# RESEARCH

# **Open Access**

# Fixed points of differences of meromorphic functions



Zhaojun Wu<sup>1,2\*</sup> and Jia Wu<sup>3</sup>

\*Correspondence: wuzj52@hotmail.com

<sup>1</sup>School of Mathematics and Statistics, Hubei University of Science and Technology, Xianning, China

<sup>2</sup>Hubei Key Laboratory of Applied Mathematics, Faculty of Mathematics and Statistics, Hubei University, Wuhan, China Full list of author information is available at the end of the article

## Abstract

Let *f* be a transcendental meromorphic function of finite order and *c* be a nonzero complex number. Define  $\Delta_c f = f(z + c) - f(z)$ . The authors investigate the existence on the fixed points of  $\Delta_c f$ . The results obtained in this paper may be viewed as discrete analogues on the existing theorem on the fixed points of f'. The existing theorem on the fixed points of  $\Delta_c f$  generalizes the relevant results obtained by (Chen in Ann. Pol. Math. 109(2):153–163, 2013; Zhang and Chen in Acta Math. Sin. New Ser. 32(10):1189–1202, 2016; Cui and Yang in Acta Math. Sci. 33B(3):773–780, 2013) et al.

Keywords: Difference operator; Fixed point; Borel exceptional values; Deficiency

# **1** Introduction

Let f(z) be a function meromorphic in the complex plane *C*. We use the general notation of the Nevanlinna theory (see [12, 20, 23]) such as m(r, f), N(r, f), T(r, f),  $m(r, \frac{1}{f-a})$ ,  $N(r, \frac{1}{f-a})$ , ..., and assume that the reader is familiar with these notations. We also use S(r, f) to denote any quantity of S(r, f) = o(T(r, f)) ( $r \to \infty$ ), possibly outside a set with finite logarithmic measure. The order and the lower order of f(z) are denoted by  $\sigma(f)$  and  $\mu(f)$  respectively.

For any  $a \in C$ , the exponent of convergence of zeros of f(z) - a (or poles of f(z)) is denoted by  $\lambda(f, a)$  (or  $\lambda(\frac{1}{f})$ ). Especially, we denote  $\lambda(f, 0)$  by  $\lambda(f)$ . If  $\lambda(f, a) < \sigma(f)$  (or  $\lambda(\frac{1}{f}) < \sigma(f)$ ), then a (or  $\infty$ ) is said to be a Borel exceptional value of f(z). Nevanlinna's deficiency of f with respect to complex number  $a \in C \cup \{\infty\}$  is defined by

$$\delta(a,f) = \liminf_{r \to \infty} \frac{m(r,\frac{1}{f-a})}{T(r,f)} = 1 - \limsup_{r \to \infty} \frac{N(r,\frac{1}{f-a})}{T(r,f)}$$

If  $a = \infty$ , then one should replace  $N(r, \frac{1}{t-a})$  in the above formula by N(r, f).

A point  $z_0 \in C \cup \{\infty\}$  is said to be a fixed point of f(z) if  $f(z_0) = z_0$ . There is a considerable number of results on the fixed points of meromorphic functions, we refer the reader to Chuang and Yang [7]. It follows Chen and Shon [2, 4], we use the notation  $\tau(f)$  to denote the exponent of convergence of fixed points of f, i.e.,

$$\tau(f) = \limsup_{r \to \infty} \frac{\log N(r, \frac{1}{f-z})}{\log r}.$$

In 1993, Lahiri [13] proved the following theorem.



© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

**Theorem A** Let f be a transcendental meromorphic function in the plane. Suppose that there exists  $a \in C$  with  $\delta(a, f) > 0$  and  $\delta(\infty, f) = 1$ . Then f has infinitely many fixed points.

In this paper, we shall study the fixed points of the differences of meromorphic functions. For each  $c \in C \setminus \{0\}$ , the forward difference  $\Delta_c^{k+1} f(z)$  is defined (see [1]) by

$$\Delta_c f(z) = f(z+c) - f(z), \quad \Delta_c^2 f(z) = \Delta_c f(z+c) - \Delta_c f(z)$$

Especially, we denote  $\Delta_1 f(z)$  by  $\Delta f(z)$ .

Recently, some well-known facts of the Nevanlinna theory have been extended for the differences of meromorphic functions (see [5, 6, 9-11, 14-18]). For the existence on the fixed points of differences, Cui and Yang [8] have proved the following theorems.

**Theorem B** ([8]) Let f be a function transcendental and meromorphic in the plane with the order  $\sigma(f) = 1$ . If f has finitely many poles and infinitely many zeros with exponent of convergence of zeros  $\lambda(f) \neq 1$ , then  $\Delta f$  has infinitely many zeros and fixed points.

**Theorem C** ([8]) Let f be a non-periodic function transcendental and meromorphic in the plane with the order  $\sigma(f) = 1$ ,  $\max\{\lambda(f), \lambda(\frac{1}{f})\} \neq 1$ . If f has infinitely many zeros, then  $\Delta f$  has infinitely many zeros and fixed points.

The conditions of Theorems B and C imply that 0,  $\infty$  are Borel exceptional values. If  $\infty$  and  $d \in C$  are Borel exceptional values of f, Chen [3] obtains the following theorem.

**Theorem D** ([3]) Let f be a finite order meromorphic function such that  $\lambda(\frac{1}{f}) < \sigma(f)$ , and let  $c \in C \setminus \{0\}$  be a constant such that  $f(z + c) \neq f(z)$ . If f(z) has a Borel exceptional value  $d \in C$ , then  $\tau(\Delta_c f) = \sigma(f)$ .

In [22], Zhang and Chen showered that the condition  $\lambda(\frac{1}{f}) < \sigma(f)$  in Theorem D cannot be omitted. Moreover, they obtained the following theorem.

**Theorem E** ([22]) Let f be a finite order meromorphic function, and let  $c \in C \setminus \{0\}$  be a constant such that  $f(z + c) \neq f(z)$ . If f(z) has two Borel exceptional values, then  $\tau(\Delta_c f) = \sigma(f)$ .

In [19], Yi and Yang have proved the following theorem.

**Theorem F** ([19]) Let f be a transcendental meromorphic function in C with a positive order. If f has two distinct Borel exceptional values, say  $a_1$  and  $a_2$ , then the order of f is a positive integer or  $\infty$  and  $\sigma(f) = \mu(f)$ ,  $\delta(a_1, f) = \delta(a_2, f) = 1$ .

By Theorem F, we can derive that the order of f in Theorems D and E is a positive integer. Is it necessary to ask if the order of f is an integer?, i.e., Can we get similar results as those in Theorems B, C, D, and E if the order of f is not a positive integer? The main purpose of this paper is to study this question. In fact, we shall prove the following theorems.

**Theorem 1.1** Let f be a transcendental meromorphic function of finite order in the plane. Suppose that  $c \in C \setminus \{0\}$  such that  $\Delta_c f \neq 0$ . If there is  $a \in C$  with  $\delta(a, f) > 0$  and  $\delta(\infty, f) = 1$ , then  $\Delta_c f$  have infinitely many fixed points and  $\tau(\Delta_c f) = \sigma(f)$ . **Theorem 1.2** Let f be a transcendental meromorphic function of finite order in the plane. Suppose that  $c \in C \setminus \{0\}$  such that  $\Delta_c f \neq 0$ . If  $\delta(\infty, f) = 1$ ,  $\delta(0, f) = 1$ , then

$$T(r, \Delta_c f) \sim T(r, f) \sim N\left(r, \frac{1}{(\Delta_c f) - z}\right),$$

as  $r \to \infty$ ,  $r \notin E$ , where *E* is a possible exception set of *r* with finite logarithmic measure.

Let  $f(z) = \frac{e^z}{z}$ , then  $N(r, f) = \log r = S(r, f)$ ,  $N(r, \frac{1}{f}) = 0$  and  $\Delta_c f = \frac{(e^c - 1)z - 1}{z(z+c)}e^z \neq 0$ . By the second fundmental theorem, we have

$$T(r, \Delta_c f) \sim T(r, f) \sim N\left(r, \frac{1}{(\Delta_c f) - z}\right) \quad (r \to \infty),$$

and  $\tau(\Delta_c f) = \sigma(f)$ .

## 2 Proof of Theorems 1.1 and 1.2

**Lemma 2.1** ([6]) Let f(z) be a finite order meromorphic function, then, for each  $k \in N$ ,  $\sigma(\Delta_c^k f) \leq \sigma(f)$ .

**Lemma 2.2** ([9]) Let f be a transcendental meromorphic function of finite order. Then, for any positive integer n, we have

$$m\left(r, \frac{\Delta_c^n f(z)}{f(z)}\right) = S(r, f).$$

**Lemma 2.3** Let f be a transcendental meromorphic function of finite order. Suppose that  $c \in C \setminus \{0\}$  such that  $\Delta_c f \not\equiv 0$  and  $\delta(0, f) > 0$ . Then  $\Delta_c f$  is a transcendental and meromorphic function of finite order.

*Proof* From Lemma 2.1, we know that  $\sigma(\Delta_c f) \le \sigma(f) < +\infty$ . If  $\Delta_c f$  is not a transcendental meromorphic function, then there is a rational function R(z) such that  $R(z)\Delta_c f \equiv 1$ , i.e.,

$$\frac{1}{f} \equiv R(z) \frac{\Delta_c f}{f}.$$

Applying Lemma 2.2 and noticing that f(z) is transcendental, we have

$$m\left(r,\frac{1}{f}\right) \leq m\left(r,R(z)\right) + m\left(r,\frac{\Delta_c f}{f}\right) = S(r,f).$$

This contradicts  $\delta(0, f) > 0$ . Thus  $\Delta_c f$  is a transcendental and meromorphic function of finite order.

**Lemma 2.4** ([11]) Let f(z) be a transcendental meromorphic function of finite order, then

$$m\left(r,\frac{f(z+c)}{f}\right) = S(r,f).$$

Lemma 2.5 ([14, 21]) Let f be a transcendental meromorphic function of finite order. Then

$$N(r,f(z+c)) = N(r,f) + S(r,f),$$
  
$$T(r,f(z+c)) = T(r,f) + S(r,f).$$

**Lemma 2.6** Let f be a finite order transcendental meromorphic function. Suppose that  $c \in C \setminus \{0\}$  such that  $\Delta_c f \neq 0$ . If  $\delta(0, f) > 0$ , then

$$T(r,f) \leq 4N(r,f) + N\left(r,\frac{1}{f}\right) + N\left(r,\frac{1}{(\Delta_{c}f) - z}\right) + S(r,f).$$

*Proof* By Lemma 2.3, we know that  $\Delta_c f$  is a transcendental meromorphic function. Put  $F = \Delta_c f$ , then there is  $\eta \in C \setminus \{0\}$  such that  $z \Delta_{\eta} F - \eta F(z) \neq 0$ . If not, then

$$\frac{F(z)}{z} \equiv \frac{F(z+\eta)}{z+\eta}$$

holds for any  $\eta \in C \setminus \{0\}$ . Hence  $\frac{F(z)}{z}$  is a constant, which contradicts  $F = \Delta_c f$  is a transcendental meromorphic function. Hence there is  $\eta \in \{0\}$  such that  $z\Delta_{\eta}F - \eta F(z) \neq 0$ , i.e.,

$$z\Delta_{\eta}F - \eta F(z)$$

$$= z\Delta_{\eta}(\Delta_{c}f) - \eta\Delta_{c}f$$

$$= z\Delta_{\eta}((\Delta_{c}f) - z) - \eta((\Delta_{c}f) - z)$$

$$= zf(z + c + \eta) - zf(z + \eta) - (z + \eta)f(z + c) + (z + \eta)f(z) \neq 0.$$
(1)

Noticing

$$\frac{1}{f} = \frac{\Delta_c f}{zf} - \frac{z\Delta_\eta(\Delta_c f) - \eta\Delta_c f}{zf} \frac{(\Delta_c f) - z}{z\Delta_\eta(\Delta_c f) - \eta\Delta_c f}.$$
(2)

Combining (1), (2) and Lemmas 2.2, 2.4, we can get

$$\begin{split} m\left(r,\frac{1}{f}\right) \\ &\leq m\left(r,\frac{\Delta_{c}f}{zf}\right) + m\left(r,\frac{z\Delta_{\eta}(\Delta_{c}f) - \eta\Delta_{c}f}{zf}\right) \\ &+ m\left(r,\frac{(\Delta_{c}f) - z}{z\Delta_{\eta}(\Delta_{c}f) - \eta\Delta_{c}f}\right) + \log 2 \\ &\leq m\left(r,\frac{\Delta_{c}f}{f}\right) + m\left(r,\frac{f(z+c+\eta)}{f}\right) + m\left(r,\frac{f(z+c)}{f}\right) \\ &+ m\left(r,\frac{f(z+\eta)}{f}\right) + m\left(r,\frac{(\Delta_{c}f) - z}{z\Delta_{\eta}(\Delta_{c}f) - \eta\Delta_{c}f}\right) + O(\log r) \\ &= m\left(r,\frac{(\Delta_{c}f) - z}{z\Delta_{\eta}(\Delta_{c}f) - \eta\Delta_{c}f}\right) + S(r,f). \end{split}$$

Applying the first fundamental theorem of Nevanlinna theory, we have

$$T(r,f) \le N\left(r,\frac{1}{f}\right) + m\left(r,\frac{(\Delta_c f) - z}{z\Delta_\eta(\Delta_c f) - \eta\Delta_c f}\right) + S(r,f),\tag{3}$$

and we get

$$m\left(r, \frac{(\Delta_{c}f) - z}{z\Delta_{\eta}(\Delta_{c}f) - \eta\Delta_{c}f}\right)$$

$$\leq m\left(r, \frac{z\Delta_{\eta}(\Delta_{c}f) - \eta\Delta_{c}f}{(\Delta_{c}f) - z}\right) + N\left(r, \frac{z\Delta_{\eta}(\Delta_{c}f) - \eta\Delta_{c}f}{(\Delta_{c}f) - z}\right) + O(1).$$
(4)

It follows from (1) that

$$m\left(r, \frac{z\Delta_{\eta}(\Delta_{c}f) - \eta\Delta_{c}f}{(\Delta_{c}f) - z}\right) \le m\left(r, \frac{\Delta_{\eta}((\Delta_{c}f) - z)}{(\Delta_{c}f) - z}\right) + S(r, f).$$
(5)

Applying Lemma 2.3 and Lemma 2.5, we know that  $(\Delta_c f) - z$  is a transcendental meromorphic function of finite order and

$$T(r, (\Delta_{c}f) - z) \leq 2T(r, f) + S(r, f).$$

Therefore,

$$S(r, (\Delta_c f) - z) = S(r, f).$$
(6)

It follows from Lemma 2.2 and (6) that

$$m\left(r, \frac{z\Delta_{\eta}(\Delta_{c}f) - \eta\Delta_{c}f}{(\Delta_{c}f) - z}\right) = S(r, f).$$
(7)

By Lemma 2.5 and (1), we derive

$$N\left(r, \frac{z\Delta_{\eta}(\Delta_{c}f) - \eta\Delta_{c}f}{(\Delta_{c}f) - z}\right)$$

$$\leq N\left(r, z\Delta_{\eta}(\Delta_{c}f) - \eta\Delta_{c}f\right) + N\left(r, \frac{1}{(\Delta_{c}f) - z}\right)$$

$$\leq N\left(r, \frac{1}{(\Delta_{c}f) - z}\right) + 4N(r, f) + S(r, f).$$
(8)

Combining (3)-(5) and (7)-(8), we have

$$T(r,f) \le 4N(r,f) + N\left(r,\frac{1}{f}\right) + N\left(r,\frac{1}{(\Delta_c f) - z}\right) + S(r,f).$$

# 2.1 Proof of Theorem 1.1

Denoting g = f - a, by Lemma 2.6, we have

$$T(r,f) = T(r,g) + O(1)$$

$$\leq 4N(r,g) + N\left(r,\frac{1}{g}\right) + N\left(r,\frac{1}{(\Delta_c g) - z}\right) + S(r,g)$$

$$= 4N(r,f) + N\left(r,\frac{1}{f-a}\right) + N\left(r,\frac{1}{(\Delta_c f) - z}\right) + S(r,f).$$
(9)

Since  $\delta(a, f) > 0$  and  $\delta(\infty, f) = 1$ , then there is a positive number  $\theta < 1$  such that

$$N\left(r,\frac{1}{f-a}\right) < \theta T(r,f),\tag{10}$$

$$N(r,f) \le o(1)T(r,f). \tag{11}$$

Combining (9)-(11), we can get

$$\left(1 - o(1) - \theta\right)T(r, f) \le N\left(r, \frac{1}{(\Delta_{c} f) - z}\right).$$
(12)

Note that *f* is transcendental, we can get that  $\Delta_c f$  has infinitely many fixed points and  $\tau(\Delta_c f) = \sigma(f)$  from (12).

# 2.2 Proof of Theorem 1.2

Since

$$m\left(r,\frac{1}{f}\right) = m\left(r,\frac{\Delta_{c}f}{f}\frac{1}{\Delta_{c}f}\right) \le m\left(r,\frac{\Delta_{c}f}{f}\right) + m\left(r,\frac{1}{\Delta_{c}f}\right)$$
$$\le m\left(r,\frac{1}{\Delta_{c}f}\right) + S(r,f).$$
(13)

By the first fundamental theorem of Nevanlinna theory and (13), we can get

$$T(r,f) \le T(r,\Delta_{c}f) + N\left(r,\frac{1}{f}\right) + S(r,f).$$
(14)

Hence

$$1 \leq \liminf_{r \to \infty} \frac{T(r, \Delta_{c}f)}{T(r, f)} + \limsup_{r \to \infty} \frac{N(r, \frac{1}{f})}{T(r, f)}$$
$$= \liminf_{r \to \infty} \frac{T(r, \Delta_{c}f)}{T(r, f)} + (1 - \delta(0, f))$$
$$= \liminf_{r \to \infty} \frac{T(r, \Delta_{c}f)}{T(r, f)}.$$
(15)

On the other hand, we have

$$T(r, \Delta_{c}f) = m(r, \Delta_{c}f) + N(r, \Delta_{c}f)$$
  
=  $m\left(r, \frac{f\Delta_{c}f}{f}\right) + N(r, \Delta_{c}f)$   
 $\leq m\left(r, \frac{\Delta_{c}f}{f}\right) + m(r, f) + N(r, f) + N(r, f(z+c)).$ 

It follows from Lemma 2.2 and Lemma 2.5 that

$$T(r,\Delta_c f) \leq T(r,f) + N(r,f) + S(r,f).$$

As  $\delta(\infty, f) = 1$ , so

$$\limsup_{r \to \infty} \frac{T(r, \Delta_{c} f)}{T(r, f)} \leq 1 + \limsup_{r \to \infty} \frac{N(r, f)}{T(r, f)} = 1.$$

Therefore

$$\lim_{r \to +\infty} \frac{T(r, \Delta_c f)}{T(r, f)} = 1.$$
(16)

Since  $\delta(0, f) = 1$  and  $\delta(\infty, f) = 1$ , then

$$N\left(r,\frac{1}{f}\right) = S(r,f), N(r,f) = S(r,f).$$
(17)

By (17) and Lemma 2.6, we have

$$T(r,f) \leq N\left(r, \frac{1}{(\Delta_{c}f) - z}\right) + S(r,f)$$
  
$$\leq T\left(r, \frac{1}{(\Delta_{c}f) - z}\right) + S(r,f)$$
  
$$\leq T(r, \Delta_{c}f) + S(r,f).$$
(18)

Combining (16) and (18) implies

$$T(r, \Delta_{c}f) \sim T(r, f) \sim N\left(r, \frac{1}{(\Delta_{c}f) - z}\right),$$

as  $r \to \infty$ .

## Funding

This work was supported by the Natural Science Foundation of Hubei Provincial Department of Education(Grant No. D20182801) and by Hubei Key Laboratory of Applied Mathematics (Hubei University).

## Availability of data and materials

Not applicable.

#### Competing interests

The authors declare that they have no competing interests.

#### Authors' contributions

All authors drafted the manuscript, read and approved the final manuscript. All authors contributed equally.

#### Author details

<sup>1</sup>School of Mathematics and Statistics, Hubei University of Science and Technology, Xianning, China. <sup>2</sup>Hubei Key Laboratory of Applied Mathematics, Faculty of Mathematics and Statistics, Hubei University, Wuhan, China. <sup>3</sup>Xianning Vocational Technical College, Xianning, China.

### **Publisher's Note**

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

#### Received: 29 May 2019 Accepted: 17 October 2019 Published online: 28 October 2019

#### References

- Bergweiler, W., Langley, J.K.: Zeros of differences of meromorphic functions. Math. Proc. Camb. Philos. Soc. 142, 133–147 (2007)
- Chen, Z.X.: The fixed points and hyper order of solutions of second order complex differential equations. Acta Math. Sci. Ser. A 20(3), 425–432 (2000)
- Chen, Z.X.: Fixed points of meromorphic functions and of their difference and shifts. Ann. Pol. Math. 109(2), 153–163 (2013)
- Chen, Z.X., Shon, K.H.: Fixed points of meromorphic solutions for some difference equations. Abstr. Appl. Anal. 2013, Article ID 496096 (2013)
- 5. Chiang, Y.M., Feng, S.J.: On the Nevanlinna characteristic of  $f(z + \eta)$  and difference equations in the complex plane. Ramanujan J. **16**, 105–129 (2008)
- Chiang, Y.M., Feng, S.J.: On the growth of logarithmic difference, difference equations and logarithmic derivatives of meromorphic functions. Transl. Am. Math. Soc. 361, 3767–3791 (2009)
- 7. Chuang, C.T., Yang, C.C.: Theory of Fix Points and Factorization of Meromorphic Functions. Mathematical Monograph Series. Peking University Press, Beijing (1986)
- Cui, W.W., Yang, L.Z.: Zeros and fixed points of difference operators of meromorphic functions. Acta Math. Sci. 33B(3), 773–780 (2013)
- 9. Halburd, R.G., Korhonen, R.J.: Nevanlinna theory for the difference operator. Ann. Acad. Sci. Fenn., Math. **31**, 463–478 (2006)
- Halburd, R.G., Korhonen, R.J.: Difference analogue of the lemma on the logarithmic derivative with applications to difference equations. J. Math. Anal. Appl. 314, 477–487 (2006)
- 11. Halburd, R.G., Korhonen, R.J.: Meromorphic solutions of difference equations, integrability and the discrete Painlev'e equations. J. Phys. A, Math. Theor. 40, 1–38 (2007)
- 12. Hayman, W.K.: Meromorphic Functions. Oxford Mathematical Monographs. Clarendon, Oxford (1964)
- Lahiri, I: Milloux theorem, deficiency and fix-points for vector-valued meromorphic functions. J. Indian Math. Soc. 59, 45–60 (1993)
- 14. Li, N., Yang, L.Z.: Value distribution of difference and q-difference polynomials. Adv. Differ. Equ. 2013, 98, 1–9 (2013)
- Liu, K., Cao, H.Z., Cao, T.B.: Entire solutions of Fermat type differential difference equations. Arch. Math. 99, 147–155 (2012)
- Wu, Z.J.: Value distribution for difference operator of meromorphic functions with maximal deficiency sum. J. Inequal. Appl. 2013, 530, 1–9 (2013)
- Xu, H.Y., Cao, T.B., Liu, B.X.: The growth of solutions of systems of complex q-shift difference equations. Adv. Differ. Equ. 2012, 216, 1–22 (2012)
- Xu, J.F., Zhang, X.B.: The zeros of q-shift difference polynomials of meromorphic functions. Adv. Differ. Equ. 2012, 200, 1–10 (2012)
- 19. Yang, C.C., Yi, H.X.: Uniqueness Theory of Meromorphic Functions. Mathematics and Its Application, vol. 557. Kluwer Academic, Dordrecht (2003)
- 20. Yang, L: Value Distribution Theory. Springer, Berlin (1993) Translated and revised from the 1982 Chinese original
- 21. Zhang, R.R., Chen, Z.X.: Value distribution of difference polynomials of meromorphic functions. Sci. Sin., Math. 42(11), 1115–1130 (2012) (in Chinese)
- 22. Zhang, R.R., Chen, Z.X.: Fixed points of meromorphic functions and of their difference, divided differences and shifts. Acta Math. Sin. New Ser. **32**(10), 1189–1202 (2016)
- 23. Zheng, J.H.: Value Distribution of Meromorphic Functions. Tsinghua University Press, Beijing (2010)