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Abstract
Let f be a transcendental meromorphic function of finite order and c be a nonzero
complex number. Define�cf = f (z + c) – f (z). The authors investigate the existence on
the fixed points of �cf . The results obtained in this paper may be viewed as discrete
analogues on the existing theorem on the fixed points of f ′. The existing theorem on
the fixed points of �cf generalizes the relevant results obtained by (Chen in Ann. Pol.
Math. 109(2):153–163, 2013; Zhang and Chen in Acta Math. Sin. New Ser.
32(10):1189–1202, 2016; Cui and Yang in Acta Math. Sci. 33B(3):773–780, 2013) et al.
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1 Introduction
Let f (z) be a function meromorphic in the complex plane C. We use the general nota-
tion of the Nevanlinna theory (see [12, 20, 23]) such as m(r, f ), N(r, f ), T(r, f ), m(r, 1

f –a ),
N(r, 1

f –a ), . . . , and assume that the reader is familiar with these notations. We also use
S(r, f ) to denote any quantity of S(r, f ) = o(T(r, f )) (r → ∞), possibly outside a set with
finite logarithmic measure. The order and the lower order of f (z) are denoted by σ (f ) and
μ(f ) respectively.

For any a ∈ C, the exponent of convergence of zeros of f (z) – a (or poles of f (z)) is
denoted by λ(f , a) (or λ( 1

f )). Especially, we denote λ(f , 0) by λ(f ). If λ(f , a) < σ (f ) (or
λ( 1

f ) < σ (f )), then a (or ∞) is said to be a Borel exceptional value of f (z). Nevanlinna’s
deficiency of f with respect to complex number a ∈ C ∪ {∞} is defined by

δ(a, f ) = lim inf
r→∞

m(r, 1
f –a )

T(r, f )
= 1 – lim sup

r→∞

N(r, 1
f –a )

T(r, f )
.

If a = ∞, then one should replace N(r, 1
f –a ) in the above formula by N(r, f ).

A point z0 ∈ C ∪{∞} is said to be a fixed point of f (z) if f (z0) = z0. There is a considerable
number of results on the fixed points of meromorphic functions, we refer the reader to
Chuang and Yang [7]. It follows Chen and Shon [2, 4], we use the notation τ (f ) to denote
the exponent of convergence of fixed points of f , i.e.,

τ (f ) = lim sup
r→∞

log N(r, 1
f –z )

log r
.

In 1993, Lahiri [13] proved the following theorem.
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Theorem A Let f be a transcendental meromorphic function in the plane. Suppose that
there exists a ∈ C with δ(a, f ) > 0 and δ(∞, f ) = 1. Then f has infinitely many fixed points.

In this paper, we shall study the fixed points of the differences of meromorphic functions.
For each c ∈ C\{0}, the forward difference �k+1

c f (z) is defined (see [1]) by

�cf (z) = f (z + c) – f (z),�2
c f (z) = �cf (z + c) – �cf (z).

Especially, we denote �1f (z) by �f (z).
Recently, some well-known facts of the Nevanlinna theory have been extended for the

differences of meromorphic functions (see [5, 6, 9–11, 14–18]). For the existence on the
fixed points of differences, Cui and Yang [8] have proved the following theorems.

Theorem B ([8]) Let f be a function transcendental and meromorphic in the plane with
the order σ (f ) = 1. If f has finitely many poles and infinitely many zeros with exponent of
convergence of zeros λ(f ) �= 1, then �f has infinitely many zeros and fixed points.

Theorem C ([8]) Let f be a non-periodic function transcendental and meromorphic in the
plane with the order σ (f ) = 1, max{λ(f ),λ( 1

f )} �= 1. If f has infinitely many zeros, then �f
has infinitely many zeros and fixed points.

The conditions of Theorems B and C imply that 0, ∞ are Borel exceptional values. If ∞
and d ∈ C are Borel exceptional values of f , Chen [3] obtains the following theorem.

Theorem D ([3]) Let f be a finite order meromorphic function such that λ( 1
f ) < σ (f ), and

let c ∈ C\{0} be a constant such that f (z + c) �≡ f (z). If f (z) has a Borel exceptional value
d ∈ C, then τ (�cf ) = σ (f ).

In [22], Zhang and Chen showered that the condition λ( 1
f ) < σ (f ) in Theorem D cannot

be omitted. Moreover, they obtained the following theorem.

Theorem E ([22]) Let f be a finite order meromorphic function, and let c ∈ C\{0} be a
constant such that f (z + c) �≡ f (z). If f (z) has two Borel exceptional values, then τ (�cf ) =
σ (f ).

In [19], Yi and Yang have proved the following theorem.

Theorem F ([19]) Let f be a transcendental meromorphic function in C with a positive
order. If f has two distinct Borel exceptional values, say a1 and a2, then the order of f is a
positive integer or ∞ and σ (f ) = μ(f ), δ(a1, f ) = δ(a2, f ) = 1.

By Theorem F, we can derive that the order of f in Theorems D and E is a positive integer.
Is it necessary to ask if the order of f is an integer?, i.e., Can we get similar results as those
in Theorems B, C, D, and E if the order of f is not a positive integer? The main purpose of
this paper is to study this question. In fact, we shall prove the following theorems.

Theorem 1.1 Let f be a transcendental meromorphic function of finite order in the plane.
Suppose that c ∈ C \ {0} such that �cf �≡ 0. If there is a ∈ C with δ(a, f ) > 0 and δ(∞, f ) = 1,
then �cf have infinitely many fixed points and τ (�cf ) = σ (f ).
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Theorem 1.2 Let f be a transcendental meromorphic function of finite order in the plane.
Suppose that c ∈ C \ {0} such that �cf �≡ 0. If δ(∞, f ) = 1, δ(0, f ) = 1, then

T(r,�cf ) ∼ T(r, f ) ∼ N
(

r,
1

(�cf ) – z

)
,

as r → ∞, r /∈ E, where E is a possible exception set of r with finite logarithmic measure.

Let f (z) = ez

z , then N(r, f ) = log r = S(r, f ), N(r, 1
f ) = 0 and �cf = (ec–1)z–1

z(z+c) ez �≡ 0. By the
second fundmental theorem, we have

T(r,�cf ) ∼ T(r, f ) ∼ N
(

r,
1

(�cf ) – z

)
(r → ∞),

and τ (�cf ) = σ (f ).

2 Proof of Theorems 1.1 and 1.2
Lemma 2.1 ([6]) Let f (z) be a finite order meromorphic function, then, for each k ∈ N ,
σ (�k

c f ) ≤ σ (f ).

Lemma 2.2 ([9]) Let f be a transcendental meromorphic function of finite order. Then, for
any positive integer n, we have

m
(

r,
�n

c f (z)
f (z)

)
= S(r, f ).

Lemma 2.3 Let f be a transcendental meromorphic function of finite order. Suppose that
c ∈ C \ {0} such that �cf �≡ 0 and δ(0, f ) > 0. Then �cf is a transcendental and meromor-
phic function of finite order.

Proof From Lemma 2.1, we know that σ (�cf ) ≤ σ (f ) < +∞. If �cf is not a transcendental
meromorphic function, then there is a rational function R(z) such that R(z)�cf ≡ 1, i.e.,

1
f

≡ R(z)
�cf

f
.

Applying Lemma 2.2 and noticing that f (z) is transcendental, we have

m
(

r,
1
f

)
≤ m

(
r, R(z)

)
+ m

(
r,

�cf
f

)
= S(r, f ).

This contradicts δ(0, f ) > 0. Thus �cf is a transcendental and meromorphic function of
finite order. �

Lemma 2.4 ([11]) Let f (z) be a transcendental meromorphic function of finite order, then

m
(

r,
f (z + c)

f

)
= S(r, f ).
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Lemma 2.5 ([14, 21]) Let f be a transcendental meromorphic function of finite order. Then

N
(
r, f (z + c)

)
= N(r, f ) + S(r, f ),

T
(
r, f (z + c)

)
= T(r, f ) + S(r, f ).

Lemma 2.6 Let f be a finite order transcendental meromorphic function. Suppose that
c ∈ C \ {0} such that �cf �≡ 0. If δ(0, f ) > 0, then

T(r, f ) ≤ 4N(r, f ) + N
(

r,
1
f

)
+ N

(
r,

1
(�cf ) – z

)
+ S(r, f ).

Proof By Lemma 2.3, we know that �cf is a transcendental meromorphic function. Put
F = �cf , then there is η ∈ C \ {0} such that z�ηF – ηF(z) �≡ 0. If not, then

F(z)
z

≡ F(z + η)
z + η

holds for any η ∈ C \ {0}. Hence F(z)
z is a constant, which contradicts F = �cf is a tran-

scendental meromorphic function. Hence there is η ∈ \{0} such that z�ηF – ηF(z) �≡ 0,
i.e.,

z�ηF – ηF(z)

= z�η(�cf ) – η�cf

= z�η

(
(�cf ) – z

)
– η

(
(�cf ) – z

)
= zf (z + c + η) – zf (z + η) – (z + η)f (z + c) + (z + η)f (z) �≡ 0. (1)

Noticing

1
f

=
�cf
zf

–
z�η(�cf ) – η�cf

zf
(�cf ) – z

z�η(�cf ) – η�cf
. (2)

Combining (1), (2) and Lemmas 2.2, 2.4, we can get

m
(

r,
1
f

)

≤ m
(

r,
�cf
zf

)
+ m

(
r,

z�η(�cf ) – η�cf
zf

)

+ m
(

r,
(�cf ) – z

z�η(�cf ) – η�cf

)
+ log 2

≤ m
(

r,
�cf

f

)
+ m

(
r,

f (z + c + η)
f

)
+ m

(
r,

f (z + c)
f

)

+ m
(

r,
f (z + η)

f

)
+ m

(
r,

(�cf ) – z
z�η(�cf ) – η�cf

)
+ O(log r)

= m
(

r,
(�cf ) – z

z�η(�cf ) – η�cf

)
+ S(r, f ).
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Applying the first fundamental theorem of Nevanlinna theory, we have

T(r, f ) ≤ N
(

r,
1
f

)
+ m

(
r,

(�cf ) – z
z�η(�cf ) – η�cf

)
+ S(r, f ), (3)

and we get

m
(

r,
(�cf ) – z

z�η(�cf ) – η�cf

)

≤ m
(

r,
z�η(�cf ) – η�cf

(�cf ) – z

)
+ N

(
r,

z�η(�cf ) – η�cf
(�cf ) – z

)
+ O(1). (4)

It follows from (1) that

m
(

r,
z�η(�cf ) – η�cf

(�cf ) – z

)
≤ m

(
r,

�η((�cf ) – z)
(�cf ) – z

)
+ S(r, f ). (5)

Applying Lemma 2.3 and Lemma 2.5, we know that (�cf ) – z is a transcendental mero-
morphic function of finite order and

T
(
r, (�cf ) – z

) ≤ 2T(r, f ) + S(r, f ).

Therefore,

S
(
r, (�cf ) – z

)
= S(r, f ). (6)

It follows from Lemma 2.2 and (6) that

m
(

r,
z�η(�cf ) – η�cf

(�cf ) – z

)
= S(r, f ). (7)

By Lemma 2.5 and (1), we derive

N
(

r,
z�η(�cf ) – η�cf

(�cf ) – z

)

≤ N
(
r, z�η(�cf ) – η�cf

)
+ N

(
r,

1
(�cf ) – z

)

≤ N
(

r,
1

(�cf ) – z

)
+ 4N(r, f ) + S(r, f ). (8)

Combining (3)–(5) and (7)–(8), we have

T(r, f ) ≤ 4N(r, f ) + N
(

r,
1
f

)
+ N

(
r,

1
(�cf ) – z

)
+ S(r, f ). �
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2.1 Proof of Theorem 1.1
Denoting g = f – a, by Lemma 2.6, we have

T(r, f ) = T(r, g) + O(1)

≤ 4N(r, g) + N
(

r,
1
g

)
+ N

(
r,

1
(�cg) – z

)
+ S(r, g)

= 4N(r, f ) + N
(

r,
1

f – a

)
+ N

(
r,

1
(�cf ) – z

)
+ S(r, f ). (9)

Since δ(a, f ) > 0 and δ(∞, f ) = 1, then there is a positive number θ < 1 such that

N
(

r,
1

f – a

)
< θT(r, f ), (10)

N(r, f ) ≤ o(1)T(r, f ). (11)

Combining (9)–(11), we can get

(
1 – o(1) – θ

)
T(r, f ) ≤ N

(
r,

1
(�cf ) – z

)
. (12)

Note that f is transcendental, we can get that �cf has infinitely many fixed points and
τ (�cf ) = σ (f ) from (12).

2.2 Proof of Theorem 1.2
Since

m
(

r,
1
f

)
= m

(
r,

�cf
f

1
�cf

)
≤ m

(
r,

�cf
f

)
+ m

(
r,

1
�cf

)

≤ m
(

r,
1

�cf

)
+ S(r, f ). (13)

By the first fundamental theorem of Nevanlinna theory and (13), we can get

T(r, f ) ≤ T(r,�cf ) + N
(

r,
1
f

)
+ S(r, f ). (14)

Hence

1 ≤ lim inf
r→∞

T(r,�cf )
T(r, f )

+ lim sup
r→∞

N(r, 1
f )

T(r, f )

= lim inf
r→∞

T(r,�cf )
T(r, f )

+
(
1 – δ(0, f )

)

= lim inf
r→∞

T(r,�cf )
T(r, f )

. (15)
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On the other hand, we have

T(r,�cf ) = m(r,�cf ) + N(r,�cf )

= m
(

r,
f �cf

f

)
+ N(r,�cf )

≤ m
(

r,
�cf

f

)
+ m(r, f ) + N(r, f ) + N

(
r, f (z + c)

)
.

It follows from Lemma 2.2 and Lemma 2.5 that

T(r,�cf ) ≤ T(r, f ) + N(r, f ) + S(r, f ).

As δ(∞, f ) = 1, so

lim sup
r→∞

T(r,�cf )
T(r, f )

≤ 1 + lim sup
r→∞

N(r, f )
T(r, f )

= 1.

Therefore

lim
r→+∞

T(r,�cf )
T(r, f )

= 1. (16)

Since δ(0, f ) = 1 and δ(∞, f ) = 1, then

N
(

r,
1
f

)
= S(r, f ), N(r, f ) = S(r, f ). (17)

By (17) and Lemma 2.6, we have

T(r, f ) ≤ N
(

r,
1

(�cf ) – z

)
+ S(r, f )

≤ T
(

r,
1

(�cf ) – z

)
+ S(r, f )

≤ T(r,�cf ) + S(r, f ). (18)

Combining (16) and (18) implies

T(r,�cf ) ∼ T(r, f ) ∼ N
(

r,
1

(�cf ) – z

)
,

as r → ∞.
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