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Abstract
The linear stabilization problem of the modified generalized Korteweg–de
Vries–Burgers equation (MGKdVB) is considered when the spatial variable lies in [0, 1].
First, the existence and uniqueness of global solutions are proved. Next, the
exponential stability of the equation is established in L2(0, 1). Then, a linear adaptive
boundary control is put forward. Finally, numerical simulations for both non-adaptive
and adaptive problems are provided to illustrate the analytical outcomes.
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1 Introduction
This paper deals with the well-posedness and exponential stability of the modified gener-
alized Korteweg–de Vries–Burgers (MGKdVB) equation

ut + γ1uαux – σuxx + μuxxx + γ2uxxxx = 0, x ∈ (0, 1), t > 0, (1.1)

with the following boundary and initial conditions:

⎧
⎪⎪⎨

⎪⎪⎩

u(0, t) = u(1, t) = uxx(0, t) = 0, t > 0,

uxx(1, t) = F (t), t > 0,

u(x, 0) = u0(x), x ∈ (0, 1),

(1.2)

where γ1, γ2, σ , and μ are positive physical parameters, whereas α is a positive integer.
Furthermore, F (t) is the linear boundary control to be proposed so that the solutions of
the system exponentially decay.

The MGKdVB equation has been extensively studied in literature but in some very spe-
cial cases of the physical parameters. Indeed, when α = γ1 = 1, μ = 0, and σ < 0 in (1.1),
the MGKdVB equation becomes the Kuramoto–Sivashinsky (KS) equation which was de-
rived by Sivashinsky [33] and Kuramoto [23] with the purpose of describing the thermo-
diffusive instability in flame fronts. Due to its crucial physical aspects, numerous research
investigations were devoted to studying this equation. For instance, many scientists have
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considered the existence and uniqueness of global solutions to the Cauchy problem related
to this equation [6, 18, 19, 24, 40]. Moreover, He et al. [20] considered the KS equation
when the boundary conditions are periodic and proved the stability of this equation. In
[14], the authors proved that the mixed problem for the KS equation is globally well-posed
in a bounded domain with moving boundaries. They also proved the exponential decay
of the solutions with L2-norm. In [24], the author considered the generalized Kuramoto-
Sivashinsky equation (i.e., when α = γ1 = 1, μ > 0, and γ2 = –σ > 0 in (1.1)). He proved the
well-posedness of the problem and the exponential decay of the solution provided that σ

and the norm of the initial conditions are sufficiently small.
In case σ = 0, γ2 = 0, γ1 = 1, and α = 1, (1.1) reduces to the well-known Korteweg and de

Vries (KdV) equation which was derived by Korteweg and de Vries to describe the dynam-
ics of water waves [29]. The KdV equation was also used to describe many phenomena
such as modeling waves in a rotating atmosphere or ion-acoustic waves in plasma [15].
Many scientists paid a lot of attention to the well-posedness of this equation [9, 11, 21]. In
fact, Bona et al. [9] studied the global well-posedness of the KdV equation in appropriate
functional spaces, and Hublov [21] studied the solvability of the KdV equation with dissi-
pation in a bounded domain. Also, the well-posedness of the mixed problem for the KdV
equation when x > 0 and t ∈ (0, t) was discussed by Bui [11]. The main idea of the proof is
based on the approximation of the KdV equation by the KS type equations.

On the other hand, setting α = γ1 = 1 and μ = γ2 = 0 in (1.1), the MGKdVB equation
becomes Burgers equation. This equation was first derived by Burgers [12] in 1948 as a
prototype model for turbulent liquid flow. Due to its importance in describing many real
life phenomena, many scientists have studied this equation [3–5, 16, 22, 32, 34–36].

Furthermore, when α = γ1 = 1 and γ2 = 0, the MGKdVB equation reduces to the
Korteweg–de Vries–Burgers (KdVB) equation. Many researchers used the KdVB equa-
tion to describe several phenomena [2, 7, 8].

In turn, if γ1 = 1 and γ2 = 0 in (1.1), the MGKdVB equation becomes the generalized
Korteweg–de Vries–Burgers (GKdVB) equation. This equation is useful in modeling many
physical phenomena such as the unidirectional propagation of planar waves [1]. It also
models longitudinal deformations in nonlinear elastic rod [26]. The non-adaptive and
adaptive control problems of this equation were studied in [37] and [38, 39].

In this article, we suggest the following linear boundary control:

F (t) = –
μ

γ2
ux(1, t), t > 0. (1.3)

Up to our knowledge, the well-posedness and stability of the of modified generalized
Korteweg–de Vries–Burgers (MGKdVB) equation (1.1) have not been discussed in the
literature. Thus, the principal objective of this paper is two-fold: First, to investigate the
problem of existence and uniqueness of solutions to (1.1)–(1.3) as well as their long-time
behavior. The main ingredient of the proof is the utilization of Faedo–Galerkin method.
It is worth mentioning that this method has been used for many nonlinear equations (see
[14, 17, 24, 27, 30, 31]). Secondly, the linear adaptive boundary control law of the dynamics
of equation (1.1) is presented.

The remainder of the paper is organized as follows: In Sect. 2, notations and prelim-
inaries are presented. Some a priori estimates will be proved in order to guarantee the



Smaoui et al. Advances in Difference Equations        (2019) 2019:457 Page 3 of 17

existence and uniqueness of solutions in Sect. 3. Then, Sect. 4 is devoted to showing the ex-
ponential stability of the MGKdVB equation subject to the non-adaptive linear boundary
control (1.3). Section 5 presents a linear adaptive boundary control law for the MGKdVB
equation when both of γ2 and μ are unknown. Section 6 shows the numerical simulations
that illustrate the theoretical results. Lastly, concluding remarks are given in Sect. 7.

2 Notations and preliminaries
In this section, we provide notations to be used throughout the paper.

Let L2(0, 1) be the Hilbert space endowed with its usual inner product. In our case,

〈u, v〉(t) =
∫ 1

0
u(x, t)v(x, t) dx, and

∥
∥u(t)

∥
∥2 = 〈u, u〉(t).

In turn, ‖u‖2 = ‖u‖2
L2(Q), where Q = (0, 1)× (0, t). For convenience, we shall often denote by

∂n
x the differential operator ∂n

∂xn . Moreover, consider the Sobolev space (see [25] for more
details)

Hn(0, 1) =
{

u : (0, 1) →R; ∂n
x u ∈ L2(0, 1), for n ∈N

}

equipped with the usual norm

‖u‖Hn(0,1) =
i=n∑

i=0

∥
∥∂ i

xu
∥
∥

L2(0,1).

Thereafter, as in Larkin [24], we have the following result.

Lemma 1 Let μ,γ2 > 0 and consider the following eigenvalue problem:

γ2∂
4
x ϕj = μjϕj,

ϕj(0) = ϕj(1) = ϕjxx(0) = ϕjxx(1) +
μ

γ2
ϕjx(1) = 0,

where μj ∈C is the eigenvalue and ϕj ∈ H4(0, 1) is the corresponding eigenfunction for each
j ∈ N. Then μj > 0 for each j ∈ N and the eigenfunctions {ϕj}j ∈ N form a basis in H4(0, 1).
Moreover, {ϕj} is an orthonormal set in L2(0, 1).

Proof Consider the operator ∂4
x in H4(0, 1) such that the boundary conditions of Lemma 1

hold. Then, let u,ϕ ∈ H4(0, 1) that satisfy the boundary conditions of Lemma 1. Integrating
by parts, we have

〈
∂4

x u,ϕ
〉

=
∫ 1

0
uxxxxϕ dx = [uxxxϕ – uxxϕx + uxϕxx – uϕxxx]1

0 +
∫ 1

0
uϕxxxx dx =

〈
u, ∂4

x ϕ
〉
.

Hence, the above operator is self-adjoint. We also have

γ2
〈
∂4

x u, u
〉

= μu2
x(1) + γ2

∥
∥∂2

x u
∥
∥2.

Whereupon, the operator is also positive, and the claims of the lemma are a direct conse-
quence of the results in p. 78 of [28]. �
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3 Existence and uniqueness of solutions to system (1.1)–(1.3)
The ultimate outcome of this section is to show the existence of solutions to (1.1)–(1.3).
To do so, we will use the so-called Faedo–Galerkin method and some a priori estimates
(see [24] for a similar situation).

Recall that α is a positive integer, whereas μ, σ , and γ2 are positive real parameters. Then
we have the following result.

Theorem 1 Let u0 ∈ H4(0, 1) ∩ H1
0 (0, 1) such that

u0xx(0) = u0xx(1) +
μ

γ2
u0x(1) = 0.

Then there exists a unique solution to (1.1)–(1.3) satisfying, for any T > 0,

u ∈ L∞(
0, T ; H1

0 (0, 1) ∩ H4(0, 1)
) ∩ C

(
0, T ; H1

0 (0, 1) ∩ H2(0, 1)
)
,

ut ∈ L2(0, T ; H1
0 (0, 1) ∩ H4(0, 1)

) ∩ L∞(
0, T ; L2(0, 1)

)
.

Proof First of all, let

Pu := ut + γ1uαux – σuxx + μuxxx + γ2uxxxx = 0, (3.1)

and define as in [14, 24] approximate solutions uk to (1.1)–(1.3)

uk(x, t) =
k∑

j=1

f k
j (t)ϕj(x),

where ϕj(x) are given in Lemma 1 and f k
j (t) are solutions to the initial-value problem,

which consists of the system of k ordinary differential equations:

〈
Puk ,ϕj

〉
(t) =

〈
uk

t ,ϕj
〉
(t) + γ1

〈(
uk)αuk

x ,ϕj
〉
(t) + μ

〈
∂3

x uk ,ϕj
〉
(t) – σ

〈
uk

xx,ϕj
〉
(t)

+ γ2
〈
∂4

x uk ,ϕj
〉
(t) = 0, (3.2)

f k
j (0) = 〈u0,ϕj〉, j = 1, . . . , k. (3.3)

One can view the system (3.2)–(3.3) as a system of k nonlinear ordinary differential
equations satisfying the existence result stated in Sect. 1.5 of [13], and hence there exist
k differentiable solutions f k

j (t), for j = 1, 2, . . . , k, of the system (3.2)–(3.3) on an interval
(0, Tk) for some Tk > 0 [13]. It remains to extend those solutions to any interval (0, T)
and pass to the limit as k → +∞. To do so, a number of a priori estimates must be estab-
lished.

A priori Estimate 1:
Let us first replace ϕj by 2uk in (3.2), which is possible since uk ∈ H4(0, 1) is a solution

of (1.1)–(1.3). Then, integrating by parts and using boundary conditions (1.2)–(1.3), it
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follows that

d
dt

∥
∥uk(t)

∥
∥2 + μ

(
uk

x
)2(0, t) + μ

(
uk

x
)2(1, t) + 2γ2

∥
∥uk

xx(t)
∥
∥2 + 2σ

∥
∥uk

x(t)
∥
∥2 = 0. (3.4)

Clearly, (3.4) yields

d
dt

∥
∥uk(t)

∥
∥2 + μ

(
uk

x
)2(0, t) + γ2

∥
∥uk

xx(t)
∥
∥2 ≤ 0,

and hence

∥
∥uk(t)

∥
∥2 + μ

∫ t

0

(
uk

x
)2(0, s) ds + γ2

∫ t

0

∥
∥uk

xx(s)
∥
∥2 ds ≤ C‖u0‖2. (3.5)

Here and in the sequel, we shall use for convenience the same letter C to represent a pos-
itive constant which is independent of t and k.

A priori Estimate 2:
Substituting ϕj by ∂4

x uk in (3.2) as uk ∈ H4(0, 1) is a solution of (1.1)–(1.3), we obtain

i=5∑

i=1

Ii, (3.6)

where

I1 =
〈
uk

t , ∂4
x uk 〉(t), I2 = μ

〈
∂3

x uk , ∂4
x uk 〉(t), I3 = γ1

〈(
uk)αuk

x , ∂4
x uk 〉(t),

I4 = –σ
〈
∂2

x uk , ∂4
x uk 〉(t), and I5 = γ2

〈
∂4

x uk , ∂4
x uk 〉(t) = γ2

∥
∥∂4

x uk(t)
∥
∥2.

The immediate task is to estimate Ii for i = 1, . . . , 4.
Integrating by parts and owing the boundary conditions in (1.1), we obtain

I1 =
〈
uk

t , ∂4
x uk 〉(t) = –uk

tx(1, t)uk
xx(1, t) +

1
2

∫ 1

0

∂

∂t
(
uk

xx
)2 dx.

Since – γ2
μ

uk
xx(1, t) = uk

x(1, t) (see (1.3)), we get

I1 =
γ2

μ
uk

txx(1, t)uk
xx(1, t) +

1
2

d
dt

∥
∥uk

xx
∥
∥2.

Therefore, I1 simplifies to

I1 =
1
2

d
dt

(
γ2

μ

[
∂2

x uk(1, t)
]2 +

∥
∥∂2

x uk∥∥2
)

.

Concerning I2, we have

I2 = μ
〈
∂3

x uk , ∂4
x uk 〉(t) =

∫ 1

0

2μ√
γ2

uk
xxx

√
γ2

2
uk

xxxx dx.
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By using the following version of Young’s inequality:

ab ≥ –a2

4
– b2, (3.7)

with a =
√

γ2
2 uk

xxxx and b = 2μ√
γ2

uk
xxx, we can estimate I2 as follows:

I2 ≥ –
γ2

16
∥
∥∂4

x uk(t)
∥
∥2 –

4μ2

γ2

∥
∥∂3

x uk(t)
∥
∥2.

Exploiting the interpolation inequality (see, for instance, p. 233 in [10]) on the last term
of the previous inequality, we get

I2 ≥ –
γ2

16
∥
∥∂4

x uk(t)
∥
∥2 –

4μ2

γ2

(
ε
∥
∥∂4

x uk(t)
∥
∥2 + C(ε)

∥
∥uk(t)

∥
∥2),

in which ε is an arbitrary positive number. Thereby, choosing ε = γ 2
2

64μ2 yields

I2 ≥ –
γ2

8
∥
∥∂4

x uk(t)
∥
∥2 – C

∥
∥uk(t)

∥
∥2.

Next, using Cauchy–Schwarz’s and Poincaré’s inequalities, it follows from I3 =
γ1〈(uk)αuk

x , ∂4
x uk〉(t) that

I3 ≥ –γ1
∥
∥uk

x
∥
∥2∥∥uk∥∥α–1∥∥∂4

x uk(t)
∥
∥.

Invoking the interpolation inequality ‖uk
x‖2 ≤ K‖uk‖‖uk

xx‖, where K is a positive constant
[10], we get

I3 ≥
(

K
–γ1

√
2√

γ2

∥
∥uk∥∥α∥

∥uk
xx

∥
∥

)√
γ2√
2

∥
∥∂4

x uk(t)
∥
∥.

Then, using once again Young’s inequality (3.7) and (3.5), we deduce that

I3 ≥ –
γ2

8
∥
∥∂4

x uk(t)
∥
∥2 – C

∥
∥∂2

x uk(t)
∥
∥2

for C > 0.
Analogously, arguing as before, the term I4 = –σ 〈∂2

x uk , ∂4
x uk〉(t) gives

I4 ≥ –
γ2

8
∥
∥∂4

x uk(t)
∥
∥2 –

2σ 2

γ2

∥
∥∂2

x uk(t)
∥
∥2.

Now substituting I1–I5 into (3.6), we obtain

1
2

d
dt

(
γ2

μ

[
∂2

x uk(1, t)
]2 +

∥
∥∂2

x uk∥∥2
)

+
5γ2

8
∥
∥∂4

x uk(t)
∥
∥2

≤
(

C +
5γ2

8

)
∥
∥∂2

x uk(t)
∥
∥2 + C

∥
∥uk(t)

∥
∥2.
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Taking into account Estimate 1 (see (3.5)) and exploiting Gronwall–Bellman’s inequality,
the last inequality gives

∥
∥∂2

x uk(t)
∥
∥2 +

γ2

μ

∣
∣∂2

x uk(1, t)
∣
∣2 +

5γ2

4

∫ t

0

∥
∥∂4

x uk(s)
∥
∥2 ds

≤ C
[

γ2

μ

∣
∣u0xx(1)

∣
∣2 + ‖u0‖2

H2(0,1)

]

, (3.8)

where C > 0.
A priori Estimate 3:
As in [24], putting t = 0 and ϕj = uk

t (0) in (3.2) since uk ∈ H4(0, 1) is a solution of (1.1)–
(1.3), we obtain

∥
∥uk

t (0)
∥
∥2 +

〈
μuk

xxx + γ2uk
xxxx – σuk

xx + γ1
(
uk)αuk

x , uk
t
〉
(0) = 0,

which together with the triangle inequality and Estimate 1 (see (3.5)) imply that

∥
∥uk

t (0)
∥
∥ ≤ C‖u0‖H4(0,1)∩H1

0 (0,1). (3.9)

On the other hand, using (3.5) and (3.8), we get

max
t>0

∥
∥uk(t)

∥
∥

H2(0,1) ≤ C. (3.10)

Now, let us differentiate (3.2) with respect to t. We obtain

〈
uk

tt ,ϕj
〉
(t) +

〈
uk

t ,ϕjt
〉
(t) +

〈(
γ1

(
uk)αuk

x
)

t ,ϕj
〉
(t) +

〈
γ1

(
uk)αuk

x ,ϕjt
〉
(t)

+
〈
μ∂3

x uk
t ,ϕj

〉
(t) +

〈
μ∂3

x uk ,ϕjt
〉
(t) – σ

〈
uk

xxt ,ϕj
〉
(t)

– σ
〈
uk

xx,ϕjt
〉
(t) + γ2

〈
∂4

x uk
t ,ϕj

〉
(t) + γ2

〈
∂4

x uk ,ϕjt
〉
(t) = 0.

Substituting for ϕj (which depends only on x) by 2uk
t , we get

〈
uk

tt , 2uk
t
〉
(t) + γ1

〈((
uk)αuk

x
)

t , 2uk
t
〉
(t) + μ

〈
∂3

x uk
t , 2uk

t
〉
(t) – σ

〈
uk

xxt , 2uk
t
〉
(t)

+ γ2
〈
∂4

x uk
t , 2uk

t
〉
(t) = 0. (3.11)

The first term in (3.11) can be written as

〈
uk

tt , 2uk
t
〉
(t) =

d
dt

∥
∥uk

t (t)
∥
∥2.

With regards to the second term in (3.11), we simply integrate by parts and use boundary
conditions (1.2) to conclude

γ1
〈((

uk)αuk
x
)

t , 2uk
t
〉
(t) = 2γ1

∫ 1

0

((
uk)α)

x

(
uk

t
)2 dx + 2γ1

∫ 1

0

(
uk)αuk

xtu
k
t dx

= –2γ1
〈(

uk)αuk
t , uk

xt
〉
(t).
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Similarly, the last three terms in (3.11) can be expanded as follows:

μ
〈
∂3

x uk
t , 2uk

t
〉
(t) = μ

(
uk

xt
)2(0, t) – μ

(
uk

xt
)2(1, t),

–σ
〈
uk

xxt , 2uk
t
〉
(t) = 2σ

∥
∥uk

xt(t)
∥
∥2,

γ2
〈
∂4

x uk
t , 2uk

t
〉
(t) = –μ

(
uk

xt
)2(1, t) + 2γ2

∥
∥uk

xxt(t)
∥
∥2,

where we took into account the fact that boundary conditions (1.2)–(1.3) are invariant
with respect to time-differentiation. Inserting the previous identities in (3.11) yields

d
dt

∥
∥uk

t (t)
∥
∥2 – 2γ1

〈(
uk)αuk

t , uk
xt
〉
(t) + μ

(
uk

xt
)2(0, t) + μ

(
uk

xt
)2(1, t) + 2σ

∥
∥uk

xt(t)
∥
∥2

+ 2γ2
∥
∥uk

xxt(t)
∥
∥2 = 0. (3.12)

Consequently,

d
dt

∥
∥uk

t (t)
∥
∥2 + γ2

∥
∥uk

xxt(t)
∥
∥2 ≤ ∥

∥uk
t (t)

∥
∥2 + 2γ1

〈(
uk)αuk

t , uk
xt
〉
(t). (3.13)

A straightforward computation permits to write the last term in (3.13) as follows:

2γ1
〈(

uk)αuk
t , uk

xt
〉
(t) = –γ1

〈((
uk)α)

x,
(
uk

t
)2〉(t).

This together with Cauchy–Schwarz inequality and estimate (3.10) implies that

2γ1
〈(

uk)αuk
t , uk

xt
〉
(t) ≤ C

∥
∥uk

t (t)
∥
∥2,

where C > 0 is independent of t and N . Whereupon, (3.13) gives

d
dt

∥
∥uk

t (t)
∥
∥2 + γ2

∥
∥uk

xxt(t)
∥
∥2 ≤ C

∥
∥uk

t (t)
∥
∥2, (3.14)

where C > 0.
Integrating (3.14) from 0 to t and using Gronwall–Bellman’s inequality, we get

∥
∥uk

t (t)
∥
∥2 + γ2

∫ t

0

∥
∥uk

xxs(s)
∥
∥2 ds ≤ C

∥
∥uk

t (0)
∥
∥2,

where C > 0.
Referring to (3.9), the previous inequality can be written as

∥
∥uk

t (t)
∥
∥2 + γ2

∫ t

0

∥
∥uk

xxs(s)
∥
∥2 ds ≤ C

∥
∥uk

t (0)
∥
∥ ≤ C‖u0‖H4(0,1)∩H1

0 (0,1), (3.15)

where C > 0 does not depend on t and k.
Estimates (3.5), (3.8), (3.15) allow us to extend the approximate solution uk(x, t) for all

T ∈ (0,∞) and also u(x, t) converges as N → ∞. Hence, taking the limit in (3.2), we con-
clude the existence of a global solution u that belongs to the classes stated in our theorem.
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The immediate task is to show the uniqueness of solutions. To this end, assume that u1

and u2 are two solutions of system (1.1)–(1.3) and let w = u1 – u2. Then w is a solution of
the following problem:

wt + γ1
(
uα

1 u1x – uα
2 u2x

)
– σ∂2

x w + μ∂3
x w + γ2∂

4
x w = 0, (3.16)

w(x, 0) = 0, x ∈ (0, 1), (3.17)

w(1, t) = w(0, t) = ∂2
x w(0, t) = 0, (3.18)

∂2
x w(1, t) = –

μ

γ2
wx(1, t), t > 0. (3.19)

Taking the inner product of (3.16) with 2w in L2(0, 1), we get

〈wt , 2w〉(t) + γ1
〈
uα

1 u1x – uα
2 u2x, 2w

〉
(t) – σ

〈
∂2

x w, 2w
〉
(t) + μ

〈
∂3

x w, 2w
〉
(t)

+ γ2
〈
∂4

x w, 2w
〉
(t) = 0. (3.20)

Integrating by parts and utilizing the boundary conditions (3.18)–(3.19), it follows that

d
dt

∥
∥w(t)

∥
∥2 + γ1

〈
uα

1 u1x – uα
2 u2x, 2w

〉
(t) + μ(wx)2(0, t) + μ(wx)2(1, t)

+ 2γ2
∥
∥wxx(t)

∥
∥2 + 2σ

∥
∥wx(t)

∥
∥2 = 0, (3.21)

which gives

d
dt

∥
∥w(t)

∥
∥2 + 2σ

∥
∥wx(t)

∥
∥2 ≤ –γ1

〈
uα

1 u1x – uα
2 u2x, 2w

〉
(t). (3.22)

To estimate the right-hand side of inequality (3.22), we proceed as follows:

γ1
〈
uα

1 u1x – uα
2 u2x, 2w

〉
(t) =

2γ1

α + 1
〈[

uα+1
1 – uα+1

2
]

x, w
〉
(t)

=
2γ1

α + 1
〈[

uα+1
1 – uα+1

2
]
, wx

〉
(t)

=
2γ1

α + 1
〈
w

(
uα

1 + uα–1
1 u2 + · · · + u1uα–1

2 + uα
2
)
, wx

〉
(t). (3.23)

Utilizing Cauchy–Schwarz’s inequality, we have

∣
∣γ1

〈
uα

1 u1x – uα
2 u2x, 2w

〉
(t)

∣
∣ ≤ 2γ1

α + 1
∥
∥w(t)

∥
∥K

∥
∥wx(t)

∥
∥

≤ γ1K
α + 1

2
(‖w(t)‖√

δ

√
δ
∥
∥wx(t)

∥
∥

)

, (3.24)

where K = ‖u1‖α∞ + ‖u1‖α–1∞ ‖u2‖∞ + · · · + ‖u1‖∞‖u2‖α–1∞ + ‖u2‖α∞ and ‖f ‖∞ =
‖f ‖C([0,T];L2(0,1)). Utilizing Young’s inequality, (3.24) yields

∣
∣γ1

〈
uα

1 u1x – uα
2 u2x, 2w

〉
(t)

∣
∣ ≤ γ1K

α + 1

(‖w(t)‖2

δ
+ δ

∥
∥wx(t)

∥
∥2

)

. (3.25)
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Inserting (3.25) in (3.22), we obtain

d
dt

∥
∥w(x, t)

∥
∥2 ≤ γ1K

(α + 1)δ
∥
∥w(t)

∥
∥2 +

(
γ1K
α + 1

δ – 2σ

)
∥
∥wx(t)

∥
∥2. (3.26)

Choosing δ = 2σ (α+1)
γ1K , we get

d
dt

∥
∥w(x, t)

∥
∥2 ≤ (γ1K)2

2σ (α + 1)2

∥
∥w(t)

∥
∥2. (3.27)

Lastly, using Gronwall–Bellman’s inequality and noting that w(0) = 0, we conclude that
w = u1 – u2 = 0, and thus u1 = u2. This proves the desired uniqueness result. �

4 Stability of system (1.1)–(1.3)
This section is concerned with the long-time behavior of solutions to system (1.1)–(1.3).
Indeed, we have the following result.

Theorem 2 Assume that α is a positive integer, while μ, σ , and γ2 are positive real param-
eters. Given an initial condition u0 ∈ H4(0, 1)∩H1

0 (0, 1) and subject to boundary conditions
(1.2)–(1.3), the corresponding solution of MGKdVB equation (1.1) is globally exponentially
stable in L2(0, 1).

Proof Taking the inner product in L2(0, 1) of (1.1) with 2u, we get

2
∫ 1

0
u(x, t)ut(x, t) dx – 2σ

∫ 1

0
u(x, t)uxx(x, t) dx + 2μ

∫ 1

0
u(x, t)uxxx(x, t) dx

+ 2γ1

∫ 1

0
u(x, t)uα(x, t)ux(x, t) dx + 2γ2

∫ 1

0
u(x, t)uxxxx(x, t) dx = 0. (4.1)

Integrating by parts each term in (4.1) and using boundary conditions (1.2)–(1.3), we get

d
dt

∥
∥u(t)

∥
∥2 + μu2

x(0, t) + μu2
x(1, t) + 2γ2

∥
∥uxx(t)

∥
∥2 + 2σ

∥
∥ux(t)

∥
∥2 = 0. (4.2)

Thereby

d
dt

∥
∥u(t)

∥
∥2 + 2σ

∥
∥ux(t)

∥
∥2 ≤ 0,

which by means of Poincaré’s inequality leads to

d
dt

∥
∥u(x, t)

∥
∥2 ≤ –2σ

∥
∥u(x, t)

∥
∥2.

Integrating the latter, we obtain

∥
∥u(x, t)

∥
∥ ≤ e–σ t∥∥u0(x)

∥
∥, (4.3)

and hence the solution of (1.1)–(1.3) is exponentially stable. �
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5 Linear adaptive boundary control law for MGKdVB equation (1.1)
In this section, we present a linear adaptive boundary control law for MGKdVB equation
(1.1), subject to the same boundary conditions as in (1.2), that is,

u(1, t) = u(0, t) = uxx(0, t) = 0, (5.1)

uxx(1, t) = M(t), (5.2)

where M(t) is a linear adaptive boundary control to be proposed when the parameters
μ and γ2 are unknowns. The following theorem states the findings of our linear adaptive
boundary control law.

Theorem 3 Consider α to be a positive integer. Given an initial condition u0 ∈ H4(0, 1) ∩
H1

0 (0, 1), the modified generalized Korteweg–de Vries–Burgers (MGKdVB) equation (1.1)
subject to boundary conditions (5.1)–(5.2) is globally exponentially stable in L2(0, 1) as long
as the following linear adaptive control law is applied:

M(t) = –η1ux(1, t), (5.3)

where

η̇1 = r1u2
x(1, t), (5.4)

in which the feedback gain r1 is a positive real number.

Proof Let

V (t) =
1
2

∫ 1

0
u2(x, t) dx (5.5)

be the Lyapunov function candidate. Clearly, V (t) ≥ 0 for all t ≥ 0. Moreover, differenti-
ating V (t) with respect to time, and referring to (1.1), we have

V̇ (t) = σ

∫ 1

0
uuxx dx – μ

∫ 1

0
uuxxx dx – γ1

∫ 1

0
uα+1ux dx – γ2

∫ 1

0
uuxxxx dx. (5.6)

Integrating by parts and using the boundary conditions (5.1)–(5.2), we obtain from (5.6)

V̇ (t) ≤ –σ

∫ 1

0
u2

x(x, t) dx +
μ

2
u2

x(1, t) + γ2ux(1, t)M(t). (5.7)

Inserting the control law (5.3) in (5.7), we get

V̇ (t) ≤ –σ

∫ 1

0
u2

x(x, t) dx +
μ

2
u2

x(1, t) – γ2η1u2
x(1, t). (5.8)

Using Poincaré’s inequality, (5.8) becomes

V̇ (t) ≤ –σ

∫ 1

0
u2(x, t) dx –

(

γ2η1 –
μ

2

)

u2
x(1, t) for any t ≥ 0. (5.9)
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Now, we define an energy E(t) as follows:

E(t) =
1

2γ2r1

(

γ2η1 –
μ

2
– a

)2

+ V (t), where a ≥ 0. (5.10)

Obviously, E(t) ≥ 0 for all t ≥ 0. Differentiating E(t) with respect to time yields

Ė(t) = V̇ (t) +
η̇1

r1

(

γ2η1 –
μ

2
– a

)

. (5.11)

Using (5.4) and (5.9), identity (5.11) leads to

Ė(t) ≤ –σ

∫ 1

0
u2(x, t) dx –

(

γ2η1 –
μ

2

)

u2
x(1, t) +

(

γ2η1 –
μ

2
– a

)

u2
x(1, t).

Therefore,

Ė(t) ≤ –σ

∫ 1

0
u2(x, t) dx – γ2η1u2

x(1, t) +
μ

2
u2

x(1, t) + γ2η1u2
x(1, t) –

μ

2
u2

x(1, t)

– au2
x(1, t). (5.12)

This reduces to

Ė(t) ≤ –σ

∫ 1

0
u2(x, t) dx – au2

x(1, t). (5.13)

Since a ≥ 0, the term –au2
x(1, t) ≤ 0 for all t ≥ 0, and hence (5.13) yields

Ė(t) ≤ –σ

∫ 1

0
u2(x, t) dx for any t ≥ 0.

Thereby, E(t) ≤ E(0) for any t ≥ 0, which means that η1 is bounded for all t > 0. Thus,
ux(1, t) ∈ L2(0,∞). Using (5.5), we can write (5.9) as follows:

V̇ (t) ≤ –2σV (t) –
(

γ2η1 –
μ

2

)

u2
x(1, t) for any t ≥ 0. (5.14)

Using Gronwall–Bellman’s inequality, we get

V (t) ≤ e–2σ tV (0) + C
∫ t

0
e–2σ (t–τ )u2

x(1, τ ) dτ , (5.15)

where C = sup |γ2η1 – μ

2 |. Since

∫ t

0
e–2σ (t–τ )u2

x(1, τ ) dτ → 0, as t → ∞,

we conclude that V (t) converges to zero as t −→ ∞. Thus, ‖u(x, t)‖ exponentially ap-
proaches zero as t tends to infinity. �

Remark 1 It is worth mentioning that the choice of the feedback gain r1 will definitely
affect the value of η1, and therefore the stability of the solution. Fixing the initial condition
η1(0) and increasing the value of r1 will increase the value of η1, which in turn speeds up
the convergence of the solution to zero.
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6 Numerical simulations of the MGKdVB equation
In order to illustrate our theoretical results, we numerically present in this section the
dynamical behavior of the MGKdVB equation when the non-adaptive boundary control
(1.3) and adaptive boundary control law (5.3) are applied. To this end, numerical solutions
for the (MGKdVB) equation will be simulated using COMSOL Multiphysics software.

6.1 Linear non-adaptive boundary control law for the MGKdVB equation (1.3)
This subsection is devoted to numerical simulations of solutions for the (MGKdVB) equa-
tion with the non-adaptive control law (1.3). The solutions are computed and simulated
for α = 1, 2, 3, and 4.

Let us pick up the initial condition u0(x) = sin(πx). Figures 1(a)–1(d) depict the behavior
of the solution u(x, t) as it evolves in time. In the simulations, we set the parameters σ , μ,
γ1, and γ2 to be 0.01, 0.001, 1, and 0.0005, respectively. The norm ‖u(x, t)‖ versus time is
presented in Figure 2. This figure indicates that the solution converges to zero as t goes to
infinity. This confirms the theoretical results obtained in Sect. 4. It should be noted that
Figure 2 also emphasizes that condition (1.3), that is, uxx(1, t) = – μ

γ2
ux(1, t), is acting as

a linear boundary control where – μ

γ2
ux(1, t) plays the role of the input control. A careful

look at Figures 1 and 2 shows that the decay rate to the steady state solution decreases as
α increases from 1 to 4.

6.2 Linear adaptive boundary control law for the MGKdVB equation (5.3)
In this subsection, we present numerically the dynamical behavior of the MGKdVB equa-
tion by applying the linear adaptive boundary control law presented in (5.3). Using COM-

Figure 1 A 3-d landscape of the dynamics of the MGKdVB equation subject to boundary conditions
(1.2)–(1.3); σ = 0.01, μ = 0.001, γ1 = 1, γ2 = 0.0005, and u0(x) = sin(πx); (a) α = 1; (b) α = 2; (c) α = 3; (d) α = 4
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Figure 2 The L2-norm of u(x, t), ‖u(x, t)‖ versus time for different values of α ; σ = 0.01, μ = 0.001, γ1 = 1,
γ2 = 0.0005, and u0(x) = sin(πx)

Figure 3 A 3-d landscape of the dynamics of the MGKdVB equation using the linear adaptive control law;
σ = 0.01, γ1 = 1, r1 = 0.2, and u0(x) = sin(πx); (a) α = 1; (b) α = 2; (c) α = 3; (d) α = 4

SOL Multiphysics software, the solutions are provided for several values of α. These values
are 1, 2, 3, and 4.

As in the previous subsection, let u0(x) = sin(πx). It is clear from (5.3) that the linear
adaptive control law proposed in Theorem 3 does not require the pre-knowledge of μ

and γ2 which are assumed to be unknowns. Nevertheless, for simulation purposes, these
values are set to be 0.001 and 0.0005, respectively. The parameters σ and γ1 are set to be
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Figure 4 The L2-norm of u(x, t), ‖u(x, t)‖ versus time for different values of α when applying the linear
adaptive control law; σ = 0.01, γ1 = 1, r1 = 0.2, and u0(x) = sin(πx)

Figure 5 η1 versus time for different values of α when applying the linear adaptive control law

0.01 and 1, respectively. Moreover, r1 is chosen to equal 0.2. The initial value of η1 is set
to be such that η1(0) = 1. Figures 3(a)–3(d) show a 3-d landscape of the solution of the
MGKdVB equation when the control law is given in Theorem 3 for different values of α.
Figure 4 shows the L2-norm of these solutions. It can be noticed from the figures that as
α increases, the decay rate of the solution to the steady state solution decreases. This is
due to the effect of the nonlinear term which causes the instability in the behavior of the
solutions of the MGKdVB equation.

Figure 5 depicts the behavior of the function η1, which appears in the control. Figure 5
shows that η1 decreases as α increases from 1 to 4.

7 Concluding remarks
In this paper, the MGKdVB equation is considered and a feedback boundary control is
proposed. Then, the well-posedness of the system and the exponential stability of the so-
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lutions are investigated. Furthermore, a linear adaptive control law is put forward when
the parameters γ2 and μ are unknowns. In this case, the solutions are also shown to be
exponentially stable. Finally, numerical simulations are presented to illustrate our results.

The control problem of the MGKdVB equation in the presence of a time delay will be
the subject of future research studies.
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