . . . , M, n =
0, . . . , N}, with spacing h = b–a

M , τ = T
N , where M, N are two positive integers. For any grid

function Pn = {Pn
j } (0 ≤ j ≤ M), the following notations are introduced:

Pn̄
j =

Pn+1
j + Pn–1

j

2
, δtPn

j =
Pn+1

j – Pn–1
j

2τ
. (13)

Denote

Z0
h =

{
P | P = {Pj}, P0 = PM = 0

}
.
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For any grid functions P, Q ∈ Z0
h , we define the discrete inner product and the associated

L2-norm

(P, Q) = h
M–1∑

j=1

PjQ̄j, ‖P‖ =
√

(P, P). (14)

The discrete L∞-norm is defined as

‖P‖∞ = max
1≤j≤M–1

|Pj|. (15)

Let L2
h = {P | P ∈ Z0

h,‖P‖ < +∞}, and for any given δ ∈ [0, 1], the fractional Sobolev norm
‖P‖Hδ and seminorm |P|Hδ are defined as

‖P‖2
Hδ =

∫ π/h

–π/h

(
1 + |k|2δ

)∣∣P̂(k)
∣∣2 dk, |P|2Hδ =

∫ π/h

–π/h
|k|2δ

∣∣P̂(k)
∣∣2 dk, (16)

where the relation between the semi-discrete Fourier transform P̂(k) and the grid function
is given by

P̂(k) =
h√
2π

∑

1≤j≤M–1

Pje–ikxj , Sj =
1√
2π

∫ π/h

–π/h
P̂(k)eikxj dk. (17)

Obviously, ‖P‖2
Hδ = ‖P‖2 + |P|2Hδ . Let Hδ

h := {P ∈ Z0
h | ‖P‖Hδ < +∞}, then we introduce

the following two lemmas which are shown in [25].

Lemma 4 ([25]) For any 1 < α ≤ 2 and P ∈ H
α
2

h , there exists a constant Cα > 0, independent
of h, such that

‖P‖∞ ≤ Cα‖P‖
H

α
2

. (18)

Lemma 5 ([25]) For every 1 < α ≤ 2, we have

(
2
π

)α

|P|2
H

α
2

≤ (
�α

h P, P
) ≤ |P|2

H
α
2

, ∀P ∈ H
α
2

h , (19)

and

(
2
π

)α

|P|
H

α
2
|Q|

H
α
2

≤
∑

j∈Z

∣
∣�α

h PjQ̄j
∣
∣ ≤ |P|

H
α
2
|Q|

H
α
2

, ∀P, Q ∈ H
α
2

h . (20)

With the assumption of homogenous boundary condition (12), for any P ∈ Z0
h , we have

�α
h Pj =

1
hα

j–M+1∑

k=j–1

cα
k Pj–k =

1
hα

M–1∑

k=1

cα
j–kPk . (21)
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2.3 Numerical scheme
A three-level linearized difference scheme [26–29] for boundary value problem (1)–(3)
with homogeneous Dirichlet boundary conditions (12) in the finite domain Ω = [a, b] is
as follows:

Aα
x δtUn

j + (υ1 + iη1)�α
h Un̄

j + Aα
x
[(

(κ1 + iζ1)
∣
∣Un

j
∣
∣2 + (δ1 + iβ1)

∣
∣V n

j
∣
∣2)Un̄

j
]

– γ1Aα
x Un̄

j

= 0, 0 < j < M, 1 < n < N , (22)

Aα
x δtV n

j + (υ2 + iη2)�α
h V n̄

j + Aα
x
[(

(κ2 + iζ2)
∣∣Un

j
∣∣2 + (δ2 + iβ2)

∣∣V n
j
∣∣2)V n̄

j
]

– γ2Aα
x V n̄

j

= 0, 0 < j < M, 1 < n < N , (23)

U0
j = u0(xj), V 0

j = v0(xj), 0 < j < M, (24)

Un
0 = Un

M = 0, V n
0 = V n

M = 0, 0 ≤ n ≤ N . (25)

Since the difference scheme involves three time levels, the first step values U1
j , V 1

j are
required to begin stepping the numerical solution forward in time.

Using Taylor expansion and Eqs. (1) and (2), one has

u1 = u0 + τut(x, 0) + O
(
τ 2)

= u0 – τ
(
(υ1 + iη1)(–�)

α
2 u0

+
(
(κ1 + iζ1)|u0|2 + (δ1 + iβ1)|v0|2

)
u0 – γ1u0

)
+ O

(
τ 2), (26)

v1 = v0 + τvt(x, 0) + O
(
τ 2)

= v0 – τ
(
(υ2 + iη2)(–�)

α
2 v0

+
(
(κ2 + iζ2)|u0|2 + (δ2 + iβ2)|v0|2

)
v0 – γ2v0

)
+ O

(
τ 2). (27)

In addition, from Lemma 2 we know

(–�)
α
2 u0(xj) =

1
hα

M–1∑

k=1

cα
j–ku0(xj) + O

(
h2) = �α

h u0(xj) + O
(
h2), (28)

(–�)
α
2 v0(xj) =

1
hα

M–1∑

k=1

cα
j–kv0(xj) + O

(
h2) = �α

h v0(xj) + O
(
h2). (29)

In the numerical simulation, U1, V 1 are obtained from the following scheme:

U1
j = U0

j – τ
(
(υ1 + iη1)�α

h U0
j

+
(
(κ1 + iζ1)

∣
∣U0

j
∣
∣2 + (δ1 + iβ1)

∣
∣V 0

j
∣
∣2)U0

j – γ1U0
j
)
, 0 < j < M, (30)

V 1
j = V 0

j – τ
(
(υ2 + iη2)�α

h V 0
j

+
(
(κ2 + iζ2)

∣∣U0
j
∣∣2 + (δ2 + iβ2)

∣∣V 0
j
∣∣2)V 0

j – γ2V 0
j
)
, 0 < j < M. (31)
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3 Theoretical analysis
Lemma 6 For any grid functions P, Q ∈ Z0

h , we have [17]

(
Aα

x P, Q
)

=
(
P,Aα

x Q
)
. (32)

Moreover,

∥∥Aα
x P

∥∥ ≤ ‖P‖,
1
3
‖P‖2 ≤ ‖P‖2

A ≤ ‖P‖2, (33)

where ‖P‖A =
√

(Aα
x P, P).

Lemma 7 For any two grid functions P, Q ∈ Z0
h , there exists a linear operator Λα such that

[30]

(
�α

h P, Q
)

=
(
ΛαP,ΛαQ

)
. (34)

Lemma 8 For any grid functions Pn ∈ Z0
h , we have

Im
(
�α

h Pn, Pn) = 0, (35)

Re
(
Aα

x δtPn, Pn̄) =
1

4τ

(∥∥Pn+1∥∥2
A –

∥
∥Pn–1∥∥2

A

)
, (36)

Re
(
Aα

x δtPn,�α
h Pn̄) =

1
4τ

(∥∥ΛαPn+1∥∥2
A –

∥
∥ΛαPn–1∥∥2

A

)
. (37)

Lemma 9 (Discrete Gronwall’s inequality [31, 32]) Let {uk} and {wk} be nonnegative se-
quences and α be a nonnegative constant satisfying

un ≤ α +
∑

0≤k<n

wkuk for n ≥ 0. (38)

Then, for all n, it holds

un ≤ α exp

( ∑

0≤k<n

wk

)
. (39)

3.1 L∞ convergence
Let u(x, t), v(x, t) be the exact solution of problem (1)–(3) and (12), Un

j , V n
j be the solution

of numerical schemes (22)–(25). Let un
j = u(xj, tn), vn

j = v(xj, tn), the error functions

en
j = un

j – Un
j , ξn

j = vn
j – V n

j , j = 1, 2, . . . , M, n = 1, 2, . . . , N .

Define the truncation errors of scheme (22)–(23) as follows:

rn
j = Aα

x δtun
j + (υ1 + iη1)�α

h un̄
j

+ Aα
x
[(

(κ1 + iζ1)
∣
∣un

j
∣
∣2 + (δ1 + iβ1)

∣
∣vn

j
∣
∣2)un̄

j
]

– γ1Aα
x un̄

j , (40)

sn
j = Aα

x δtvn
j + (υ2 + iη2)�α

h vn̄
j

+ Aα
x
[(

(κ2 + iζ2)
∣∣un

j
∣∣2 + (δ2 + iβ2)

∣∣vn
j
∣∣2)vn̄

j
]

– γ2Aα
x vn̄

j , (41)



Xu et al. Advances in Difference Equations        (2019) 2019:455 Page 7 of 22

for 1 ≤ j ≤ M – 1 and 1 ≤ n ≤ N – 1.
Subtracting (22) from (40) and subtracting (23) from (41) yield that

rn
j = Aα

x δten
j + (υ1 + iη1)�α

h en̄
j + Aα

x Pn
j – γ1Aα

x en̄
j , (42)

sn
j = Aα

x δtξ
n
j + (υ2 + iη2)�α

hξ n̄
j + Aα

x Qn
j – γ2Aα

x ξ n̄
j , (43)

where

Pn
j =

(
(κ1 + iζ1)

∣∣un
j
∣∣2 + (δ1 + iβ1)

∣∣vn
j
∣∣2)un̄

j –
(
(κ1 + iζ1)

∣∣Un
j
∣∣2 + (δ1 + iβ1)

∣∣V n
j
∣∣2)Un̄

j ,

Qn
j =

(
(κ2 + iζ2)

∣∣un
j
∣∣2 + (δ2 + iβ2)

∣∣vn
j
∣∣2)vn̄

j –
(
(κ2 + iζ2)

∣∣Un
j
∣∣2 + (δ2 + iβ2)

∣∣V n
j
∣∣2)V n̄

j .

Using Taylor expansion and Lemma 3, we can easily obtain the following lemma.

Lemma 10 Suppose that the solution of problem (1)–(3) is sufficiently smooth. Then it
holds that

∣∣rn
j
∣∣ ≤ CR

(
τ 2 + h4),

∣∣sn
j
∣∣ ≤ CR

(
τ 2 + h4), 1 ≤ j ≤ M – 1, 1 ≤ n ≤ N – 1, (44)

where CR is a positive constant independent of τ and h.

Following a similar proof of Lemma 9 in [14], we can obtain the lemma below.

Lemma 11 Suppose that the solution of problem (1)–(3) is sufficiently smooth. Then one
has

∣∣e1
j
∣∣ ≤ Ce

(
τ 2 + τh2),

∣∣�α
h e1

j
∣∣ ≤ Ce

(
τ 2 + τh2+α

)
,

∣∣ξ 1
j
∣∣ ≤ Ce

(
τ 2 + τh2),

∣∣�α
hξ 1

j
∣∣ ≤ Ce

(
τ 2 + τh2+α

)
,

(45)

where Ce is a positive constant independent of τ and h.

Theorem 1 Suppose that the solution of problem (1)–(3) is smooth enough, then there ex-
ist two small positive constants τ0 and h0 such that, when τ < τ0 and h < h0, the numerical
solution (Un, V n) of difference schemes (22)–(25) and (30)–(31) converges to the exact so-
lution (un, vn) in the sense of L∞-norm with the optimal convergence order O(τ 2 + h4), i.e.,

∥
∥un – Un∥∥∞ ≤ C0

(
τ 2 + h4),

∥
∥vn – V n∥∥∞ ≤ C0

(
τ 2 + h4), 1 ≤ n ≤ N , (46)

where C0 is a positive constant independent of τ and h.

Proof We use mathematical induction to prove (46). It follows from (45) that the error
estimate (46) holds for n = 1 when h ≤ 1. Indeed,

∥∥u1 – U1∥∥∞ ≤ 5
4

Ce
(
τ 2 + h4)

when h ≤ 1, and τh2 ≤ τ2

4 + h4 is used.
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Now assume that (46) is valid for m ≤ n, we want to show that (46) is also valid for n + 1.
By the assumption, one has

∥∥Um∥∥∞ ≤ ∥∥um∥∥∞ +
∥∥em∥∥∞ ≤ Cm + C0

(
τ 2 + h4) ≤ Cm + 1, 1 ≤ m ≤ n,

∥∥V m∥∥∞ ≤ ∥∥vm∥∥∞ +
∥∥ξm∥∥∞ ≤ Cm + C0

(
τ 2 + h4) ≤ Cm + 1, 1 ≤ m ≤ n,

(47)

for τ < τ1 and h < h1, where τ1, h1 satisfy that τ 2
1 + h4

1 < 1
C0

. Here,

Cm = max
{

max
a≤x≤b,0≤t≤T

∣
∣u(x, t)

∣
∣, max

a≤x≤b,0≤t≤T

∣
∣v(x, t)

∣
∣
}

.

Now, computing the discrete inner product of (42) with en̄ and taking the real part of
the resulting equation, we have

‖en+1‖2
A – ‖en–1‖2

A
4τ

+ υ1
∥
∥Λαen̄∥∥2 = – Re

[(
Aα

x Pn, en̄)] + γ1
∥
∥en̄∥∥2

A + Re
[(

rn, en̄)], (48)

where

Pn
j = (κ1 + iζ1)

∣
∣un

j
∣
∣2un̄

j – (κ1 + iζ1)
∣
∣Un

j
∣
∣2Un̄

j + (δ1 + iβ1)
∣
∣vn

j
∣
∣2un̄

j – (δ1 + iβ1)
∣
∣V n

j
∣
∣2Un̄

j

= (κ1 + iζ1)
((∣∣un

j
∣
∣2 –

∣
∣Un

j
∣
∣2)un̄

j +
∣
∣Un

j
∣
∣2en̄

j
)

+ (δ1 + iβ1)
((∣∣vn

j
∣
∣2 –

∣
∣V n

j
∣
∣2)un̄

j +
∣
∣V n

j
∣
∣2en̄

j
)

= (κ1 + iζ1)
((∣∣un

j
∣
∣ –

∣
∣Un

j
∣
∣)(

∣
∣un

j
∣
∣ +

∣
∣Un

j
∣
∣)un̄

j +
∣
∣Un

j
∣
∣2en̄

j
)

+ (δ1 + iβ1)
((∣∣vn

j
∣∣ –

∣∣V n
j
∣∣)(∣∣vn

j
∣∣ +

∣∣V n
j
∣∣)un̄

j +
∣∣V n

j
∣∣2en̄

j
)
. (49)

By using assumption (47), one has

∥
∥Pn∥∥ ≤

√
κ2

1 + ζ 2
1
((∥∥un∥∥∞ +

∥
∥Un∥∥∞

)∥∥un̄∥∥∞
∥
∥en∥∥ +

∥
∥Un∥∥2

∞
∥
∥en̄∥∥)

+
√

δ2
1 + ζ 2

1
((∥∥vn∥∥∞ +

∥∥V n∥∥∞
)∥∥un̄∥∥∞

∥∥ξn∥∥ +
∥∥V n∥∥2

∞
∥∥en̄∥∥)

≤
√

κ2
1 + ζ 2

1
(
(Cm + Cm + 1)Cm

∥∥en∥∥ + (Cm + 1)2∥∥en̄∥∥)

+
√

δ2
1 + ζ 2

1
(
(Cm + Cm + 1)Cm

∥∥ξn∥∥ + (Cm + 1)2∥∥en̄∥∥)

≤ C1
(∥∥en∥∥ +

∥∥ξn∥∥ +
∥∥en̄∥∥)

(50)

for τ < τ1 and h < h1, where

C1 = 2(Cm + 1)2 max
{√

κ2
1 + ζ 2

1 ,
√

δ2
1 + β2

1

}
.

Thus,

∥
∥Pn∥∥2 ≤ 3C2

1
(∥∥en∥∥2 +

∥
∥ξn∥∥2 +

∥
∥en̄∥∥2). (51)

Moreover,

∣∣– Re
[(
Aα

x Pn, en̄)]∣∣ ≤ ∣∣(Aα
x Pn, en̄)∣∣
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≤ ∥∥Aα
x Pn∥∥∥∥en̄∥∥

≤ 1
2
(∥∥Aα

x Pn∥∥2 +
∥∥en̄∥∥2)

≤ 1
2
(∥∥Pn∥∥2 +

∥∥en̄∥∥2)

≤ 1
2
(
3C2

1
(∥∥en∥∥2 +

∥∥ξn∥∥2 +
∥∥en̄∥∥2) +

∥∥en̄∥∥2)

≤ 3C2
1 + 1
2

(∥∥en∥∥2 +
∥
∥ξn∥∥2 + 2

∥
∥en̄∥∥2)

≤ 3C2
1 + 1
2

(∥∥en–1∥∥2 +
∥
∥en∥∥2 +

∥
∥en+1∥∥2 +

∥
∥ξn∥∥2)

≤ 3(3C2
1 + 1)
2

(∥∥en–1∥∥2
A +

∥
∥en∥∥2

A +
∥
∥en+1∥∥2

A +
∥
∥ξn∥∥2

A

)
, (52)

where Lemma 6 is used.
Similarly, one has

∣∣Re
(
rn, en̄)∣∣ ≤ 1

2
(∥∥rn∥∥2 +

∥∥en̄∥∥2)

≤ 1
2
(∥∥rn∥∥2 +

∥
∥en+1∥∥2 +

∥
∥en–1∥∥2)

≤ 1
2
∥
∥rn∥∥2 +

3
2
(∥∥en+1∥∥2

A +
∥
∥en–1∥∥2

A

)
, (53)

where Lemma 6 is used.
From (48), (52), and (53), we have

‖en+1‖2
A – ‖en–1‖2

A
4τ

= –υ1
∥
∥Λαen̄∥∥2 – Re

[(
Aα

x Pn, en̄)] + γ1
∥
∥en̄∥∥2

A + Re
[(

rn, en̄)]

≤ 3(3C2
1 + 1)
2

(∥∥en–1∥∥2
A +

∥∥en∥∥2
A +

∥∥en+1∥∥2
A +

∥∥ξn∥∥2
A

)

+
|γ1|

2
(∥∥en+1∥∥2

A +
∥
∥en–1∥∥2

A

)
+

1
2
∥
∥rn∥∥2 +

3
2
(∥∥en+1∥∥2

A +
∥
∥en–1∥∥2

A

)

≤ C2
(∥∥en+1∥∥2

A +
∥
∥en∥∥2

A +
∥
∥en–1∥∥2

A +
∥
∥ξn∥∥2

A

)

+
|γ1|

2
(∥∥en+1∥∥2

A +
∥∥en–1∥∥2

A

)
+

1
2
∥∥rn∥∥2, (54)

where C2 = 9C2
1 +6
2 . Thus,

∥
∥en+1∥∥2

A –
∥
∥en–1∥∥2

A ≤ 4C2τ
(∥∥en+1∥∥2

A +
∥
∥en∥∥2

A +
∥
∥en–1∥∥2

A +
∥
∥ξn∥∥2

A

)
+ 2τ

∥
∥rn∥∥2

+ 2|γ1|τ
(∥∥en+1∥∥2

A +
∥
∥en–1∥∥2

A

)
. (55)
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Similarly, computing the discrete inner product of (43) with ξ n̄ and analyzing the result-
ing equation, one can obtain

∥∥ξn+1∥∥2
A –

∥∥ξn–1∥∥2
A ≤ 4C′

2τ
(∥∥ξn+1∥∥2

A +
∥∥ξn∥∥2

A +
∥∥ξn–1∥∥2

A +
∥∥en∥∥2

A

)
+ 2τ

∥∥sn∥∥2

+ 2|γ2|τ
(∥∥ξn+1∥∥2

A +
∥∥ξn–1∥∥2

A

)
, (56)

where C′
2 = 9(C′

1)2+6
2 , and

C′
1 = 2(Cm + 1)2 max

{√
κ2

2 + ζ 2
2 ,

√
δ2

2 + β2
2

}
.

Next, computing the discrete inner product of (42) with �α
h en̄ and taking the real part

of the resulting equation, we obtain

‖Λαen+1‖2
A – ‖Λαen–1‖2

A
4τ

+ υ1
∥
∥�α

h en̄∥∥2

= Re
[
–
(
Aα

x Pn,�α
h en̄)] + γ1

∥
∥Λαen̄∥∥2

A + Re
(
rn,�α

h en̄), (57)

where Lemma 6 and Lemma 7 are used.
From (50), one obtains

∥∥Pn∥∥2 ≤ 3C2
1
(∥∥en–1∥∥2 +

∥∥en∥∥2 +
∥∥en+1∥∥2 +

∥∥ξn∥∥2) (58)

for τ < τ1, h < h1.
Thus, we have

∣
∣Re

[
–
(
Aα

x Pn,�α
h en̄)]∣∣

≤ ∥
∥Aα

x Pn∥∥
∥
∥�α

h en̄∥∥

≤ ∥∥Pn∥∥∥∥�α
h en̄∥∥

≤ 1
2υ1

∥∥Pn∥∥2 +
υ1

2
∥∥�α

h en̄∥∥2

≤ 3C2
1

2υ1

(∥∥en–1∥∥2 +
∥
∥en∥∥2 +

∥
∥en+1∥∥2 +

∥
∥ξn∥∥2) +

υ1

2
∥
∥�α

h en̄∥∥2

≤ 9C2
1

2υ1

(∥∥en–1∥∥2
A +

∥∥en∥∥2
A +

∥∥en+1∥∥2
A +

∥∥ξn∥∥2
A

)
+

υ1

2
∥∥�α

h en̄∥∥2 (59)

and

∣∣Re
(
rn,�α

h en̄)∣∣ ≤ ∥∥rn∥∥∥∥�α
h en̄∥∥ ≤ 1

2υ1

∥∥rn∥∥2 +
υ1

2
∥∥�α

h en̄∥∥2. (60)

Substituting (59) and (60) into (57), one has

‖Λαen+1‖2
A – ‖Λαen–1‖2

A
4τ

≤ 9C2
1

2υ1

(∥∥en–1∥∥2
A +

∥∥en∥∥2
A +

∥∥en+1∥∥2
A +

∥∥ξn∥∥2
A

)
+ |γ1|

∥∥Λαen̄∥∥2
A +

1
2υ1

∥∥rn∥∥2
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≤ 9C2
1

2υ1

(∥∥en–1∥∥2
A +

∥
∥en∥∥2

A +
∥
∥en+1∥∥2

A +
∥
∥ξn∥∥2

A

)

+
|γ1|

2
(∥∥Λαen+1∥∥2

A +
∥
∥Λαen–1∥∥2

A

)
+

1
2υ1

∥
∥rn∥∥2. (61)

Thus,

∥∥Λαen+1∥∥2
A –

∥∥Λαen–1∥∥2
A

≤ 18C2
1τ

υ1

(∥∥en–1∥∥2
A +

∥
∥en∥∥2

A +
∥
∥en+1∥∥2

A +
∥
∥ξn∥∥2

A

)

+ 2|γ1|τ
(∥∥Λαen–1∥∥2

A +
∥∥Λαen+1∥∥2

A

)
+

2τ

υ1

∥∥rn∥∥2, (62)

when τ < τ1, h < h1.
Similarly, computing the discrete inner product of (43) with �hξ

n̄ and analyzing the
resulting equation, one can obtain

∥
∥Λαξn+1∥∥2

A –
∥
∥Λαξn–1∥∥2

A

≤ 18(C′
1)2τ

υ2

(∥∥ξn–1∥∥2
A +

∥∥ξn∥∥2
A +

∥∥ξn+1∥∥2
A +

∥∥en∥∥2
A

)

+ 2|γ2|τ
(∥∥Λαξn–1∥∥2

A +
∥
∥Λαξn+1∥∥2

A

)
+

2τ

υ2

∥
∥sn∥∥2, (63)

when τ < τ1, h < h1.
Adding inequalities (55), (56), (62), and (63), one obtains

∥∥Λαen+1∥∥2
A +

∥∥Λαξn+1∥∥2
A +

∥∥en+1∥∥2
A +

∥∥ξn+1∥∥2
A

–
∥
∥Λαen–1∥∥2

A –
∥
∥Λαξn–1∥∥2

A –
∥
∥en–1∥∥2

A –
∥
∥ξn–1∥∥2

A

≤ C3τ
(∥∥en–1∥∥2

A + 2
∥
∥en∥∥2

A +
∥
∥en+1∥∥2

A +
∥
∥Λαen–1∥∥2

A + 2
∥
∥Λαen∥∥2

A +
∥
∥Λαen+1∥∥2

A

)

+ C3τ
(∥∥ξn–1∥∥2

A + 2
∥
∥ξn∥∥2

A +
∥
∥ξn+1∥∥2

A +
∥
∥Λαξn–1∥∥2

A + 2
∥
∥Λαξn∥∥2

A +
∥
∥Λαξn+1∥∥2

A

)

+
(

2 +
2
υ1

)
τ
∥∥rn∥∥2 +

(
2 +

2
υ2

)
τ
∥∥sn∥∥2, (64)

where C3 = max{ 18C2
1

υ1
, 18(C′

1)2

υ2
, 4C2, 4C′

2, 2|γ1|, 2|γ2|}.
Let En = ‖Λαen–1‖2

A + ‖en–1‖2
A + ‖Λαen‖2

A + ‖en‖2
A + ‖Λαξn–1‖2

A + ‖ξn–1‖2
A + ‖Λαξn‖2

A +
‖ξn‖2

A, then one has

En+1 – En ≤ C3τ
(
En+1 + En) +

(
2 +

2
υ1

)
τ
∥∥rn∥∥2 +

(
2 +

2
υ2

)
τ
∥∥sn∥∥2, (65)

which is equivalent to

(1 – C3τ )
(
En+1 – En) ≤ 2C3τEn +

(
2 +

2
υ1

)
τ
∥∥rn∥∥2 +

(
2 +

2
υ2

)
τ
∥∥sn∥∥2. (66)
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When τ < τ2 = 1
2C3

, then 1 – C3τ > 1
2 , (47) gives

En+1 – En ≤ 4C3τEn +
(

4 +
4
υ1

)
τ
∥
∥rn∥∥2 +

(
4 +

4
υ2

)
τ
∥
∥sn∥∥2. (67)

Replacing n by k in (67) and summing over k from 1 to n yields

En+1 – E1 ≤ 4C3τ

n∑

k=1

Ek +
(

4 +
4
υ1

)
τ

n∑

k=1

∥
∥rk∥∥2 +

(
4 +

4
υ2

)
τ

n∑

k=1

∥
∥sk∥∥2. (68)

From Lemma 10, one gets

τ

n∑

k=1

∥∥rk∥∥2 ≤ τnC2
R
(
τ 2 + h4)2 ≤ C2

RT
(
τ 2 + h4)2,

τ

n∑

k=1

∥∥sk∥∥2 ≤ τnC2
R
(
τ 2 + h4)2 ≤ C2

RT
(
τ 2 + h4)2.

(69)

Lemma 11 yields

∥∥e1∥∥2
A ≤ ∥∥e1∥∥2 =

(
e1, e1) ≤ h

M–1∑

j=1

∣∣e1
j
∣∣∣∣e1

j
∣∣

≤ (b – a) max
1≤j≤M–1

∣∣e1
j
∣∣2

≤ C2
e (b – a)

(
τ 2 + τh2)2

≤ 25
16

C2
e (b – a)

(
τ 2 + h4)2,

where τh2 ≤ τ2

4 + h4 is used.
And

∥∥Λαe1∥∥2
A ≤ ∥∥Λαe1∥∥2 =

(
�α

h e1, e1) ≤ h
M–1∑

j=1

∣∣�α
h e1

j
∣∣∣∣e1

j
∣∣

≤ (b – a) max
1≤j≤M–1

∣
∣�α

h e1
j
∣
∣ max

1≤j≤M–1

∣
∣e1

j
∣
∣

≤ C2
e (b – a)

(
τ 2 + τh2+α

)(
τ 2 + τh2)

≤ 25
16

C2
e (b – a)

(
τ 2 + h4)2

for h ≤ 1. Thus,

∥
∥e1∥∥

A ≤ 5
4

Ce
√

b – a
(
τ 2 + h4),

∥
∥Λαe1∥∥

A ≤ 5
4

Ce
√

b – a
(
τ 2 + h4). (70)

Similarly,

∥∥ξ 1∥∥
A ≤ 5

4
Ce

√
b – a

(
τ 2 + h4),

∥∥Λαξ 1∥∥
A ≤ 5

4
Ce

√
b – a

(
τ 2 + h4). (71)
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In addition, ‖e0‖A = 0, ‖Λαe0‖A = 0, ‖ξ 0‖A = 0, ‖Λαξ 0‖A = 0. Thus,

E1 =
∥∥Λαe1∥∥2

A +
∥∥e1∥∥2

A +
∥∥Λαe0∥∥2

A +
∥∥e0∥∥2

A +
∥∥Λαξ 1∥∥2

A +
∥∥ξ 1∥∥2

A +
∥∥Λαξ 0∥∥2

A +
∥∥ξ 0∥∥2

A

≤ ∥∥Λαe1∥∥2
A +

∥∥e1∥∥2
A +

∥∥Λαξ 1∥∥2
A +

∥∥ξ 1∥∥2
A

≤ 25C2
e (b – a)

(
τ 2 + h4)2. (72)

Substituting (69) and (72) into (68) gives

En+1 ≤ 4C3τ

n∑

k=1

Ek + C4
(
τ 2 + h4)2, (73)

where C4 = 25C2
e (b – a) + (8 + 4

υ2
+ 4

υ2
)C2

RT .
By using Lemma 9, one has

En+1 ≤ C4
(
τ 2 + h4)2e4C3τn ≤ C4e4C3T(

τ 2 + h4)2. (74)

From Lemma 5, Lemma 6, and Lemma 7, one gets

1
3

(∥∥en+1∥∥2 +
(

2
π

)α∣∣en+1∣∣2
H

α
2

)
≤ 1

3
(∥∥en+1∥∥2 +

∥∥Λαen+1∥∥2)

≤ ∥
∥en+1∥∥2

A +
∥
∥Λαen+1∥∥2

A ≤ C4e4C3T(
τ 2 + h4)2. (75)

Thus, one obtains that

∥
∥en+1∥∥2

H
α
2 ≤ 3C4e4C3T

(
π

2

)α(
τ 2 + h4)2. (76)

Therefore,

∥
∥en+1∥∥

H
α
2

≤ C5
(
τ 2 + h4), (77)

where C5 =
√

3C4e4C3T ( π
2 )α .

By Lemma 4, we obtain

∥∥en+1∥∥∞ ≤ Cα

∥∥en+1∥∥
H

α
2

≤ CαC5
(
τ 2 + h4). (78)

Similarly, we also have

∥
∥ξn+1∥∥∞ ≤ Cα

∥
∥ξn+1∥∥

H
α
2

≤ CαC5
(
τ 2 + h4). (79)

Now we take C0 = max{CαC5, 5
4 Ce}. Once C0 is fixed, the condition for τ1, h1, i.e., τ 2

1 +h4
1 <

1/C0, can be used to determine τ1, h1.
Thus, let τ0 = min{τ1, τ2} and h0 = min{h1, 1}, then (46) is valid for n + 1. The induction

is closed. This completes the proof. �



Xu et al. Advances in Difference Equations        (2019) 2019:455 Page 14 of 22

Theorem 2 Suppose that the solution of problem (1)–(3) is smooth enough, the solution
Un of difference schemes (22)–(25) and (30)–(31) is bounded in the L∞-norm for τ < τ0

and h < h0, i.e.,

∥∥Un∥∥∞ ≤ C∗,
∥∥V n∥∥∞ ≤ C∗, 1 ≤ n ≤ N , (80)

where τ0, h0 are the same positive constants in Theorem 1.

Proof From Theorem 1, one has

∥
∥Un∥∥∞ ≤ ∥

∥un∥∥∞ +
∥
∥en∥∥∞,

≤ Cm + C0
(
τ 2 + h4), 1 ≤ n ≤ N , (81)

and

∥∥V n∥∥∞ ≤ ∥∥vn∥∥∞ +
∥∥ξn∥∥∞,

≤ Cm + C0
(
τ 2 + h4), 1 ≤ n ≤ N , (82)

for τ < τ0, h < h0.
Since C0(τ 2 + h4) < 1 for τ < τ0, h < h0 (see the proof in the above theorem), one has

∥
∥Un∥∥∞ ≤ C∗,

∥
∥V n∥∥∞ ≤ C∗, 2 ≤ n ≤ N , (83)

where C∗ = Cm + 1. This completes the proof. �

3.2 Existence and uniqueness
Theorem 3 Suppose that the solution of problem (1)–(3) is smooth enough. Then difference
scheme (22)–(25) is uniquely solvable for

τ < min

{
τ0,

1
|γ1| + (

√
κ2

1 + ζ 2
1 +

√
δ2

1 + β2
1 )C2∗

,
1

|γ2| + (
√

κ2
2 + ζ 2

2 +
√

δ2
2 + β2

2 )C2∗

}

and h < h0, where τ0, h0 are the same positive constants in Theorem 1.

Proof To prove the theorem, we proceed by the mathematical induction. Obviously,
U1 and V 1 can be uniquely determined by (30) and (31). Suppose U1, U2, . . . , Un,
V 1, V 2, . . . , V n (1 ≤ n ≤ N – 1) are obtained uniquely, we now show that Un+1 and V n+1

are uniquely determined by (22)–(23).
Assume that Un+1,1, Un+1,2 are two solutions of (22), and let W n+1 = Un+1,1 – Un+1,2, then

it is easy to verify that W n+1 satisfies the following equation:

1
2τ

Aα
x W n+1

j +
1
2

(υ1 + iη1)�α
h W n+1

j +
1
2
Aα

x
((

(κ1 + iζ1)
∣
∣Un

j
∣
∣2 + (δ1 + iβ1)

∣
∣V n

j
∣
∣2)W n+1

j
)

–
1
2
γ1Aα

x W n+1
j = 0, 0 < j < M. (84)
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Computing the inner product of (84) with W n+1 and taking the real part of the resulting
equation, we have

(
1

2τ
–

γ1

2

)∥
∥W n+1∥∥2

A +
υ1

2
∥
∥ΛαW n+1∥∥2

+
1
2

Re
(
Aα

x
((

(κ1 + iζ1)
∣∣Un∣∣2 + (δ1 + iβ1)

∣∣V n∣∣2)W n+1), W n+1) = 0, (85)

where Lemma 7 is used.
Thus,

(
1
τ

– γ1

)∥∥W n+1∥∥2
A + υ1

∥∥ΛαW n+1∥∥2

= – Re
(
Aα

x
((

(κ1 + iζ1)
∣
∣Un∣∣2 + (δ1 + iβ1)

∣
∣V n∣∣2)W n+1), W n+1)

= – Re
((

(κ1 + iζ1)
∣
∣Un∣∣2 + (δ1 + iβ1)

∣
∣V n∣∣2)W n+1,Aα

x W n+1)

≤
(√

κ2
1 + ζ 2

1 +
√

δ2
1 + β2

1

)
C2

∗
∥∥W n+1∥∥2

A (86)

when τ < τ0, h < h0, and here Theorem 2 is used.
If τ < τ0, h < h0, then

(
1
τ

– γ1 –
(√

κ2
1 + ζ 2

1 +
√

δ2
1 + β2

1

)
C2

∗

)∥∥W n+1∥∥2
A + υ1

∥∥ΛαW n+1∥∥2 ≤ 0, (87)

where Theorem 2 is used.
If τ < min{τ0, 1

|γ1|+(
√

κ2
1 +ζ2

1 +
√

δ2
1 +β2

1 )C2∗
}, then 1

τ
– γ1 – (

√
κ2

1 + ζ 2
1 +

√
δ2

1 + β2
1 )C2∗ > 0. Since

υ1 > 0, (87) implies

∥
∥W n+1∥∥

A =
∥
∥ΛαW n+1∥∥ = 0, (88)

which further implies

∥∥W n+1∥∥ =
∥∥ΛαW n+1∥∥ = 0, (89)

where Lemma 6 is used.
Therefore, (84) has only a trivial solution. This proves the uniqueness of the numerical

solution Un+1. The proof of the uniqueness for V n+1 is similar. This completes the proof
of the theorem. �

3.3 Stability
Next we will show that the numerical solutions of the proposed scheme are stable in the
sense that when initial conditions (3) and the right-hand sides of equations (1)–(2) have
small perturbations, the perturbation for the numerical solutions remains small. Consider
the following two problems.

Problem 1

ut + (υ1 + iη1)(–�)
α
2 u +

(
(κ1 + iζ1)|u|2 + (δ1 + iβ1)|v|2)u – γ1u

= f1(x, t), x ∈ [a, b], 0 < t < T , (90)
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vt + (υ2 + iη2)(–�)
α
2 v +

(
(κ2 + iζ2)|u|2 + (δ2 + iβ2)|v|2)v – γ2v

= g1(x, t), x ∈ [a, b], 0 < t < T , (91)

with the initial condition

u(x, 0) = u1(x), v(x, 0) = v1(x), x ∈ [a, b], 0 < t < T , (92)

and the homogeneous Dirichlet boundary conditions

u1(x, t) = 0, v1(x, t) = 0, x ∈R/(a, b), t ∈ [0, T]. (93)

Problem 2

ut + (υ1 + iη1)(–�)
α
2 u +

(
(κ1 + iζ1)|u|2 + (δ1 + iβ1)|v|2)u – γ1u

= f2(x, t), x ∈ [a, b], 0 < t < T , (94)

vt + (υ2 + iη2)(–�)
α
2 v +

(
(κ2 + iζ2)|u|2 + (δ2 + iβ2)|v|2)v – γ2v

= g2(x, t), x ∈ [a, b], 0 < t < T , (95)

with the initial condition

u(x, 0) = u2(x), v(x, 0) = v2(x), x ∈ [a, b], 0 < t < T , (96)

and the homogeneous Dirichlet boundary conditions

u2(x, t) = 0, v2(x, t) = 0, x ∈R/(a, b), t ∈ [0, T]. (97)

The numerical solutions Un
j , V n

j for the first problem are given as follows:

Aα
x δtUn

j + (υ1 + iη1)�α
h Un̄

j + Aα
x
[(

(κ1 + iζ1)
∣∣Un

j
∣∣2 + (δ1 + iβ1)

∣∣V n
j
∣∣2)Un̄

j
]

– γ1Aα
x Un̄

j

= f1
(
xj, tn), 0 < j < M, 1 < n < N , (98)

Aα
x δtV n

j + (υ2 + iη2)�α
h V n̄

j + Aα
x
[(

(κ2 + iζ2)
∣
∣Un

j
∣
∣2 + (δ2 + iβ2)

∣
∣V n

j
∣
∣2)V n̄

j
]

– γ2Aα
x V n̄

j

= g1
(
xj, tn), 0 < j < M, 1 < n < N , (99)

U1
j = U0

j – τ
(
(υ1 + iη1)�α

h U0
j

+
(
(κ1 + iζ1)

∣
∣U0

j
∣
∣2 + (δ1 + iβ1)

∣
∣V 0

j
∣
∣2)U0

j – γ1U0
j – f1

(
xj, t0)), 0 < j < M, (100)

V 1
j = V 0

j – τ
(
(υ2 + iη2)�α

h V 0
j

+
(
(κ2 + iζ2)

∣∣U0
j
∣∣2 + (δ2 + iβ2)

∣∣V 0
j
∣∣2)V 0

j – γ2V 0
j – g1

(
xj, t0)), 0 < j < M, (101)

U0
j = u1(xj), V 0

j = v1(xj), 0 < j < M, (102)

Un
0 = Un

M = 0, V n
0 = V n

M = 0, 0 ≤ n ≤ N . (103)
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The numerical solutions Un
j , Vn

j for the second problem are given as follows:

Aα
x δtUn

j + (υ1 + iη1)�α
hU n̄

j + Aα
x
[(

(κ1 + iζ1)
∣
∣Un

j
∣
∣2 + (δ1 + iβ1)

∣
∣Vn

j
∣
∣2)U n̄

j
]

– γ1Aα
x Un̄

j

= f2
(
xj, tn), 0 < j < M, 1 < n < N , (104)

Aα
x δtVn

j + (υ2 + iη2)�α
hV n̄

j + Aα
x
[(

(κ2 + iζ2)
∣∣Un

j
∣∣2 + (δ2 + iβ2)

∣∣Vn
j
∣∣2)V n̄

j
]

– γ2Aα
xV n̄

j

= g2
(
xj, tn), 0 < j < M, 1 < n < N , (105)

U1
j = U0

j – τ
(
(υ1 + iη1)�α

hU0
j

+
(
(κ1 + iζ1)

∣∣U0
j
∣∣2 + (δ1 + iβ1)

∣∣V0
j
∣∣2)U0

j – γ1U0
j – f2

(
xj, t0)), 0 < j < M, (106)

V1
j = V0

j – τ
(
(υ2 + iη2)�α

hV0
j

+
(
(κ2 + iζ2)

∣∣U0
j
∣∣2 + (δ2 + iβ2)

∣∣V0
j
∣∣2)V0

j – γ2V0
j – g2

(
xj, t0)), 0 < j < M, (107)

U0
j = u2(xj), V0

j = v2(xj), 0 < j < M, (108)

Un
0 = Un

M = 0, Vn
0 = Vn

M = 0, 0 ≤ n ≤ N . (109)

Now denote

Ûn
j = Un

j – Un
j , V̂ n

j = V n
j – Vn

j ,

f̂ n
j = f1

(
xj, tn) – f2

(
xj, tn), ĝn

j = g1
(
xj, tn) – g2

(
xj, tn),

ûj = u1(xj) – u2(xj), v̂j = v1(xj) – v2(xj),

where j = 1, 2, . . . , M, n = 1, 2, . . . , N .
Subtracting (98) from (104) and subtracting (99) from (105) yield that

f̂ n
j = Aα

x δtÛn
j + (υ1 + iη1)�α

h Ûn̄
j + Aα

x Rn
j – γ1Aα

x Ûn̄
j , (110)

ĝn
j = Aα

x δtV̂ n
j + (υ2 + iη2)�α

h V̂ n̄
j + Aα

x Sn
j – γ2Aα

x V̂ n̄
j , (111)

where

Rn
j =

(
(κ1 + iζ1)

∣
∣Un

j
∣
∣2 + (δ1 + iβ1)

∣
∣V n

j
∣
∣2)Un̄

j –
(
(κ1 + iζ1)

∣
∣Un

j
∣
∣2 + (δ1 + iβ1)

∣
∣Vn

j
∣
∣2)U n̄

j ,

Sn
j =

(
(κ2 + iζ2)

∣
∣Un

j
∣
∣2 + (δ2 + iβ2)

∣
∣V n

j
∣
∣2)V n̄

j –
(
(κ2 + iζ2)

∣
∣Un

j
∣
∣2 + (δ2 + iβ2)

∣
∣Vn

j
∣
∣2)V n̄

j

for 1 ≤ j ≤ M – 1 and 1 ≤ n ≤ N – 1.
Subtracting (100) from (106) and subtracting (101) from (107) yield that

Û1
j = Û0

j – τ
(
(υ1 + iη1)�α

h Û0
j + Rn

j – γ1Û0
j – f̂ 0

j
)
, (112)

V̂ 1
j = V̂ 0

j – τ
(
(υ2 + iη2)�α

h V̂ 0
j + Sn

j – γ2V̂ 0
j – ĝ0

j
)
, (113)

where

R1
j =

(
(κ1 + iζ1)

∣
∣U0

j
∣
∣2 + (δ1 + iβ1)

∣
∣V 0

j
∣
∣2)U0

j –
(
(κ1 + iζ1)

∣
∣U0

j
∣
∣2 + (δ1 + iβ1)

∣
∣V0

j
∣
∣2)U0

j ,

S1
j =

(
(κ2 + iζ2)

∣
∣U0

j
∣
∣2 + (δ2 + iβ2)

∣
∣V 0

j
∣
∣2)V 0

j –
(
(κ2 + iζ2)

∣
∣U0

j
∣
∣2 + (δ2 + iβ2)

∣
∣V0

j
∣
∣2)V0

j .
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Following a simple analysis, one can easily show the following lemma.

Lemma 12 Suppose that the initial conditions and the solutions of the above two problems
are sufficiently smooth. Then one has

∣
∣Û1

j
∣
∣ ≤ Cp

(|ûj| + |v̂j| +
∣
∣�α

h ûj
∣
∣ + τ

∣
∣f̂ 0

j
∣
∣),

∣∣�α
h Û1

j
∣∣ ≤ Cp

(∣∣�α
h ûj

∣∣ +
∣∣�α

h v̂j
∣∣ +

∣∣�α
h�α

h ûj
∣∣ + τ

∣∣�α
h f̂ 0

j
∣∣),

∣
∣V̂ 1

j
∣
∣ ≤ Cp

(|ûj| + |v̂j| +
∣
∣�α

h v̂j
∣
∣ + τ

∣
∣ĝ0

j
∣
∣),

∣
∣�α

h V̂ 1
j
∣
∣ ≤ Cp

(∣∣�α
h ûj

∣
∣ +

∣
∣�α

h v̂j
∣
∣ +

∣
∣�α

h�α
h v̂j

∣
∣ + τ

∣
∣�α

h ĝ0
j
∣
∣), 0 ≤ j ≤ M,

(114)

where Cp is a positive constant independent of τ and h.

By using Lemma 12, the L∞-norm boundedness of the numerical solutions Un, V n, Un,
Vn from Theorem 2, the discrete Gronwall’s inequality of Lemma 9, the similar type of
mathematical induction, and inner product technics as shown in the proof of Theorem 1,
one can show the following stability results (the detailed proof is omitted).

Theorem 4 Suppose that the solutions of the above two problems are smooth enough, then
there exist two small positive constants τ 0 and h0 such that, when τ < τ 0 and h < h0, the
numerical solution (Un, V n) of difference scheme (98)–(103) and the numerical solution
(Un,Vn) of difference scheme (104)–(109) have the following estimates:

∥∥Un – Un∥∥2
∞

≤ C0(‖û‖2 + ‖v̂‖2 +
∥∥�α

h û
∥∥2 +

∥∥�α
h v̂

∥∥2 +
∥∥�α

h�α
h û

∥∥2 +
∥∥�α

h�α
h v̂

∥∥2)

+ C0

(

τ 2∥∥f̂ 0∥∥2 + τ 2∥∥ĝ0∥∥2 + τ 2∥∥�α
h f̂ 0∥∥2 + τ 2∥∥�α

h ĝ0∥∥2

+ τ

n–1∑

k=1

∥∥f̂ k∥∥2 + τ

n–1∑

k=1

∥∥ĝk∥∥2
)

,

∥∥V n – Vn∥∥2
∞

≤ C0(‖û‖2 + ‖v̂‖2 +
∥∥�α

h û
∥∥2 +

∥∥�α
h v̂

∥∥2
2 +

∥∥�α
h�α

h û
∥∥2 +

∥∥�α
h�α

h v̂
∥∥2)

+ C0

(

τ 2∥∥f̂ 0∥∥2 + τ 2∥∥ĝ0∥∥2 + τ 2∥∥�α
h f̂ 0∥∥2 + τ 2∥∥�α

h ĝ0∥∥2

+ τ

n–1∑

k=1

∥∥f̂ k∥∥2 + τ

n–1∑

k=1

∥∥ĝk∥∥2
)

, 1 ≤ n ≤ N ,

(115)

where C0 is a positive constant independent of τ and h.

From the above theorem, one can see that if the initial perturbations û, v̂ and the per-
turbations of the right-hand sides f̂ , ĝ are small, then the difference of numerical solutions
corresponding to these perturbations remains small. Therefore, the method proposed in
this paper is unconditionally stable.
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Remark 1 In order to increase the time accuracy, the following Richardson extrapolation
for the final step numerical solution is used:

ŨN (�t, h) =
4
3

UN (�t, h) –
1
3

UN/2(2�t, h),

Ṽ N (�t, h) =
4
3

V N (�t, h) –
1
3

V N/2(2�t, h),
(116)

where UN (�t, h), UN/2(2�t, h) are numerical solutions at the final step by using spatial
meshsizes h and time step �t, 2�t, respectively. We will use this temporal scheme for
numerical computation.

4 Numerical results
In this section, we present some numerical results of the proposed difference scheme (22)–
(25) to support our theoretical findings.

Example 1 In order to test the accuracy of the proposed scheme, we consider the following
system with source terms:

ut + (1 + i)(–�)
α
2 u +

(
(–1 – i)|u|2 + (1 + i)|v|2)u – u = f (x, t), x ∈ (0, 1), 0 < t < 1,

vt + (1 – i)(–�)
α
2 v +

(
(1 + i)|u|2 + (1 – i)|v|2)v + v = g(x, t), x ∈ (0, 1), 0 < t < 1,

with the homogeneous boundary conditions

u(0, t) = u(1, t) = 0, v(0, t) = v(1, t) = 0.

The initial conditions and the source terms f (x, t) and g(x, t) are determined by the exact
solutions

u(x, t) = exp(–t)x4(1 – x)4, v(x, t) = (t + 1)3x4(1 – x)4.

Table 1 and Table 2 list the errors and the convergence orders for the proposed method
with α = 1.2, 1.5, 1.8, 2.0 in the L∞-norm, respectively. As we can see, these results show
that the proposed method is fourth-order convergence both in time and space variables.

In order the illustrate the unconditional stability of our methods, we fix τ and vary h,
results for α = 1.5 and α = 2 are plotted in Fig. 1. As one can see, these results clearly show
that the time step is not related to the spatial meshsize, and as the spatial meshsize goes
to zero, the dominant error comes from the temporal part.

Table 1 L∞-norm errors and convergence orders of Ũ obtained by the fourth-order scheme for
Example 1

τ h α = 1.2 α = 1.5 α = 1.8 α = 2.0

‖un – Ũn‖∞ Order ‖un – Ũn‖∞ Order ‖un – Ũn‖∞ Order ‖un – Ũn‖∞ Order

1/32 1/32 1.61e–08 – 2.83e–08 – 1.05e–07 – 1.68e–07 –
1/64 1/64 8.78e–10 4.20 1.81e–09 3.97 2.66e–09 5.31 3.15e–09 5.74
1/128 1/128 5.75e–11 3.93 1.05e–10 4.11 1.48e–10 4.16 2.24e–10 3.81
1/256 1/256 3.93e–12 3.87 6.14e–12 4.09 8.99e–12 4.05 1.30e–11 4.11
1/512 1/512 2.67e–13 3.88 3.63e–13 4.08 5.40e–13 4.06 8.07e–13 4.01
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Table 2 L∞-norm errors and convergence orders of Ṽ obtained by the fourth-order scheme for
Example 1

τ h α = 1.2 α = 1.5 α = 1.8 α = 2.0

‖vn – Ṽn‖∞ Order ‖vn – Ṽn‖∞ Order ‖vn – Ṽn‖∞ Order ‖vn – Ṽn‖∞ Order

1/32 1/32 3.42e–07 – 5.19e–07 – 1.08e–06 – 1.29e–06 –
1/64 1/64 1.96e–08 4.12 3.04e–08 4.09 4.62e–08 4.55 5.69e–08 4.50
1/128 1/128 1.16e–09 4.08 1.78e–09 4.09 2.79e–09 4.05 4.10e–09 3.80
1/256 1/256 7.76e–11 3.90 1.05e–10 4.08 1.68e–10 4.05 2.49e–10 4.04
1/512 1/512 5.62e–12 3.79 6.23e–12 4.08 1.01e–11 4.05 1.56e–11 4.00

Figure 1 Numerical errors obtained by the fourth-order method for fixed τ = 0.001.(a) Numerical error of Ũ at
T = 1;(b) Numerical error of Ṽ at T = 1

Example 2 In this test, we take the following parameters:

υ1 = 0.3, η1 = 0.5, κ1 = –
υ1(3

√
1 + 4υ2

1 – 1)
2(2 + 9υ2

1 )
,

ζ1 = –1, δ1 = κ1, β1 = ζ1, γ1 = 0,

υ2 = 0.3, η2 = 0.6, κ2 = –
υ2(3

√
1 + 4υ2

2 – 1)
2(2 + 9υ2

2 )
,

ζ2 = –1, δ2 = κ2, β2 = ζ2, γ2 = 0.

In the computation, we use our proposed fourth-order method, where the computa-
tional interval is chosen as [–15, 15], final time is set to be T = 1, and the initial value is
taken as

u(x, 0) = sech(x)e2ix, v(x, 0) = sech(x)e2ix. (117)

The “exact solution” is computed on the very fine mesh h = 1/256, τ = 1/256.
Table 3 and Table 4 list the errors and the convergence orders for the method with α =

1.2, 1.5, 1.8, 2.0 in the L∞-norm. And these results confirm the fourth-order convergence
both in time and space variables.

5 Conclusion
In this paper, we developed a fourth-order linearized implicit finite difference method for
the CFGLE. The method is unconditionally stable. Moreover, a rigorous analysis of the
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Table 3 L∞-norm errors and convergence orders of Ũ obtained by the fourth-order scheme for
Example 2

τ h α = 1.2 α = 1.5 α = 1.8 α = 2.0

‖un – Ũn‖∞ Order ‖un – Ũn‖∞ Order ‖un – Ũn‖∞ Order ‖un – Ũn‖∞ Order

1/8 1/8 5.65e–02 – 2.22e–02 – 2.58e–02 – 2.15e–02 –
1/16 1/16 8.41e–03 2.75 3.32e–03 2.74 2.17e–03 3.57 1.46e–03 3.88
1/32 1/32 7.56e–04 3.47 2.86e–04 3.54 1.43e–04 3.92 9.45e–05 3.95
1/64 1/64 5.35e–05 3.82 1.93e–05 3.89 9.18e–06 3.96 6.11e–06 3.95

Table 4 L∞-norm errors and convergence orders of Ṽ obtained by the fourth-order scheme for
Example 2

τ h α = 1.2 α = 1.5 α = 1.8 α = 2.0

‖vn – Ṽn‖∞ Order ‖vn – Ṽn‖∞ Order ‖vn – Ṽn‖∞ Order ‖vn – Ṽn‖∞ Order

1/8 1/8 4.91e–02 1.55 2.13e–02 2.45 2.62e–02 2.41 2.14e–02 2.86
1/16 1/16 7.69e–03 2.67 3.27e–03 2.71 2.14e–03 3.62 1.41e–03 3.93
1/32 1/32 7.16e–04 3.43 2.83e–04 3.53 1.40e–04 3.93 9.17e–05 3.94
1/64 1/64 5.15e–05 3.80 1.92e–05 3.88 8.98e–06 3.97 5.92e–06 3.95

proposed difference scheme is carried out, which includes the unconditional stability and
the L∞-norm convergence of the method. Moreover, Richardson extrapolation is used to
increase the temporal accuracy to fourth order. Numerical tests are performed to validate
our theoretical findings.

This paper only focuses on the coupled space fractional Ginzburg–Landau equations,
where time delay is ignored. As is well known, time delay has been receiving considerable
attention and eliciting widespread interest [33–37]. However, the coupled space fractional
Ginzburg–Landau equations is a nonlinear system, the convergence analysis for the time-
delay case is not a matter of standard error analysis. We leave it as the future work.
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