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1 Introduction
1.1 A little on solvability
Solvability of recurrence relations was started to be studied long time ago [1–3]. That the
relations are, in fact, difference equations has been also known for a long time [4].

Solvability of linear difference equations with constant coefficients, that is, of the equa-
tion

xn = a1xn–1 + a2xn–2 + · · · + amxn–m, n ≥ l, (1)

was known to De Moivre [2] (see also [5]). The study was continued by other known sci-
entists (see, e.g., [4, 6]). For some presentations of classical solvability results consult, e.g.,
[7–14].

In the last two decades the topic re-attracted some interest, although it seems that a
considerable part of the results in the topic are not quite original (see, e.g., some of the
comments in [15–19]). Nevertheless, the recent investigation opened a door for further
studies of related equations and systems (see, e.g., [20–23] and the references therein).

On the other hand, Papaschinopoulos, Schinas, and their collaborators devoted a part
of their investigations to some symmetric-type systems, that is, to those of the form

un = g(un–s, vn–t), vn = g(vn–s, un–t),

as well as to some related ones obtained from the systems by modifying the function g
in various ways (see, e.g., [24–32]). Regarding the solvability of systems, they paid more
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attention to their invariants (see, e.g., [25–27, 29, 31, 32]). Their study on systems of dif-
ference equations motivated some other authors to do some research on the related ones
(see, e.g., [15, 16, 19, 22, 23, 33–37] and the related references therein). Besides the pa-
pers on nonlinear two-dimensional systems of difference equations, there are also some
on three-dimensional ones, as well as on systems of higher orders (see, e.g., [16, 29]).

It should be pointed out that since the beginning of the study of solvability of difference
equations, many problems have been motivated by concrete applications, which to some
extent lasts up to the present time (see, e.g., [3, 4, 6, 8, 9, 13, 38–47]). It is interesting to
note that among the first ones were the problems from combinatorics (see, e.g., [2–4, 6]).
But recall also that from the ancient times many recurrent relations have been connected
to various population models, as it was the case with the Fibonacci model for the growth
of a rabbit population (see, e.g., [47]). The main idea in solvability theory is to obtain some
formulas for the general solution to a concrete difference equation or a class of difference
equations, and based on them to get some information on the long-term behavior of their
solutions.

1.2 Results related to the ones presented here
Before we continue, recall some notations. Let N = {1, 2, 3, . . .}, N0 = N∪ {0}, Z = –N∪N0,
R be the set of reals, and C be that of complex numbers. The notation s = l1, l2, where
l1, l2 ∈ Z, l1 ≤ l2, is the same as {s ∈ Z : l1 ≤ s ≤ l2}.

The equation

zn+1 =
zn–kzn–l + α

zn–k + zn–l
, n ∈N0, (2)

where k, l ∈ N0, α ∈ R (or C), is one of those which attracted some attention, especially,
during the last two decades. Positive solutions to some concrete cases of the equation
have been studied by several authors. But it was shown in [48] that the results on the
global stability of such solutions are essentially known, since they follow from a result in
[49]. For some multi-dimensional extensions of the result in [49], see [50] and [51]. It is
easy to see that in (2) we may assume α = 1. In this case the right-hand side of (2) has the
form of known hyperbolic-cotangent sum formula. As usual, such difference equations are
candidates for solvable ones, the fact known for a long time (the observation can be found
in the old book [7], and it would not be surprising to find it even in some much earlier
sources). A natural way for studying solvability of equation (2) can be found in [52].

The corresponding close-to-symmetric system in the case k = 0, l = 1, that is, the system

xn+1 =
unvn–1 + a
un + vn–1

, yn+1 =
wnsn–1 + a
wn + sn–1

, n ∈N0, (3)

where

a, uj, wj, vj′ , sj′ ∈C, j = 0, j′ = –1, 0,

whereas un, vn, wn, sn are xn or yn, has been studied recently in [53] and [54]. Systems of
this form were studied for the first time in [22].

Quite recently in [55] we have given another solution to the solvability problem for sys-
tem (3), which is related to the method for solving equation (2) presented in [56]. Maybe
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more important is that we have also shown therein theoretical solvability of the following
generalization of system (3):

xn+1 =
un–kvn–l + a
un–k + vn–l

, yn+1 =
wn–ksn–l + a
wn–k + sn–l

, n ∈N0, (4)

where k, l ∈N0,

a, u–j, w–j, v–j′ , s–j′ ∈C, j = 0, k, j′ = 0, l,

and each of the sequences un, vn, wn, sn is equal to xn or yn.
We would like also to say that general solutions to the systems investigated in [53–55]

were presented in terms of the Fibonacci sequence, that is, in terms of the sequence defined
by

an+2 = an+1 + an

satisfying the initial conditions a1 = a2 = 1 (see, e.g., [39, 43, 47, 57] for some informa-
tion on the sequence). Such kind of representations seems to have been quite popular
among some authors in the last ten years or so. For some explanations in this direction,
see [15]. There we have shown that to some difference equations and systems of differ-
ence equations can be naturally associated some linear difference equations with constant
coefficients such that some of their solutions can be used in representations of the gen-
eral solutions to the equations and systems. For example, in [15] it naturally appears the
sequence

an+2 = αan+1 + βan

such that a0 = 0 and a1 = 1. For some related results and their applications in represen-
tations of general solutions to some classes of difference equations and systems, see also
[16–19].

1.3 What is done in this paper and how
Here, we continue our study in [55] by finding general solutions to the systems of difference
equations in (4) in the case k = 1 and l = 2, complementing the results in [55]. We show
that, in the case, the systems are practically solvable. This means that for each of the sixteen
systems in (3) there is a finite number of closed-form formulas representing its general
solution (for some more explanations related to the notion, as well as for some examples,
see [55]). This is done by considerable use of some methods and ideas on product-type
difference equations and systems, which can be found, e.g., in the following recent papers:
[33–37] (see also the related references therein).

Here we also show that for each of the systems in (3) there are a naturally associated
homogeneous linear difference equation with constant coefficients and a specially chosen
solution to the linear equation by which the general solution to the system can be repre-
sented. Unlike the closed-form formulas presented in [55], this time the associated linear
difference equations are not connected to the Fibonacci sequence, at all. The closed-form
formulas obtained here show the usual diversity of representations that we have noticed
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in some previous studies (see, e.g., [15, 16, 19, 33–37]). However, the connectedness of
the systems studied here and [55] is through the general homogeneous linear difference
equation with constant coefficients.

How is dealt with the systems in (4) in the case a = 0 is well known. Namely, in this case
the systems are easily solved by some simple changes of variables, which transform them
to linear solvable ones (for more details, see [55]). Hence, we omit here studying the case
and leave it to the interested reader as a simple exercise (see also [55]).

Let us also mention that the majority of solvable difference equations are solved by using
the idea, that is, by using suitable changes of variables which transform them to known
solvable ones. Many results of this type, out of the books and papers quoted above, can be
found, e.g., in [4, 7–9, 15–19, 21–23, 33–37, 52–55, 58].

2 Auxiliary results
Here we present some auxiliary results, which are used in the proofs of the main ones.

The following Lagrange result is well known and can be proved in several ways (see, e.g.,
[37, 39, 59]).

Lemma 1 Let xk , k = 1, m, be the roots of the polynomial

qm(x) = bmxm + · · · + b1x + b0,

where bm �= 0. Assume that the roots are distinct.
Then

m∑

k=1

xj
k

q′
m(xk)

= 0,

when 0 ≤ j ≤ m – 2, and

m∑

k=1

xm–1
k

q′
m(xk)

=
1

bm
.

Special cases of the following interesting, quite useful, and applicable lemma, which
should be folklore, have been used in some of our recent papers (see, e.g., [34, 35, 37]).
Here we present it in full generality and will frequently use in the rest of the paper.

Lemma 2 Consider equation (1), where l ∈ Z, aj ∈ C, j = 1, m, am �= 0. Let tk , k = 1, m, be
the roots of the characteristic polynomial

pm(t) = tm – a1tm–1 – a2tm–2 – · · · – am,

associated with equation (1). Assume that the roots are distinct.
Then the solution to equation (1) such that

xj–m = 0, j = l, l + m – 2, and xl–1 = 1 (5)
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is given by

xn =
m∑

k=1

tn+m–l
k

p′
m(tk)

(6)

for n ≥ l – m.

Proof By a well-known result from theory of homogeneous linear difference equations
with constant coefficients, a general solution to equation (1), in the case when the roots
tk , k = 1, m, of the characteristic polynomial pm are distinct, has the following form:

xn = c1tn
1 + c2tn

2 + · · · + cmtn
m, n ≥ l – m, (7)

where ck , k = 1, m, are arbitrary constants (see, e.g., [7–9, 11–14]).
Since the sequence xn defined in (6) has the form in (7), with

ck =
tm–l
k

p′
m(tk)

, k = 1, m,

it is obviously a solution to equation (1).
On the other hand, by Lemma 1 we see that this solution satisfies the initial conditions

given in (5), from which together with the well-known fact that each solution to equation
(1) is uniquely defined by m consecutive terms, the lemma follows. �

Remark 1 We would also like to say that we will frequently use here the fact that, when
am �= 0, every solution to equation (1) is naturally prolonged on the whole domain Z by
using the following obvious consequence of recurrence relation (1):

xn–m =
xn – a1xn–1 – a2xn–2 – · · · – am–1xn–m+1

am
. (8)

Since each solution to equation (1) is uniquely defined by m consecutive members, it fol-
lows that the formulas obtained on the domain n ≥ l also hold on Z. Specially, formula (6)
presents the solution to equation (1) with initial conditions (5) not only on the set n ≥ l,
but also on the whole Z.

Remark 2 Recall that

p′
m(tk) =

m∏

j=1,j �=k

(tk – tj)

for each k ∈ {1, 2, . . . , m}.
From this and due to the observation in Remark 1, it follows that formula (6) can be also

written in the following form:

xn =
m∑

k=1

tn+m–l
k∏m

j=1,j �=k(tk – tj)

for every n ∈ Z.
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3 Main results
Before we present and give proofs of our main results, we first transform the systems stud-
ied here to some simpler forms by using some changes of variables, which are naturally
imposed.

In order to do this, first note that from the equations in (4) with k = 1 and l = 2, after
some simple calculations, we have that the following two pairs of relations hold:

xn+1 ± √
a =

(un–1 ± √
a)(vn–2 ± √

a)
un–1 + vn–2

and yn+1 ± √
a =

(wn–1 ± √
a)(sn–2 ± √

a)
wn–1 + sn–2

for n ∈N0, from which it follows that

xn+1 +
√

a
xn+1 –

√
a

=
un–1 +

√
a

un–1 –
√

a
· vn–2 +

√
a

vn–2 –
√

a
,

yn+1 +
√

a
yn+1 –

√
a

=
wn–1 +

√
a

wn–1 –
√

a
· sn–2 +

√
a

sn–2 –
√

a
(9)

for n ∈N0.
Bearing in mind that un, vn, wn, sn can be xn or yn, from (9) sixteen different systems are

obtained. They are as follows:

xn+1 +
√

a
xn+1 –

√
a

=
xn–1 +

√
a

xn–1 –
√

a
· xn–2 +

√
a

xn–2 –
√

a
,

yn+1 +
√

a
yn+1 –

√
a

=
xn–1 +

√
a

xn–1 –
√

a
· xn–2 +

√
a

xn–2 –
√

a
, (10)

xn+1 +
√

a
xn+1 –

√
a

=
xn–1 +

√
a

xn–1 –
√

a
· xn–2 +

√
a

xn–2 –
√

a
,

yn+1 +
√

a
yn+1 –

√
a

=
yn–1 +

√
a

yn–1 –
√

a
· xn–2 +

√
a

xn–2 –
√

a
, (11)

xn+1 +
√

a
xn+1 –

√
a

=
xn–1 +

√
a

xn–1 –
√

a
· xn–2 +

√
a

xn–2 –
√

a
,

yn+1 +
√

a
yn+1 –

√
a

=
xn–1 +

√
a

xn–1 –
√

a
· yn–2 +

√
a

yn–2 –
√

a
, (12)

xn+1 +
√

a
xn+1 –

√
a

=
xn–1 +

√
a

xn–1 –
√

a
· xn–2 +

√
a

xn–2 –
√

a
,

yn+1 +
√

a
yn+1 –

√
a

=
yn–1 +

√
a

yn–1 –
√

a
· yn–2 +

√
a

yn–2 –
√

a
, (13)

xn+1 +
√

a
xn+1 –

√
a

=
yn–1 +

√
a

yn–1 –
√

a
· xn–2 +

√
a

xn–2 –
√

a
,

yn+1 +
√

a
yn+1 –

√
a

=
xn–1 +

√
a

xn–1 –
√

a
· xn–2 +

√
a

xn–2 –
√

a
, (14)

xn+1 +
√

a
xn+1 –

√
a

=
yn–1 +

√
a

yn–1 –
√

a
· xn–2 +

√
a

xn–2 –
√

a
,

yn+1 +
√

a
yn+1 –

√
a

=
yn–1 +

√
a

yn–1 –
√

a
· xn–2 +

√
a

xn–2 –
√

a
, (15)

xn+1 +
√

a
xn+1 –

√
a

=
yn–1 +

√
a

yn–1 –
√

a
· xn–2 +

√
a

xn–2 –
√

a
,

yn+1 +
√

a
yn+1 –

√
a

=
xn–1 +

√
a

xn–1 –
√

a
· yn–2 +

√
a

yn–2 –
√

a
, (16)

xn+1 +
√

a
xn+1 –

√
a

=
yn–1 +

√
a

yn–1 –
√

a
· xn–2 +

√
a

xn–2 –
√

a
,

yn+1 +
√

a
yn+1 –

√
a

=
yn–1 +

√
a

yn–1 –
√

a
· yn–2 +

√
a

yn–2 –
√

a
, (17)

xn+1 +
√

a
xn+1 –

√
a

=
xn–1 +

√
a

xn–1 –
√

a
· yn–2 +

√
a

yn–2 –
√

a
,

yn+1 +
√

a
yn+1 –

√
a

=
xn–1 +

√
a

xn–1 –
√

a
· xn–2 +

√
a

xn–2 –
√

a
, (18)

xn+1 +
√

a
xn+1 –

√
a

=
xn–1 +

√
a

xn–1 –
√

a
· yn–2 +

√
a

yn–2 –
√

a
,

yn+1 +
√

a
yn+1 –

√
a

=
yn–1 +

√
a

yn–1 –
√

a
· xn–2 +

√
a

xn–2 –
√

a
, (19)

xn+1 +
√

a
xn+1 –

√
a

=
xn–1 +

√
a

xn–1 –
√

a
· yn–2 +

√
a

yn–2 –
√

a
,

yn+1 +
√

a
yn+1 –

√
a

=
xn–1 +

√
a

xn–1 –
√

a
· yn–2 +

√
a

yn–2 –
√

a
, (20)

xn+1 +
√

a
xn+1 –

√
a

=
xn–1 +

√
a

xn–1 –
√

a
· yn–2 +

√
a

yn–2 –
√

a
,

yn+1 +
√

a
yn+1 –

√
a

=
yn–1 +

√
a

yn–1 –
√

a
· yn–2 +

√
a

yn–2 –
√

a
, (21)

xn+1 +
√

a
xn+1 –

√
a

=
yn–1 +

√
a

yn–1 –
√

a
· yn–2 +

√
a

yn–2 –
√

a
,

yn+1 +
√

a
yn+1 –

√
a

=
xn–1 +

√
a

xn–1 –
√

a
· xn–2 +

√
a

xn–2 –
√

a
, (22)
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xn+1 +
√

a
xn+1 –

√
a

=
yn–1 +

√
a

yn–1 –
√

a
· yn–2 +

√
a

yn–2 –
√

a
,

yn+1 +
√

a
yn+1 –

√
a

=
yn–1 +

√
a

yn–1 –
√

a
· xn–2 +

√
a

xn–2 –
√

a
, (23)

xn+1 +
√

a
xn+1 –

√
a

=
yn–1 +

√
a

yn–1 –
√

a
· yn–2 +

√
a

yn–2 –
√

a
,

yn+1 +
√

a
yn+1 –

√
a

=
xn–1 +

√
a

xn–1 –
√

a
· yn–2 +

√
a

yn–2 –
√

a
, (24)

xn+1 +
√

a
xn+1 –

√
a

=
yn–1 +

√
a

yn–1 –
√

a
· yn–2 +

√
a

yn–2 –
√

a
,

yn+1 +
√

a
yn+1 –

√
a

=
yn–1 +

√
a

yn–1 –
√

a
· yn–2 +

√
a

yn–2 –
√

a
(25)

for n ∈N0.
Let

γn =
xn +

√
a

xn –
√

a
and δn =

yn +
√

a
yn –

√
a

(26)

for n ≥ –2.
Then (10)–(25) respectively become

γn+1 = γn–1γn–2, δn+1 = γn–1γn–2, (27)

γn+1 = γn–1γn–2, δn+1 = δn–1γn–2, (28)

γn+1 = γn–1γn–2, δn+1 = γn–1δn–2, (29)

γn+1 = γn–1γn–2, δn+1 = δn–1δn–2, (30)

γn+1 = δn–1γn–2, δn+1 = γn–1γn–2, (31)

γn+1 = δn–1γn–2, δn+1 = δn–1γn–2, (32)

γn+1 = δn–1γn–2, δn+1 = γn–1δn–2, (33)

γn+1 = δn–1γn–2, δn+1 = δn–1δn–2, (34)

γn+1 = γn–1δn–2, δn+1 = γn–1γn–2, (35)

γn+1 = γn–1δn–2, δn+1 = δn–1γn–2, (36)

γn+1 = γn–1δn–2, δn+1 = γn–1δn–2, (37)

γn+1 = γn–1δn–2, δn+1 = δn–1δn–2, (38)

γn+1 = δn–1δn–2, δn+1 = γn–1γn–2, (39)

γn+1 = δn–1δn–2, δn+1 = δn–1γn–2, (40)

γn+1 = δn–1δn–2, δn+1 = γn–1δn–2, (41)

γn+1 = δn–1δn–2, δn+1 = δn–1δn–2, (42)

n ∈N0.
Now we are going to study the solvability of systems (27)–(42). As we have already men-

tioned, we employ here some methods which have been used to product-type systems and
can be found, e.g., in [34–36].

3.1 Solution to system (27)
Clearly, in this case we have

γn = δn, n ∈N. (43)
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Let

a1 = 1, b1 = 1, c1 = 0. (44)

Then we have

γn = γn–2γn–3 = γ
a1
n–2γ

b1
n–3γ

c1
n–4 (45)

for n ∈N.
Iterating (45) we have

γn = (γn–4γn–5)a1γ
b1
n–3γ

c1
n–4 = γ

b1
n–3γ

a1+c1
n–4 γ

a1
n–5 = γ

a2
n–3γ

b2
n–4γ

c2
n–5

for n ≥ 3, where

a2 := b1, b2 := a1 + c1, c2 := a1.

Suppose that

γn = γ
ak
n–k–1γ

bk
n–k–2γ

ck
n–k–3, (46)

ak = bk–1, bk = ak–1 + ck–1, ck = ak–1, (47)

for k ∈N \ {1} and every n ≥ k + 1.
From (45)–(47), we have

γn = (γn–k–3γn–k–4)ak γ
bk
n–k–2γ

ck
n–k–3

= γ
bk
n–k–2γ

ak +ck
n–k–3γ

ak
n–k–4

= γ
ak+1
n–k–2γ

bk+1
n–k–3γ

ck+1
n–k–4,

where

ak+1 := bk , bk+1 := ak + ck , ck+1 := ak .

The inductive argument shows that (46) and (47) hold for every k ≥ 2 and n ≥ k + 1.
Note that from (47) we have

an = an–2 + an–3, n ≥ 4 (48)

(in fact, (48) holds for every n ∈ Z; see Remark 1).
Besides, by using (47), we have

a0 = 0, a–1 = 1, a–2 = a–3 = 0, a–4 = 1 (49)

(see, e.g., the corresponding calculations in [33] and [37]).
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Letting k = n – 1 in (46) and using (47), we get

γn = γ
an–1
0 γ

bn–1
–1 γ

cn–1
–2

= γ
an–1
0 γ

an
–1 γ

an–2
–2 (50)

for n ∈N (moreover, (50) holds for n ≥ –2, which is easily checked by a simple calculation
and the use of (49)).

From (43) and (50), it follows that

δn = γ
an–1
0 γ

an
–1 γ

an–2
–2 (51)

for n ∈N.
The characteristic equation associated with equation (48) is

P3(λ) = λ3 – λ – 1 = 0. (52)

Let λj, j = 1, 3, be the roots of polynomial P3. Since the discriminant � = 23 of the poly-
nomial is different from zero, it follows that the roots are distinct (recall that if a polyno-
mial of the third order has the form Q3(λ) = λ3 + pλ + q, then the discriminant is given
by � = 4p3 + 27q2). Moreover, since the discriminant is positive, one of the roots is real,
whereas the two other ones are complex conjugate. They can be calculated by using known
methods (see, e.g., [59]). Since this is a routine thing and we have done similar calculations
a few times recently [34, 36], we leave it to the reader.

By Lemma 2, we have that the solution to equation (48) such that

a–3 = a–2 = 0 and a–1 = 1

is given by

an =
3∑

j=1

λn+3
j

P′
3(λj)

, n ∈ Z. (53)

From the above consideration along with the relations in (26), we see that the following
corollary holds.

Corollary 1 Consider system (10) with a �= 0. Then its general solution is

xn =
√

a
( x0+

√
a

x0–
√

a )an–1 ( x–1+
√

a
x–1–

√
a )an ( x–2+

√
a

x–2–
√

a )an–2 + 1

( x0+
√

a
x0–

√
a )an–1 ( x–1+

√
a

x–1–
√

a )an ( x–2+
√

a
x–2–

√
a )an–2 – 1

, n ≥ –2,

yn =
√

a
( x0+

√
a

x0–
√

a )an–1 ( x–1+
√

a
x–1–

√
a )an ( x–2+

√
a

x–2–
√

a )an–2 + 1

( x0+
√

a
x0–

√
a )an–1 ( x–1+

√
a

x–1–
√

a )an ( x–2+
√

a
x–2–

√
a )an–2 – 1

, n ∈N,

where an is given by (53).
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3.2 Solution to system (28)
From the previous case we see that (50) holds. Besides, we also have

δn = δn–2γn–3, n ∈N. (54)

From (50), (54), and some calculation, we have

δ2n = δ0

n–1∏

j=0

γ2j–1

= δ0

n–1∏

j=0

γ
a2j–2
0 γ

a2j–1
–1 γ

a2j–3
–2

= δ0γ

∑n–1
j=0 a2j–2

0 γ

∑n–1
j=0 a2j–1

–1 γ

∑n–1
j=0 a2j–3

–2 (55)

for n ∈N0 and

δ2n+1 = δ–1

n∏

j=0

γ2j–2

= δ–1

n∏

j=0

γ
a2j–3
0 γ

a2j–2
–1 γ

a2j–4
–2

= δ–1γ

∑n
j=0 a2j–3

0 γ

∑n
j=0 a2j–2

–1 γ

∑n
j=0 a2j–4

–2 (56)

for n ≥ –1.
Further, by using (48) and (49), we have

n–1∑

j=0

a2j–2 =
n–1∑

j=0

(a2j+1 – a2j–1) = a2n–1 – 1, (57)

n–1∑

j=0

a2j–1 =
n–1∑

j=0

(a2j+2 – a2j) = a2n, (58)

n–1∑

j=0

a2j–3 =
n–1∑

j=0

(a2j – a2j–2) = a2n–2, (59)

n–1∑

j=0

a2j–4 =
n–1∑

j=0

(a2j–1 – a2j–3) = a2n–3 (60)

for n ∈N0.
Employing (57)–(60) in (55) and (56), we obtain

δ2n = δ0γ
a2n–1–1
0 γ

a2n
–1 γ

a2n–2
–2 (61)

for n ∈N0 and

δ2n+1 = δ–1γ
a2n
0 γ

a2n+1–1
–1 γ

a2n–1
–2 (62)

for n ≥ –1.
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Hence, (50), (61), and (62) present the general solution to the system of difference equa-
tions (28). This consideration along with (26) shows that the following corollary holds.

Corollary 2 Consider system (11) with a �= 0. Then its general solution is

xn =
√

a
( x0+

√
a

x0–
√

a )an–1 ( x–1+
√

a
x–1–

√
a )an ( x–2+

√
a

x–2–
√

a )an–2 + 1

( x0+
√

a
x0–

√
a )an–1 ( x–1+

√
a

x–1–
√

a )an ( x–2+
√

a
x–2–

√
a )an–2 – 1

, n ≥ –2,

y2n =
√

a
( y0+

√
a

y0–
√

a )( x0+
√

a
x0–

√
a )a2n–1–1( x–1+

√
a

x–1–
√

a )a2n ( x–2+
√

a
x–2–

√
a )a2n–2 + 1

( y0+
√

a
y0–

√
a )( x0+

√
a

x0–
√

a )a2n–1–1( x–1+
√

a
x–1–

√
a )a2n ( x–2+

√
a

x–2–
√

a )a2n–2 – 1
, n ∈N0,

y2n+1 =
√

a
( y–1+

√
a

y–1–
√

a )( x0+
√

a
x0–

√
a )a2n ( x–1+

√
a

x–1–
√

a )a2n+1–1( x–2+
√

a
x–2–

√
a )a2n–1 + 1

( y–1+
√

a
y–1–

√
a )( x0+

√
a

x0–
√

a )a2n ( x–1+
√

a
x–1–

√
a )a2n+1–1( x–2+

√
a

x–2–
√

a )a2n–1 – 1
, n ≥ –1,

where an is given by (53).

3.3 Solution to system (29)
Note that (50) holds, and we have

δn = γn–2δn–3 (63)

for n ∈N, that is,

δ3n+i = γ3n–2+iδ3(n–1)+i (64)

for n ∈N, i = –2, –1, 0.
We have

δ3n = δ0

n∏

j=1

γ3j–2

= δ0

n∏

j=1

γ
a3j–3
0 γ

a3j–2
–1 γ

a3j–4
–2

= δ0γ

∑n
j=1 a3j–3

0 γ

∑n
j=1 a3j–2

–1 γ

∑n
j=1 a3j–4

–2 (65)

for n ∈N0,

δ3n+1 = δ–2

n∏

j=0

γ3j–1

= δ–2

n∏

j=0

γ
a3j–2
0 γ

a3j–1
–1 γ

a3j–3
–2

= δ–2γ

∑n
j=0 a3j–2

0 γ

∑n
j=0 a3j–1

–1 γ

∑n
j=0 a3j–3

–2 (66)
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for n ≥ –1, and

δ3n+2 = δ–1

n∏

j=0

γ3j

= δ–1

n∏

j=0

γ
a3j–1
0 γ

a3j
–1 γ

a3j–2
–2

= δ–1γ

∑n
j=0 a3j–1

0 γ

∑n
j=0 a3j

–1 γ

∑n
j=0 a3j–2

–2 (67)

for n ≥ –1.
Further, by using (48) and (49), we have

n∑

j=0

a3j–3 =
n∑

j=0

(a3j–1 – a3j–4) = a3n–1 – 1, (68)

n∑

j=0

a3j–2 =
n∑

j=0

(a3j – a3j–3) = a3n, (69)

n∑

j=0

a3j–1 =
n∑

j=0

(a3j+1 – a3j–2) = a3n+1, (70)

n∑

j=0

a3j =
n∑

j=0

(a3j+2 – a3j–1) = a3n+2 – 1, (71)

n∑

j=1

a3j–3 =
n∑

j=1

(a3j–1 – a3j–4) = a3n–1 – 1, (72)

n∑

j=1

a3j–2 =
n∑

j=1

(a3j – a3j–3) = a3n, (73)

n∑

j=1

a3j–4 =
n∑

j=1

(a3j–2 – a3j–5) = a3n–2. (74)

Employing (68)–(74) in (65)–(67), we obtain

δ3n = δ0γ
a3n–1–1
0 γ

a3n
–1 γ

a3n–2
–2 (75)

for n ∈N0,

δ3n+1 = δ–2γ
a3n
0 γ

a3n+1
–1 γ

a3n–1–1
–2 (76)

for n ≥ –1, and

δ3n+2 = δ–1γ
a3n+1
0 γ

a3n+2–1
–1 γ

a3n
–2 (77)

for n ≥ –1.
Formulas (50), (75)–(77) present the general solution to system (29). This consideration

along with (26) shows that the following corollary holds.
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Corollary 3 Consider system (12) with a �= 0. Then its general solution is

xn =
√

a
( x0+

√
a

x0–
√

a )an–1 ( x–1+
√

a
x–1–

√
a )an ( x–2+

√
a

x–2–
√

a )an–2 + 1

( x0+
√

a
x0–

√
a )an–1 ( x–1+

√
a

x–1–
√

a )an ( x–2+
√

a
x–2–

√
a )an–2 – 1

, n ≥ –2,

y3n =
√

a
( y0+

√
a

y0–
√

a )( x0+
√

a
x0–

√
a )a3n–1–1( x–1+

√
a

x–1–
√

a )a3n ( x–2+
√

a
x–2–

√
a )a3n–2 + 1

( y0+
√

a
y0–

√
a )( x0+

√
a

x0–
√

a )a3n–1–1( x–1+
√

a
x–1–

√
a )a3n ( x–2+

√
a

x–2–
√

a )a3n–2 – 1
, n ∈N0,

y3n+1 =
√

a
( y–2+

√
a

y–2–
√

a )( x0+
√

a
x0–

√
a )a3n ( x–1+

√
a

x–1–
√

a )a3n+1 ( x–2+
√

a
x–2–

√
a )a3n–1–1 + 1

( y–2+
√

a
y–2–

√
a )( x0+

√
a

x0–
√

a )a3n ( x–1+
√

a
x–1–

√
a )a3n+1 ( x–2+

√
a

x–2–
√

a )a3n–1–1 – 1
, n ≥ –1,

y3n+2 =
√

a
( y–1+

√
a

y–1–
√

a )( x0+
√

a
x0–

√
a )a3n+1 ( x–1+

√
a

x–1–
√

a )a3n+2–1( x–2+
√

a
x–2–

√
a )a3n + 1

( y–1+
√

a
y–1–

√
a )( x0+

√
a

x0–
√

a )a3n+1 ( x–1+
√

a
x–1–

√
a )a3n+2–1( x–2+

√
a

x–2–
√

a )a3n – 1
, n ≥ –1,

where sequence an is given by (53).

3.4 Solution to system (30)
Obviously, formula (50) holds, and we have

δn = δ
an–1
0 δ

an
–1δ

an–2
–2 (78)

for n ≥ –2.
Therefore, formulas (50) and (78) present the general solution to the system of differ-

ence equations (30). This consideration along with (26) shows that the following corollary
holds.

Corollary 4 Consider system (13) with a �= 0. Then its general solution is

xn =
√

a
( x0+

√
a

x0–
√

a )an–1 ( x–1+
√

a
x–1–

√
a )an ( x–2+

√
a

x–2–
√

a )an–2 + 1

( x0+
√

a
x0–

√
a )an–1 ( x–1+

√
a

x–1–
√

a )an ( x–2+
√

a
x–2–

√
a )an–2 – 1

,

yn =
√

a
( y0+

√
a

y0–
√

a )an–1 ( y–1+
√

a
y–1–

√
a )an ( y–2+

√
a

y–2–
√

a )an–2 + 1

( y0+
√

a
y0–

√
a )an–1 ( y–1+

√
a

y–1–
√

a )an ( y–2+
√

a
y–2–

√
a )an–2 – 1

for n ≥ –2, where an is given by (53).

3.5 Solution to system (31)
From the equations in (31) we have

γn+1 = γn–2γn–3γn–4, n ≥ 2. (79)

Let

a1 = b1 = c1 = 1, d1 = e1 = 0. (80)

Then

γn+1 = γ
a1
n–2γ

b1
n–3γ

c1
n–4γ

d1
n–5γ

e1
n–6, n ≥ 2. (81)
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Employing (79) in (81), we have

γn+1 = γ
a1
n–2γ

b1
n–3γ

c1
n–4γ

d1
n–5γ

e1
n–6

= (γn–5γn–6γn–7)a1γ
b1
n–3γ

c1
n–4γ

d1
n–5γ

e1
n–6

= γ
b1
n–3γ

c1
n–4γ

a1+d1
n–5 γ

a1+e1
n–6 γ

a1
n–7

= γ
a2
n–3γ

b2
n–4γ

c2
n–5γ

d2
n–6γ

e2
n–7

for n ≥ 5, where

a2 := b1, b2 := c1, c2 := a1 + d1, d2 := a1 + e1, e2 := a1.

Suppose that

γn+1 = γ
ak
n–k–1γ

bk
n–k–2γ

ck
n–k–3γ

dk
n–k–4γ

ek
n–k–5 (82)

and

ak = bk–1, bk = ck–1, ck = ak–1 + dk–1, dk = ak–1 + ek–1, ek = ak–1 (83)

for k ∈N \ {1} and n ≥ k + 3.
By using (79) in (82), we get

γn+1 = γ
ak
n–k–1γ

bk
n–k–2γ

ck
n–k–3γ

dk
n–k–4γ

ek
n–k–5

= (γn–k–4γn–k–5γn–k–6)ak γ
bk
n–k–2γ

ck
n–k–3γ

dk
n–k–4γ

ek
n–k–5

= γ
bk
n–k–2γ

ck
n–k–3γ

ak +dk
n–k–4 γ

ak +ek
n–k–5γ

ak
n–k–6

= γ
ak+1
n–k–2γ

bk+1
n–k–3γ

ck+1
n–k–4γ

dk+1
n–k–5γ

ek+1
n–k–6,

where

ak+1 := bk , bk+1 := ck , ck+1 := ak + dk , dk+1 := ak + ek , ek+1 := ak

for k ≥ 2 and every n ≥ k + 4. The inductive argument shows that (82) and (83) hold for
2 ≤ k ≤ n – 3.

From (83) it follows that

an = an–3 + an–4 + an–5, n ≥ 6, (84)

(in fact (84) holds for every n ∈ Z, see Remark 1) and

a0 = 0, a–1 = 0, a–2 = 1, a–j = 0, j = 3, 6,

a–7 = 1, a–8 = –1.
(85)
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If we take k = n – 4 in equation (82), which is obtained when n is replaced by n – 1, we
obtain

γn = γ
an–4
2 γ

bn–4
1 γ

cn–4
0 γ

dn–4
–1 γ

en–4
–2

= (δ0γ–1)an–4 (δ–1γ–2)bn–4γ
cn–4
0 γ

dn–4
–1 γ

en–4
–2

= δ
an–4
0 δ

bn–4
–1 γ

cn–4
0 γ

an–4+dn–4
–1 γ

bn–4+en–4
–2

= δ
an–4
0 δ

an–3
–1 γ

an–2
0 γ

an–1
–1 γ

an–3+an–5
–2 (86)

for n ≥ –2.
From the second equation in (31) and (86), we have

δn = γn–2γn–3

= δ
an–6+an–7
0 δ

an–5+an–6
–1 γ

an–4+an–5
0 γ

an–3+an–4
–1 γ

an–3+an–5
–2 (87)

for n ≥ –1.
The characteristic polynomial associated with equation (84) is

P5(λ) = λ5 – λ2 – λ – 1.

Since

P5(λ) = λ5 + λ3 – λ3 – λ2 – λ – 1 =
(
λ2 + 1

)(
λ3 – λ – 1

)
,

we have that three roots of P5 coincide with the roots λj, j = 1, 3, of polynomial (52),
whereas λ4,5 = ±i.

By Lemma 2, the solution to equation (84) such that a–k = 0, k = 3, 6, and a–2 = 1 is

an =
5∑

j=1

λn+6
j

P′
5(λj)

, n ∈ Z. (88)

Formulas (86) and (87) present the general solution to system (31). This consideration
along with (26) shows that the following corollary holds.

Corollary 5 Consider system (14) with a �= 0. Then its general solution is

xn =
√

a
( y0+

√
a

y0–
√

a )an–4 ( y–1+
√

a
y–1–

√
a )an–3 ( x0+

√
a

x0–
√

a )an–2 ( x–1+
√

a
x–1–

√
a )an–1 ( x–2+

√
a

x–2–
√

a )an–3+an–5 + 1

( y0+
√

a
y0–

√
a )an–4 ( y–1+

√
a

y–1–
√

a )an–3 ( x0+
√

a
x0–

√
a )an–2 ( x–1+

√
a

x–1–
√

a )an–1 ( x–2+
√

a
x–2–

√
a )an–3+an–5 – 1

for n ≥ –2 and

yn =
√

a
( y0+

√
a

y0–
√

a )an–6+an–7 ( y–1+
√

a
y–1–

√
a )an–5+an–6 ( x0+

√
a

x0–
√

a )an–4+an–5 ( x–1+
√

a
x–1–

√
a )an–3+an–4 ( x–2+

√
a

x–2–
√

a )an–3+an–5 + 1

( y0+
√

a
y0–

√
a )an–6+an–7 ( y–1+

√
a

y–1–
√

a )an–5+an–6 ( x0+
√

a
x0–

√
a )an–4+an–5 ( x–1+

√
a

x–1–
√

a )an–3+an–4 ( x–2+
√

a
x–2–

√
a )an–3+an–5 – 1

for n ≥ –1, where an is given by (88).
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3.6 Solution to system (32)
From (32) we have

γn = δn, n ∈N.

So, we have

γn+1 = γn–1γn–2, n ≥ 2. (89)

Hence, by using (50) it follows that

γn = γ
an–3
2 γ

an–2
1 γ

an–4
0

= (δ0γ–1)an–3 (δ–1γ–2)an–2γ
an–4
0

= δ
an–3
0 δ

an–2
–1 γ

an–4
0 γ

an–3
–1 γ

an–2
–2 (90)

for n ∈ N0, where an is the solution to equation (48) such that a–3 = a–2 = 0 and a–1 = 1,
and consequently

δn = δ
an–3
0 δ

an–2
–1 γ

an–4
0 γ

an–3
–1 γ

an–2
–2 (91)

for n ∈N.
Formulas (90) and (91) are the closed-form formulas for the general solution to system

(32). This consideration along with (26) shows that the following corollary holds.

Corollary 6 Consider system (15) with a �= 0. Then its general solution is

xn =
√

a
( y0+

√
a

y0–
√

a )an–3 ( y–1+
√

a
y–1–

√
a )an–2 ( x0+

√
a

x0–
√

a )an–4 ( x–1+
√

a
x–1–

√
a )an–3 ( x–2+

√
a

x–2–
√

a )an–2 + 1

( y0+
√

a
y0–

√
a )an–3 ( y–1+

√
a

y–1–
√

a )an–2 ( x0+
√

a
x0–

√
a )an–4 ( x–1+

√
a

x–1–
√

a )an–3 ( x–2+
√

a
x–2–

√
a )an–2 – 1

for n ∈N0, and

yn =
√

a
( y0+

√
a

y0–
√

a )an–3 ( y–1+
√

a
y–1–

√
a )an–2 ( x0+

√
a

x0–
√

a )an–4 ( x–1+
√

a
x–1–

√
a )an–3 ( x–2+

√
a

x–2–
√

a )an–2 + 1

( y0+
√

a
y0–

√
a )an–3 ( y–1+

√
a

y–1–
√

a )an–2 ( x0+
√

a
x0–

√
a )an–4 ( x–1+

√
a

x–1–
√

a )an–3 ( x–2+
√

a
x–2–

√
a )an–2 – 1

for n ∈N, where an is given by (53).

3.7 Solution to system (33)
Combining the equations in (33), we obtain

γn+3 = γ 2
n γn–1γ

–1
n–3, n ∈N. (92)

Let

a1 := 2, b1 := 1, c1 := 0, d1 := –1, e1 := 0, f1 := 0.
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Then

γn = γ
a1
n–3γ

b1
n–4γ

c1
n–5γ

d1
n–6γ

e1
n–7γ

f1
n–8

=
(
γ 2

n–6γn–7γ
–1
n–9

)a1
γ

b1
n–4γ

c1
n–5γ

d1
n–6γ

e1
n–7γ

f1
n–8

= γ
b1
n–4γ

c1
n–5γ

2a1+d1
n–6 γ

a1+e1
n–7 γ

f1
n–8γ

–a1
n–9

= γ
a2
n–4γ

b2
n–5γ

c2
n–6γ

d2
n–7γ

e2
n–8γ

f2
n–9

for n ≥ 7, where

a2 := b1, b2 := c1, c2 := 2a1 + d1, d2 := a1 + e1, e2 := f1, f2 := –a1.

Suppose that

γn = γ
ak
n–k–2γ

bk
n–k–3γ

ck
n–k–4γ

dk
n–k–5γ

ek
n–k–6γ

fk
n–k–7 (93)

for k ∈N \ {1} and every n ≥ k + 5, and

ak = bk–1, bk = ck–1, ck = 2ak–1 + dk–1,

dk = ak–1 + ek–1, ek = fk–1, fk = –ak–1.
(94)

Then

γn = γ
ak
n–k–2γ

bk
n–k–3γ

ck
n–k–4γ

dk
n–k–5γ

ek
n–k–6γ

fk
n–k–7

=
(
γ 2

n–k–5γn–k–6γ
–1
n–k–8

)ak γ
bk
n–k–3γ

ck
n–k–4γ

dk
n–k–5γ

ek
n–k–6γ

fk
n–k–7

= γ
bk
n–k–3γ

ck
n–k–4γ

2ak +dk
n–k–5 γ

ak +ek
n–k–6γ

fk
n–k–7γ

–ak
n–k–8

= γ
ak+1
n–k–3γ

bk+1
n–k–4γ

ck+1
n–k–5γ

dk+1
n–k–6γ

ek+1
n–k–7γ

fk+1
n–k–8

for n ≥ k + 3, where

ak+1 = bk , bk+1 = ck , ck+1 = 2ak + dk ,

dk+1 = ak + ek , ek+1 = fk , fk+1 = –ak .

The inductive argument implies that (93) and (94) hold for every k, n ∈ N such that 2 ≤
k ≤ n – 5.

From (94) it follows that

an = 2an–3 + an–4 – an–6, n ≥ 7 (95)

(in fact (95) holds for every n ∈ Z, see Remark 1) and

a0 = 0, a–1 = 0, a–2 = 1, a–j = 0, j = 3, 7, a–8 = –1. (96)



Stević Advances in Difference Equations        (2019) 2019:467 Page 18 of 32

If in (93) we take k = n – 5, we get

γn = γ
an–5
3 γ

bn–5
2 γ

cn–5
1 γ

dn–5
0 γ

en–5
–1 γ

fn–5
–2

= (γ0γ–1δ–2)an–5 (δ0γ–1)bn–5 (δ–1γ–2)cn–5γ
dn–5
0 γ

en–5
–1 γ

fn–5
–2

= γ
an–5+dn–5
0 γ

an–5+bn–5+en–5
–1 γ

cn–5+fn–5
–2 δ

bn–5
0 δ

cn–5
–1 δ

an–5
–2

= γ
an–2–an–5
0 γ

an–1–an–4
–1 γ

an–3–an–6
–2 δ

an–4
0 δ

an–3
–1 δ

an–5
–2 (97)

for n ≥ –2.
From the first equation in (33) and (97) it follows that

δn = γn+2/γn–1

= γ
an–2an–3+an–6
0 γ

an+1–2an–2+an–5
–1 γ

an–1–2an–4+an–7
–2

× δ
an–2–an–5
0 δ

an–1–an–4
–1 δ

an–3–an–6
–2

= γ
an–4
0 γ

an–3
–1 γ

an–5
–2 δ

an–2–an–5
0 δ

an–1–an–4
–1 δ

an–3–an–6
–2 (98)

for n ≥ –2.
The characteristic polynomial associated with equation (95) is

P6(t) = t6 – 2t3 – t2 + 1 =
(
t3 – t – 1

)(
t3 + t – 1

)
.

Let tj, j = 1, 6, be its roots. Then tj = λj, j = 1, 3 (the roots of polynomial (52)), whereas the
other three roots of P6 are the roots of the polynomial t3 + t – 1, which are routinely found
(see, e.g., [34, 36, 59]).

So, by Lemma 2, the solution to equation (95) such that a–k = 0, k = 3, 7, and a–2 = 1 is

an =
6∑

j=1

tn+7
j

P′
6(tj)

, n ∈ Z. (99)

Formulas (97) and (98) present the general solution to system (33). This consideration
along with (26) shows that the following corollary holds.

Corollary 7 Consider system (16) with a �= 0. Then its general solution is

xn =
√

a
( x0+

√
a

x0–
√

a )bn–2 ( x–1+
√

a
x–1–

√
a )bn–1 ( x–2+

√
a

x–2–
√

a )bn–3 ( y0+
√

a
y0–

√
a )an–4 ( y–1+

√
a

y–1–
√

a )an–3 ( y–2+
√

a
y–2–

√
a )an–5 + 1

( x0+
√

a
x0–

√
a )bn–2 ( x–1+

√
a

x–1–
√

a )bn–1 ( x–2+
√

a
x–2–

√
a )bn–3 ( y0+

√
a

y0–
√

a )an–4 ( y–1+
√

a
y–1–

√
a )an–3 ( y–2+

√
a

y–2–
√

a )an–5 – 1
,

yn =
√

a
( x0+

√
a

x0–
√

a )an–4 ( x–1+
√

a
x–1–

√
a )an–3 ( x–2+

√
a

x–2–
√

a )an–5 ( y0+
√

a
y0–

√
a )bn–2 ( y–1+

√
a

y–1–
√

a )bn–1 ( y–2+
√

a
y–2–

√
a )bn–3 + 1

( x0+
√

a
x0–

√
a )an–4 ( x–1+

√
a

x–1–
√

a )an–3 ( x–2+
√

a
x–2–

√
a )an–5 ( y0+

√
a

y0–
√

a )bn–2 ( y–1+
√

a
y–1–

√
a )bn–1 ( y–2+

√
a

y–2–
√

a )bn–3 – 1

for n ≥ –2, where the sequence an is given by (99) and bn = an – an–3.

3.8 Solution to system (34)
This system is obtained from system (29) by interchanging letters ζ and η.
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Thus, its general solution is

γ3n = γ0δ
a3n–1–1
0 δ

a3n
–1 δ

a3n–2
–2 (100)

for n ∈N0,

γ3n+1 = γ–2δ
a3n
0 δ

a3n+1
–1 δ

a3n–1–1
–2 (101)

for n ≥ –1,

γ3n+2 = γ–1δ
a3n+1
0 δ

a3n+2–1
–1 δ

a3n
–2 (102)

for n ≥ –1, and

δn = δ
an–1
0 δ

an
–1δ

an–2
–2 (103)

for n ≥ –2.
Formulas (100)–(103) present the general solution to the system of difference equations

(34). This consideration along with (26) shows that the following corollary holds.

Corollary 8 Consider system (17) with a �= 0. Then its general solution is

x3n =
√

a
( x0+

√
a

x0–
√

a )( y0+
√

a
y0–

√
a )a3n–1–1( y–1+

√
a

y–1–
√

a )a3n ( y–2+
√

a
y–2–

√
a )a3n–2 + 1

( x0+
√

a
x0–

√
a )( y0+

√
a

y0–
√

a )a3n–1–1( y–1+
√

a
y–1–

√
a )a3n ( y–2+

√
a

y–2–
√

a )a3n–2 – 1
, n ∈N0,

x3n+1 =
√

a
( x–2+

√
a

x–2–
√

a )( y0+
√

a
y0–

√
a )a3n ( y–1+

√
a

y–1–
√

a )a3n+1 ( y–2+
√

a
y–2–

√
a )a3n–1–1 + 1

( x–2+
√

a
x–2–

√
a )( y0+

√
a

y0–
√

a )a3n ( y–1+
√

a
y–1–

√
a )a3n+1 ( y–2+

√
a

y–2–
√

a )a3n–1–1 – 1
, n ≥ –1,

x3n+2 =
√

a
( x–1+

√
a

x–1–
√

a )( y0+
√

a
y0–

√
a )a3n+1 ( y–1+

√
a

y–1–
√

a )a3n+2–1( y–2+
√

a
y–2–

√
a )a3n + 1

( x–1+
√

a
x–1–

√
a )( y0+

√
a

y0–
√

a )a3n+1 ( y–1+
√

a
y–1–

√
a )a3n+2–1( y–2+

√
a

y–2–
√

a )a3n – 1
, n ≥ –1,

yn =
√

a
( y0+

√
a

y0–
√

a )an–1 ( y–1+
√

a
y–1–

√
a )an ( y–2+

√
a

y–2–
√

a )an–2 + 1

( y0+
√

a
y0–

√
a )an–1 ( y–1+

√
a

y–1–
√

a )an ( y–2+
√

a
y–2–

√
a )an–2 – 1

, n ≥ –2,

where an is given by (53).

3.9 Solution to system (35)
Combining the equations in (35), we have that the following recurrence relation holds:

γn = γn–2γn–5γn–6 (104)

for n ≥ 4.
Let

a1 := 1, b1 := 0, c1 := 0, d1 := 1, e1 := 1, f1 := 0. (105)
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Then equation (104) can be written as follows:

γn = γ
a1
n–2γ

b1
n–3γ

c1
n–4γ

d1
n–5γ

e1
n–6γ

f1
n–7, n ≥ 4. (106)

Employing (104) in (106), we have

γn = γ
a1
n–2γ

b1
n–3γ

c1
n–4γ

d1
n–5γ

e1
n–6γ

f1
n–7

= (γn–4γn–7γn–8)a1γ
b1
n–3γ

c1
n–4γ

d1
n–5γ

e1
n–6γ

f1
n–7

= γ
b1
n–3γ

a1+c1
n–4 γ

d1
n–5γ

e1
n–6γ

a1+f1
n–7 γ

a1
n–8

= γ
a2
n–3γ

b2
n–4γ

c2
n–5γ

d2
n–6γ

e2
n–7γ

f2
n–8 (107)

for n ≥ 6, where

a2 := b1, b2 := a1 + c1, c2 := d1,

d2 := e1, e2 := a1 + f1, f2 := a1.
(108)

Similarly as in the case of equation (92), it is proved that

γn = γ
ak
n–k–1γ

bk
n–k–2γ

ck
n–k–3γ

dk
n–k–4γ

ek
n–k–5γ

fk
n–k–6 (109)

for k ∈N \ {1} and n ≥ k + 4, and that

ak = bk–1, bk = ak–1 + ck–1, ck = dk–1,

dk = ek–1, ek = ak–1 + fk–1, fk = ak–1.
(110)

From (110), we have

an = an–2 + an–5 + an–6, n ≥ 7 (111)

(in fact (111) holds for every n ∈ Z, see Remark 1) and

a0 = 0, a–1 = 1, a–j = 0, j = 2, 6,

a–7 = 1, a–8 = –1, a–9 = 1.
(112)

Taking k = n – 4 in (109), we obtain

γn = γ
an–4
3 γ

bn–4
2 γ

cn–4
1 γ

dn–4
0 γ

en–4
–1 γ

fn–4
–2

= (γ–1δ0δ–2)an–4 (γ0δ–1)bn–4 (γ–1δ–2)cn–4γ
dn–4
0 γ

en–4
–1 γ

fn–4
–2

= γ
bn–4+dn–4
0 γ

an–4+cn–4+en–4
–1 γ

fn–4
–2 δ

an–4
0 δ

bn–4
–1 δ

an–4+cn–4
–2

= γ
an–1
0 γ

an
–1 γ

an–5
–2 δ

an–4
0 δ

an–3
–1 δ

an–2
–2 (113)

for n ≥ –2.
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Employing (113) in the second equation in (35), it follows that

δn = γn–2γn–3

= γ
an–3+an–4
0 γ

an–2+an–3
–1 γ

an–7+an–8
–2 δ

an–6+an–7
0 δ

an–5+an–6
–1 δ

an–4+an–5
–2 (114)

for n ≥ –2.
The roots of the characteristic polynomial

P̃6(t) = t6 – t4 – t – 1 =
(
t3 – t – 1

)(
t3 + 1

)

associated with equation (111) are

t1 = λ1, t2 = λ2, t3 = λ3, t4 = –1, t5,6 = e±i π
3 , (115)

where λj, j = 1, 3, are the roots of polynomial (52).
By Lemma 2, we see that the solution to equation (111) such that a–k = 0, k = 2, 6, and

a–1 = 1 is

an =
6∑

j=1

tn+6
j

P̃′
6(tj)

, n ∈ Z. (116)

This consideration along with (26) shows that the following corollary holds.

Corollary 9 Consider system (18) with a �= 0. Then its general solution is

xn =
√

a
( x0+

√
a

x0–
√

a )an–1 ( x–1+
√

a
x–1–

√
a )an ( x–2+

√
a

x–2–
√

a )an–5 ( y0+
√

a
y0–

√
a )an–4 ( y–1+

√
a

y–1–
√

a )an–3 ( y–2+
√

a
y–2–

√
a )an–2 + 1

( x0+
√

a
x0–

√
a )an–1 ( x–1+

√
a

x–1–
√

a )an ( x–2+
√

a
x–2–

√
a )an–5 ( y0+

√
a

y0–
√

a )an–4 ( y–1+
√

a
y–1–

√
a )an–3 ( y–2+

√
a

y–2–
√

a )an–2 – 1
,

yn =
√

a
( x0+

√
a

x0–
√

a )bn–3 ( x–1+
√

a
x–1–

√
a )bn–2 ( x–2+

√
a

x–2–
√

a )bn–7 ( y0+
√

a
y0–

√
a )bn–6 ( y–1+

√
a

y–1–
√

a )bn–5 ( y–2+
√

a
y–2–

√
a )bn–4 + 1

( x0+
√

a
x0–

√
a )bn–3 ( x–1+

√
a

x–1–
√

a )bn–2 ( x–2+
√

a
x–2–

√
a )bn–7 ( y0+

√
a

y0–
√

a )bn–6 ( y–1+
√

a
y–1–

√
a )bn–5 ( y–2+

√
a

y–2–
√

a )bn–4 – 1

for n ≥ –2, where the sequence an is given by (116) and

bn = an + an–1.

3.10 Solution to system (36)
Combining the equations in (36), it follows that the following relation holds:

γn = γ 2
n–2γ

–1
n–4γn–6 (117)

for n ≥ 4.
Let

a1 = 2, b1 = –1, c1 = 1. (118)
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Since equation (117) is with interlacing indices of order two (see, e.g., [17, 23]), it can be
written as follows:

γ2n+i = γ
a1
2(n–1)+iγ

b1
2(n–2)+iγ

c1
2(n–3)+i (119)

for n ≥ 2 and i = 0, 1.
By using (117) in (119) we have

γ2n+i =
(
γ 2

2(n–2)+iγ
–1
2(n–3)+iγ2(n–4)+i

)a1
γ

b1
2(n–2)+iγ

c1
2(n–3)+i

= γ
2a1+b1
2(n–2)+iγ

–a1+c1
2(n–3)+iγ

a1
2(n–4)+i

= γ
a2
2(n–2)+iγ

b2
2(n–3)+iγ

c2
2(n–4)+i

for n ≥ 3, i = 0, 1, where

a2 := 2a1 + b1, b2 := –a1 + c1, c2 := a1.

As in the case of equation (45), it is proved that

γ2n+i = γ
ak
2(n–k)+iγ

bk
2(n–k–1)+iγ

ck
2(n–k–2)+i (120)

for i = 0, 1, and

ak = 2ak–1 + bk–1, bk = –ak–1 + ck–1, ck = ak–1 (121)

for k ∈N \ {1} and every n ≥ k + 1.
From (121) it follows that

an = 2an–1 – an–2 + an–3, n ≥ 4 (122)

(in fact recurrent relation (122) holds for every n ∈ Z, Remark 1), and it is easily shown
that

a0 = 1, a–1 = 0, a–2 = 0, a–3 = 1, a–4 = 1. (123)

For k = n – 1, from (120), we have

γ2n = γ
an–1
2 γ

bn–1
0 γ

cn–1
–2

= (γ0δ–1)an–1γ
bn–1
0 γ

cn–1
–2

= γ
an–1+bn–1
0 γ

cn–1
–2 δ

an–1
–1

= γ
an–an–1
0 γ

an–2
–2 δ

an–1
–1 (124)

for n ≥ –1, and

γ2n+1 = γ
an–1
3 γ

bn–1
1 γ

cn–1
–1

= (γ–1δ0δ–2)an–1 (γ–1δ–2)bn–1γ
cn–1
–1
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= γ
an–1+bn–1+cn–1
–1 δ

an–1
0 δ

an–1+bn–1
–2

= γ
an+1–an
–1 δ

an–1
0 δ

an–an–1
–2 (125)

for n ≥ –1.
From (36), (124), and (125), it follows that

δ2n+1 = γ2n+4/γ2n+2

= γ
an+2–2an+1+an
0 γ

an–an–1
–2 δ

an+1–an
–1

= γ
an–1
0 γ

an–an–1
–2 δ

an+1–an
–1 (126)

for n ≥ –1, and

δ2n = γ2n+3/γ2n+1

= γ
an+2–2an+1+an
–1 δ

an–an–1
0 δ

an+1–2an+an–1
–2

= γ
an–1
–1 δ

an–an–1
0 δ

an–2
–2 (127)

for n ≥ –1 ((126) and (127) are also obtained from (124) and (125) due to the symmetry
of system (36)).

Now note that the characteristic polynomial associated with difference equation (122)
is given by

P̃3(t) = t3 – 2t2 + t – 1.

Let t̃j, j = 1, 3, be the roots of polynomial P̃3 (they are also found in a routine way [34, 36,
59], which we leave to the interested reader).

By using Lemma 2, we see that the solution to equation (122) satisfying the following
conditions

a–2 = a–1 = 0 and a0 = 1

is

an =
3∑

j=1

t̃n+2
j

P̃′
3(̃tj)

, n ∈ Z. (128)

The above consideration along with the changes of variables in (26) shows that the fol-
lowing corollary holds.

Corollary 10 Consider system (19) with a �= 0. Then its general solution is

x2n =
√

a
( x0+

√
a

x0–
√

a )an–an–1 ( x–2+
√

a
x–2–

√
a )an–2 ( y–1+

√
a

y–1–
√

a )an–1 + 1

( x0+
√

a
x0–

√
a )an–an–1 ( x–2+

√
a

x–2–
√

a )an–2 ( y–1+
√

a
y–1–

√
a )an–1 – 1

,

x2n+1 =
√

a
( x–1+

√
a

x–1–
√

a )an+1–an ( y0+
√

a
y0–

√
a )an–1 ( y–2+

√
a

y–2–
√

a )an–an–1 + 1

( x–1+
√

a
x–1–

√
a )an+1–an ( y0+

√
a

y0–
√

a )an–1 ( y–2+
√

a
y–2–

√
a )an–an–1 – 1

,
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y2n =
√

a
( x–1+

√
a

x–1–
√

a )an–1 ( y0+
√

a
y0–

√
a )an–an–1 ( y–2+

√
a

y–2–
√

a )an–2 + 1

( x–1+
√

a
x–1–

√
a )an–1 ( y0+

√
a

y0–
√

a )an–an–1 ( y–2+
√

a
y–2–

√
a )an–2 – 1

y2n+1 =
√

a
( x0+

√
a

x0–
√

a )an–1 ( x–2+
√

a
x–2–

√
a )an–an–1 ( y–1+

√
a

y–1–
√

a )an+1–an + 1

( x0+
√

a
x0–

√
a )an–1 ( x–2+

√
a

x–2–
√

a )an–an–1 ( y–1+
√

a
y–1–

√
a )an+1–an – 1

for n ≥ –1, where the sequence an is given by (128).

Remark 3 Equation (117) can be also solved directly, that is, without reducing it to two
non-interlaced difference equations. Namely, let

ã1 := 2, b̃1 := 0, c̃1 := –1, d̃1 := 0, ẽ1 := 1, f̃1 := 0,

then equation (117) can be written as follows:

γn = γ
ã1
n–2γ

b̃1
n–3γ

c̃1
n–4γ

d̃1
n–5γ

ẽ1
n–6γ

f̃1
n–7 (129)

for n ≥ 4.
By using (117) in (129) we have

γn = γ
ã1
n–2γ

b̃1
n–3γ

c̃1
n–4γ

d̃1
n–5γ

ẽ1
n–6γ

f̃1
n–7,

=
(
γ 2

n–4γ
–1
n–6γn–8

)̃a1
γ

b̃1
n–3γ

c̃1
n–4γ

d̃1
n–5γ

ẽ1
n–6γ

f̃1
n–7

= γ
b̃1
n–3γ

2̃a1+̃c1
n–4 γ

d̃1
n–5γ

–̃a1+̃e1
n–6 γ

f̃1
n–7γ

ã1
n–8

= γ
ã2
n–3γ

b̃2
n–4γ

c̃2
n–5γ

d̃2
n–6γ

ẽ2
n–7γ

f̃2
n–8

for n ≥ 6, where

ã2 := b̃1, b̃2 := 2̃a1 + c̃1, c̃2 := d̃1, d̃2 := –̃a1 + ẽ1, ẽ2 := f̃1, f̃2 := ã1.

Similar to equation (104) it is proved that

γn = γ
ãk
n–k–1γ

b̃k
n–k–2γ

c̃k
n–k–3γ

d̃k
n–k–4γ

ẽk
n–k–5γ

ẽk
n–k–6γ

f̃k
n–k–6 (130)

and

ãk = b̃k–1, b̃k = 2̃ak–1 + c̃k–1, c̃k = d̃k–1,

d̃k = –̃ak–1 + ẽk–1, ẽk = f̃k–1, f̃k = ãk–1

(131)

for 2 ≤ k ≤ n – 4.
From (131) it is obtained that

ãn = 2̃an–2 – ãn–4 + ãn–6, n ≥ 7 (132)

(in fact, recurrent relation (132) holds for every n ∈ Z, see Remark 1), and we have that

ã–j = 0, j = 2, 6, ã–1 = 1, ã0 = 0.
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Now note that the characteristic polynomial associated with difference equation (132) is

Q6(t) = t6 – 2t4 + t2 – 1.

Since

Q6(t) =
(
t
(
t2 – 1

))2 – 1 =
(
t3 – t – 1

)(
t3 – t + 1

)
,

we see that Q6 is solvable by radicals.
Let t̂j, j = 1, 6, be the roots of polynomial Q6. Then, clearly, t̂j = λj, j = 1, 3, where λj,

j = 1, 3, are the roots of polynomial (52), whereas the other three roots of Q6 are the roots
of the polynomial

Q̃3(t) := t3 – t + 1,

which are routinely found (see, e.g., [34, 36, 59]).
So, by Lemma 2, we see that the solution to equation (132) such that

ã–k = 0, k = 2, 6, and ã–1 = 1

is

ãn =
6∑

j=1

t̂n+6
j

Q′
6(̂tj)

, n ∈ Z. (133)

From (26), (36), (130) with k = n – 4, the recurrent relations in (131), and (133), another
set of closed-form formulas for general solution to system (19) is obtained.

3.11 Solution to system (37)
The form of system (37) shows that

γn = δn, n ∈N.

Hence,

γn = γn–2γn–3

for n ≥ 4.
By using (50) we have

γn = γ
an–4
3 γ

an–3
2 γ

an–5
1

= (γ–1δ0δ–2)an–4 (γ0δ–1)an–3 (γ–1δ–2)an–5

= γ
an–3
0 γ

an–4+an–5
–1 δ

an–4
0 δ

an–3
–1 δ

an–4+an–5
–2

= γ
an–3
0 γ

an–2
–1 δ

an–4
0 δ

an–3
–1 δ

an–2
–2 (134)
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for n ∈ N, where an is the solution to equation (48) such that a–3 = a–2 = 0 and a–1 = 1,
and consequently

δn = γ
an–3
0 γ

an–2
–1 δ

an–4
0 δ

an–3
–1 δ

an–2
–2 (135)

for n ∈N.
It is easy to see that formula (135) holds also for n = 0.
Formulas (134) and (135) present the general solution to system (37). This consideration

along with (26) shows that the following corollary holds.

Corollary 11 Consider system (20) with a �= 0. Then its general solution is

xn =
√

a
( x0+

√
a

x0–
√

a )an–3 ( x–1+
√

a
x–1–

√
a )an–2 ( y0+

√
a

y0–
√

a )an–4 ( y–1+
√

a
y–1–

√
a )an–3 ( y–2+

√
a

y–2–
√

a )an–2 + 1

( x0+
√

a
x0–

√
a )an–3 ( x–1+

√
a

x–1–
√

a )an–2 ( y0+
√

a
y0–

√
a )an–4 ( y–1+

√
a

y–1–
√

a )an–3 ( y–2+
√

a
y–2–

√
a )an–2 – 1

for n ∈N and

yn =
√

a
( x0+

√
a

x0–
√

a )an–3 ( x–1+
√

a
x–1–

√
a )an–2 ( y0+

√
a

y0–
√

a )an–4 ( y–1+
√

a
y–1–

√
a )an–3 ( y–2+

√
a

y–2–
√

a )an–2 + 1

( x0+
√

a
x0–

√
a )an–3 ( x–1+

√
a

x–1–
√

a )an–2 ( y0+
√

a
y0–

√
a )an–4 ( y–1+

√
a

y–1–
√

a )an–3 ( y–2+
√

a
y–2–

√
a )an–2 – 1

for n ∈N0, where an is given by (53).

3.12 Solution to system (38)
This system is got from (28) by interchanging letters ζ and η. Hence, its general solution
is

γ2n = γ0δ
a2n–1–1
0 δ

a2n
–1 δ

a2n–2
–2 (136)

for n ∈N0 and

γ2n+1 = γ–1δ
a2n
0 δ

a2n+1–1
–1 δ

a2n–1
–2 (137)

for n ≥ –1, and

δn = δ
an–1
0 δ

an
–1δ

an–2
–2 (138)

for n ≥ –2.
Formulas (136)–(138) present the general solution to system (38). This consideration

along with (26) shows that the following corollary holds.

Corollary 12 Consider system (21) with a �= 0. Then its general solution is

x2n =
√

a
( x0+

√
a

x0–
√

a )( y0+
√

a
y0–

√
a )a2n–1–1( y–1+

√
a

y–1–
√

a )a2n ( y–2+
√

a
y–2–

√
a )a2n–2 + 1

( x0+
√

a
x0–

√
a )( y0+

√
a

y0–
√

a )a2n–1–1( y–1+
√

a
y–1–

√
a )a2n ( y–2+

√
a

y–2–
√

a )a2n–2 – 1
, n ∈N0,

x2n+1 =
√

a
( x–1+

√
a

x–1–
√

a )( y0+
√

a
y0–

√
a )a2n ( y–1+

√
a

y–1–
√

a )a2n+1–1( y–2+
√

a
y–2–

√
a )a2n–1 + 1

( x–1+
√

a
x–1–

√
a )( y0+

√
a

y0–
√

a )a2n ( y–1+
√

a
y–1–

√
a )a2n+1–1( y–2+

√
a

x–2–
√

a )a2n–1 – 1
, n ≥ –1,
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yn =
√

a
( y0+

√
a

y0–
√

a )an–1 ( y–1+
√

a
y–1–

√
a )an ( y–2+

√
a

y–2–
√

a )an–2 + 1

( y0+
√

a
y0–

√
a )an–1 ( y–1+

√
a

y–1–
√

a )an ( y–2+
√

a
y–2–

√
a )an–2 – 1

, n ≥ –2,

where an is given by (53).

3.13 Solution to system (39)
Combining the equations in (39), we obtain

γn = γn–4γ
2
n–5γn–6 (139)

for n ≥ 4.
Let

a1 := 1, b1 := 2, c1 := 1, d1 := 0, e1 := 0, f1 := 0. (140)

Then equation (140) can be written as follows:

γn = γ
a1
n–4γ

b1
n–5γ

c1
n–6γ

d1
n–7γ

e1
n–8γ

f1
n–9 (141)

for n ≥ 4.
By using (139) in (141) we have

γn =
(
γn–8γ

2
n–9γn–10

)a1
γ

b1
n–5γ

c1
n–6γ

d1
n–7γ

e1
n–8γ

f1
n–9

= γ
b1
n–5γ

c1
n–6γ

d1
n–7γ

a1+e1
n–8 γ

2a1+f1
n–9 γ

a1
n–10

= γ
a2
n–5γ

b2
n–6γ

c2
n–7γ

d2
n–8γ

e2
n–9γ

f2
n–10 (142)

for n ≥ 8, where

a2 := b1, b2 := c1, c2 := d1,

d2 := a1 + e1, e2 := 2a1 + f1, f2 := a1.
(143)

Similar to equation (79), we get

γn = γ
ak
n–k–3γ

bk
n–k–4γ

ck
n–k–5γ

dk
n–k–6γ

ek
n–k–7γ

fk
n–k–8 (144)

and

ak = bk–1, bk = ck–1, ck = dk–1,

dk = ak–1 + ek–1, ek = 2ak–1 + fk–1, fk = ak–1

(145)

for k ∈N \ {1} and every n ≥ k + 6.
From (145) we obtain

an = an–4 + 2an–5 + an–6 (146)
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and

a0 = 0, a–1 = 0, a–2 = 0, a–3 = 1,

a–j = 0, j = 4, 8, a–9 = 1.
(147)

Taking k = n – 6 in (144), we have

γn = γ
an–6
3 γ

bn–6
2 γ

cn–6
1 γ

dn–6
0 γ

en–6
–1 γ

fn–6
–2

= (δ0γ–1γ–2)an–6 (δ0δ–1)an–5 (δ–1δ–2)an–4γ
an–3
0 γ

an–2–an–6
–1 γ

an–7
–2

= γ
an–3
0 γ

an–2
–1 γ

an–6+an–7
–2 δ

an–5+an–6
0 δ

an–4+an–5
–1 δ

an–4
–2 (148)

for n ≥ –2.
From (39) and (148), we have

δn = γn–2γn–3

= γ
an–5+an–6
0 γ

an–4+an–5
–1 γ

an–8+2an–9+an–10
–2

× δ
an–7+2an–8+an–9
0 δ

an–6+2an–7+an–8
–1 δ

an–6+an–7
–2

= γ
an–5+an–6
0 γ

an–4+an–5
–1 γ

an–4
–2 δ

an–3
0 δ

an–2
–1 δ

an–6+an–7
–2 (149)

for n ≥ –2.
The characteristic polynomial associated with equation (146) is

P̂6(t) = t6 – t2 – 2t – 1 =
(
t3 – t – 1

)(
t3 + t + 1

)
.

If tj, j = 1, 6, are the roots of the polynomial, then clearly t̂j = λj, j = 1, 3, where λj, j = 1, 3,
are the roots of polynomial (52), whereas the other three roots of P̂6 are the roots of the
polynomial t3 + t + 1, which are routinely found.

In view of Lemma 2 we see that the solution to (146) such that a–k = 0, k = 4, 8, and
a–3 = 1 is

an =
6∑

j=1

tn+8
j

P̂′
6(tj)

, n ∈ Z. (150)

Formulas (148) and (149) present the general solution to system (39). This consideration
along with (26) shows that the following corollary holds.

Corollary 13 Consider system (22) with a �= 0. Then its general solution is

xn =
√

a
( x0+

√
a

x0–
√

a )an–3 ( x–1+
√

a
x–1–

√
a )an–2 ( x–2+

√
a

x–2–
√

a )bn–6 ( y0+
√

a
y0–

√
a )bn–5 ( y–1+

√
a

y–1–
√

a )bn–4 ( y–2+
√

a
y–2–

√
a )an–4 + 1

( x0+
√

a
x0–

√
a )an–3 ( x–1+

√
a

x–1–
√

a )an–2 ( x–2+
√

a
x–2–

√
a )bn–6 ( y0+

√
a

y0–
√

a )bn–5 ( y–1+
√

a
y–1–

√
a )bn–4 ( y–2+

√
a

y–2–
√

a )an–4 – 1
,

yn =
√

a
( x0+

√
a

x0–
√

a )bn–5 ( x–1+
√

a
x–1–

√
a )bn–4 ( x–2+

√
a

x–2–
√

a )an–4 ( y0+
√

a
y0–

√
a )an–3 ( y–1+

√
a

y–1–
√

a )an–2 ( y–2+
√

a
y–2–

√
a )bn–6 + 1

( x0+
√

a
x0–

√
a )bn–5 ( x–1+

√
a

x–1–
√

a )bn–4 ( x–2+
√

a
x–2–

√
a )an–4 ( y0+

√
a

y0–
√

a )an–3 ( y–1+
√

a
y–1–

√
a )an–2 ( y–2+

√
a

y–2–
√

a )bn–6 – 1

for n ≥ –2, where the sequence an is given by (150) and bn = an + an–1.
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3.14 Solution to system (40)
System (40) is obtained from (35) by interchanging letters ζ and η. Hence, its general
solution is

δn = δ
an–1
0 δ

an
–1δ

an–5
–2 γ

an–4
0 γ

an–3
–1 γ

an–2
–2 (151)

for n ≥ –2 and

γn = δ
an–3+an–4
0 δ

an–2+an–3
–1 δ

an–7+an–8
–2 γ

an–6+an–7
0 γ

an–5+an–6
–1 γ

an–4+an–5
–2 (152)

for n ≥ –2.
Formulas (151) and (152) present the general solution to system (40). This consideration

along with (26) shows that the following corollary holds.

Corollary 14 Consider system (23) with a �= 0. Then its general solution is

xn =
√

a
( y0+

√
a

y0–
√

a )bn–3 ( y–1+
√

a
y–1–

√
a )bn–2 ( y–2+

√
a

y–2–
√

a )bn–7 ( x0+
√

a
x0–

√
a )bn–6 ( x–1+

√
a

x–1–
√

a )bn–5 ( x–2+
√

a
x–2–

√
a )bn–4 + 1

( y0+
√

a
y0–

√
a )bn–3 ( y–1+

√
a

y–1–
√

a )bn–2 ( y–2+
√

a
y–2–

√
a )bn–7 ( x0+

√
a

x0–
√

a )bn–6 ( x–1+
√

a
x–1–

√
a )bn–5 ( x–2+

√
a

x–2–
√

a )bn–4 – 1
,

yn =
√

a
( y0+

√
a

y0–
√

a )an–1 ( y–1+
√

a
y–1–

√
a )an ( y–2+

√
a

y–2–
√

a )an–5 ( x0+
√

a
x0–

√
a )an–4 ( x–1+

√
a

x–1–
√

a )an–3 ( x–2+
√

a
x–2–

√
a )an–2 + 1

( y0+
√

a
y0–

√
a )an–1 ( y–1+

√
a

y–1–
√

a )an ( y–2+
√

a
y–2–

√
a )an–5 ( x0+

√
a

x0–
√

a )an–4 ( x–1+
√

a
x–1–

√
a )an–3 ( x–2+

√
a

x–2–
√

a )an–2 – 1

for n ≥ –2, where the sequence an is given by (116) and bn = an + an–1.

3.15 Solution to system (41)
System (41) is obtained from (31) by interchanging letters ζ and η. Hence, its general
solution is

γn = γ
an–6+an–7
0 γ

an–5+an–6
–1 δ

an–4+an–5
0 δ

an–3+an–4
–1 δ

an–3+an–5
–2 (153)

for n ≥ –1 and

δn = γ
an–4
0 γ

an–3
–1 δ

an–2
0 δ

an–1
–1 δ

an–3+an–5
–2 (154)

for n ≥ –2.
Formulas (153) and (154) present the general solution to system (41). This consideration

along with (26) shows that the following corollary holds.

Corollary 15 Consider system (24) with a �= 0. Then its general solution is

xn =
√

a
( x0+

√
a

x0–
√

a )an–6+an–7 ( x–1+
√

a
x–1–

√
a )an–5+an–6 ( y0+

√
a

y0–
√

a )an–4+an–5 ( y–1+
√

a
y–1–

√
a )an–3+an–4 ( y–2+

√
a

y–2–
√

a )an–3+an–5 + 1

( x0+
√

a
x0–

√
a )an–6+an–7 ( x–1+

√
a

x–1–
√

a )an–5+an–6 ( y0+
√

a
y0–

√
a )an–4+an–5 ( y–1+

√
a

y–1–
√

a )an–3+an–4 ( y–2+
√

a
y–2–

√
a )an–3+an–5 – 1

for n ≥ –1 and

yn =
√

a
( x0+

√
a

x0–
√

a )an–4 ( x–1+
√

a
x–1–

√
a )an–3 ( y0+

√
a

y0–
√

a )an–2 ( y–1+
√

a
y–1–

√
a )an–1 ( y–2+

√
a

y–2–
√

a )an–3+an–5 + 1

( x0+
√

a
x0–

√
a )an–4 ( x–1+

√
a

x–1–
√

a )an–3 ( y0+
√

a
y0–

√
a )an–2 ( y–1+

√
a

y–1–
√

a )an–1 ( y–2+
√

a
y–2–

√
a )an–3+an–5 – 1

for n ≥ –2, where an is given by (88).
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3.16 Solution to system (42)
This system of difference equations is obtained from system (27) by interchanging letters
ζ and η only. Hence, its solution is given by

γn = δ
an–1
0 δ

an
–1δ

an–2
–2 (155)

for n ∈N and

δn = δ
an–1
0 δ

an
–1δ

an–2
–2 (156)

for n ≥ –2.
Formulas (155) and (156) present the general solution to system (42). This consideration

along with (26) shows that the following corollary holds.

Corollary 16 Consider system (25) with a �= 0. Then its general solution is

xn =
√

a
( y0+

√
a

y0–
√

a )an–1 ( y–1+
√

a
y–1–

√
a )an ( y–2+

√
a

y–2–
√

a )an–2 + 1

( y0+
√

a
y0–

√
a )an–1 ( y–1+

√
a

y–1–
√

a )an ( y–2+
√

a
y–2–

√
a )an–2 – 1

, n ∈ N,

yn =
√

a
( y0+

√
a

y0–
√

a )an–1 ( y–1+
√

a
y–1–

√
a )an ( y–2+

√
a

y–2–
√

a )an–2 + 1

( y0+
√

a
y0–

√
a )an–1 ( y–1+

√
a

y–1–
√

a )an ( y–2+
√

a
y–2–

√
a )an–2 – 1

, n ≥ –2,

where an is given by (53).

Remark 4 Corollaries 1–16 show that all systems (10)–(25) are practically solvable. This
is obviously equivalent with the practical solvability of system (4) when k = 1 and l = 2,
which is one of the results that we wanted to present in this paper.
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52. Stević, S., Iričanin, B., Kosmala, W.: More on a hyperbolic-cotangent class of difference equations. Math. Methods Appl.

Sci. 42, 2974–2992 (2019)
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