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Abstract
In the current paper, authors proposed a computational model based on the cubic
B-spline method to solve linear 6th order BVPs arising in astrophysics. The prescribed
method transforms the boundary problem to a system of linear equations. The
algorithm we are going to develop in this paper is not only simply the approximation
solution of the 6th order BVPs using cubic B-spline, but it also describes the estimated
derivatives of 1st order to 6th order of the analytic solution at the same time. This
novel technique has lesser computational cost than numerous other techniques and
is second order convergent. To show the efficiency of the proposed method, four
numerical examples have been tested. The results are described using error tables
and graphs and are compared with the results existing in the literature.

MSC: 34K10; 34K28; 42A10; 65D05; 65D07

Keywords: Linear sixth order BVPs; Numerical approximation; Cubic B-spline;
Absolute relative error

1 Introduction
The applications of boundary value problems (BVPs) are almost unlimited, and they play
an important role in all the branches of science, engineering, and technology. They are ap-
plied to model many systems in several fields of science and engineering. In recent years,
there has been significant advancement in solving problems related to a system of linear
and nonlinear partial and ordinary differential equations concerning boundary conditions
(BC). Two point nonlinear BVPs often cannot be solved by analytical techniques. With
cumulative interest in finding solutions to linear/nonlinear BVPs has come an increas-
ing requirement for solution techniques. In the present paper, we will study the algebraic
results of the following linear 6th order BVP:

w(6)(z) + a1(z)w(5)(z) + a2(z)w(4)(z) + a3(z)w(3)(z)

+ a4(z)w(2)(z) + a5(z)w(1)(z) + a6(z)w(z) = f (z), z ∈ [a, b] (1)

with boundary conditions

w(m)(a) = αm, w(m)(b) = βm, m = 0, 1, 2, (2)
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where α0, α1, α2 and β0, β1, β2 are given real constants, (ai(z); i = 1, 2, . . . , 6), and f is con-
tinuous on the given interval [a, b].

A variety of numerical methods [1, 2, 4, 5, 8, 9, 11, 12, 16, 31] have been presented to
solve BVPs problem, e.g., global phase-integral methods, shooting methods, sinc-Galerkin
methods, splines methods, finite difference methods, finite element methods, variational
iteration, the collocation methods, and other numerical techniques.

In [23], a variation of parameter technique was used for solving sixth order boundary
value problems. Perturbation method for nonlinear engineering problems was specified
in [24]. Homotopy perturbation technique for solving linear and nonlinear sixth order
boundary value problems was described in [25]. In [26], algebraic results of 6th order BVPs
were originated by applying non-polynomial spline method. Neural networks mimic the
learning procedure of the human brain in order to excerpt designs from ancient data as de-
fined in [27]. These networks are rehabilitated into 6th order boundary value problems and
then resolved by diverse approaches for precise and estimated results. Numerical meth-
ods for sixth order boundary value problems were discussed in [32]. In [33], the authors
established a family of algebraic procedures for the solutions of 6th order boundary value
problems with application to Benard layer eigenvalue problems. Numerical solutions of
fifth and sixth order nonlinear boundary value problems by Daftardar–Jafari method were
found in [34]. Wazwaz in [35] used decomposition and modified domain decomposition
approaches to examine the solution of 6th order boundary value problems.

Discrete methods, e.g., Adomian decomposition, shooting, homotopy-perturbation, fi-
nite differences, and variational-iterative technique, only obtained the discrete approxi-
mate values of dependent variable y(x). We require further data processing procedures to
acquire exact fitted curve to data. For the case of spline approximation or interpolation
approaches the dependent variable y(x) is supposed to be piecewise polynomial which in-
volves at least piecewise higher order derivatives of the function f (x, y, y′). To overcome
these shortcomings, several researchers [3, 6, 7, 10, 13–15, 17–22, 28–30] introduced the
spline/subdivision based methods for the solution of BVPs. However, the higher order
problems have not been solved by spline/subdivision techniques. This motivates us to
solve 6th order boundary value problems by spline. This paper does not only introduce
a numerical approximation based on cubic B-spline for the solution of linear 6th order
BVPs, but it also describes the estimated derivatives of 1st order to 6th order of the ana-
lytic solution at the same time. This novel technique has lesser computational cost than
numerous other techniques and is second order convergent.

2 Materials and methods
In this section the fundamentals of cubic B-spline and its application on sixth order BVP
are discussed in detail. When we contrasted the cubic B-spline method with the other
methods, we came to know that our results are well accepted. Moreover, this method is
second order convergent and has comparatively lesser computational cost. Furthermore,
solving with cubic B-spline method, we also can acquire the estimated derivative values
of w(z), w′(z), w′′(z), w(3)(z), w(4)(z), w(5)(z), and w(6)(z) at the knots, which is the main ad-
vantage of the cubic B-spline method, as other methods are unable to obtain these values.
In the current paper, we will use cubic B-spline to resolve 6th order BVP.
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2.1 Fundamentals of cubic B-splines
The assumed choice of independent variable is [a, b]. For an interval Ω = [a, b], we divide
it into n subintervals Ωi = [zi, zi+1] (i = 0, 1, . . . , n – 1) by the equidistant knots, and for this
range we select equidistant points assumed by

Ω = {a = z0, z1, z2, . . . , zn = b},

i.e.,

zi = a + ih (i = 0, 1, 2, . . . , n), where h =
b – a

n
.

Let us describe S3(Ω) = {p′(t) ∈ C2[a, b]} such that p′(t) decreases to cubic polynomial on
separately sub-interval (zi, zi+1). The basis function is defined as

B–1(z) =
1

6h3

⎧
⎨

⎩

(z1 – z)3 if z ∈ [z0, z1],

0 otherwise,

B0(z) =
1

6h3

⎧
⎪⎪⎨

⎪⎪⎩

h3 + 3h2(z1 – z) + 3h(z1 – z)2 – 3(z1 – z)3 if z ∈ [z0, z1],

(z2 – z)3 if z ∈ [z1, z2],

0 otherwise,

B1(z) =
1

6h3

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

h3 + 3h2(z – z0) + 3h(z – z0)2 – 3(z – z0)3 if z ∈ [z0, z1],

h3 + 3h2(z2 – z) + 3h(z2 – z)2 – 3(z2 – z)3 if z ∈ [z1, z2],

(z3 – z)3 if z ∈ [z2, z3],

0 otherwise,

Bi(z) =
1

6h3

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(z – zi–2)3 if z ∈ [zi–2, zi–1],

h3 + 3h2(z – zi–1) + 3h(z – zi–1)2 – 3(z – zi–1)3 if z ∈ [zi–1, zi],

h3 + 3h2(zi+1 – z) + 3h(zi+1 – z)2 – 3(zi+1 – z)3 if z ∈ [zi, zi+1],

(zi+2 – z)3 if z ∈ [zi+1, zi+2],

0 otherwise,

for i = 2, 3, 4, . . . , n – 2. Since to each Bi(z) is similarly a piecewise cubic with knots at
Ω , collectively Bi(z) ∈ S3(Ω). Let Ψ = {B–1, B0, B1, . . . , Bn+1} and let B3(Ω) = spanΨ . The
functions in Ψ are linearly independent on [a, b], thus B3(Ω) is (n + 3)-dimensional and
B3(Ω) = S3(Ω). Let s(z) be the cubic B-spline interpolating function at the nodal points
and s(z) ∈ B3(Ω). Then s(z) can be written as

s(z) =
n+1∑

i=–1

liBi(z).

The values of Bi(z), B′
i(z), and B′′

i (z) at the knots are listed in Table 1.
Consequently, now for an assumed function w(z) there happened to be a distinctive

cubic B-spline s(z) =
∑n+1

i=–1 liBi(z) satisfying the interpolating conditions:

s(zi) = w(zi) (i = 0, 1, . . . , n), s(a) = w(a), s(b) = w(b),
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Table 1 Values of Bi(z), B′
i (z), and B′′

i (z) at the knots

Bi(z) B′
i (z) B′′

i (z)

zi–2 0 0 0
zi–1 1/6 1/2h 1/h2

zi 4/6 0 –2/h2

zi+1 1/6 –1/2h 1/h2

zi+2 0 0 0
Else 0 0 0

and s′(a) = w′(a), s′(b) = w′(b). Let mi = s′(zi) and Mi = s′′(zi), then from [15] we have

mi = s′(zi) = w′′(zi) –
1

180
h4w(5)(zi) + O

(
h6), (3)

Mi = s′′(zi) = w′′(zi) –
1

12
h2w(4)(zi) +

1
360

h4w(6)(zi) + O
(
h6), (4)

Mi can be used to calculate the numerical difference formulas for w(3)(zi), w(4)(zi) where
i = 1, 2, . . . , n – 1 and w(5)(zi), w(6)(zi) where i = 2, 3, . . . , n – 2 as follows, wherever the errors
are acquired by the Taylor series expansion

Mi+1 – Mi–1

2h
=

s(3)(zi–) + s(3)(zi+)
2

= w(3)(zi) +
1

12
h2w(5)(zi) + O

(
h4). (5)

From [9] and [15] we have

Mi+1 – 2Mi + Mi–1

h2 =
s(3)(zi–) – s(3)(zi+)

h
= w(4)(zi) –

1
720

h4w(8)(zi) + O
(
h6), (6)

Mi+2 – 2Mi+1 + 2Mi–1 – Mi–2

2h3 = w(5)(zi) + O
(
h2). (7)

Since s(z′) =
∑n+1

i=–1 liBi(z′), by means of Table 1 and beyond equations, we get estimate
values of w(z), w′(z), w′′(z), w(3)(z), w(4)(z), w(5)(z), and w(6)(z) as

w(zi) = s(zi) = li–1+4li+li+1
6 ,

w′′(z) = s′′(zi) = li+1–2li+li–1
h2 ,

w(3)(z) = s(3)(zi) = li+2–2li+1+2li–1–li–2
2h3 ,

w(4)(z) = s(4)(zi) = li+2–4li+1+6li–4li–1+li–2
h4 ,

w(5)(z) = s(5)(zi) = li+3–4li+2+5li+1+5li–1+4li–2–li–3
2h5 ,

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(8)

and following the above, we have the Taylor series expansion for w(6)(z) at the selected
collocation points with central difference as follows:

w(6)
i (zi) =

(w(4)
i+1(zi) – 2w(4)

i (zi) + w(4)
i–1(zi))

h2 + O
(
h2). (9)

Using Eq. (6), we can have

Mi – 2Mi–1 + Mi–2

h2 =
s(3)(z(i–1)–) – s(3)(z(i–1)+)

h
= w(4)(zi–1) –

1
720

h4w(8)(zi–1) + O
(
h6),

Mi+2 – 2Mi+1 + Mi

h2 =
s(3)(z(i+1)–) – s(3)(z(i+1)+)

h
= w(4)(zi+1) –

1
720

h4w(8)(zi+1) + O
(
h6).
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Using the above two equations and Eq. (6) in Eq. (9), we have

w(6)
i (zi) =

1
h2

(
Mi+2 – 2Mi+1 + Mi

h2 – 2
Mi+1 – 2Mi + Mi–1

h2 +
Mi – 2Mi–1 + Mi–2

h2

)

+ O
(
h2),

w(6)
i (zi) =

1
h4

(
Mi+2 – 2Mi+1 + Mi – 2(Mi+1 – 2Mi + Mi–1) + Mi – 2Mi–1 + Mi–2

)

+ O
(
h2),

w(6)
i (zi) =

1
h4 (Mi+2 – 2Mi+1 + Mi – 2Mi+1 + 4Mi – 2Mi–1 + Mi – 2Mi–1 + Mi–2)

+ O
(
h2),

w(6)(zi) =
Mi+2 – 4Mi+1 + 6Mi – 4Mi–1 + Mi–2

h4 + O
(
h2).

As Mi = li+1–2li+li–1
h2 , so we can conclude

Mi–2 =
li–1 – 2li–2 + li–3

h2 , Mi–1 =
li – 2li–1 + li–2

h2 ,

Mi+1 =
li+2 – 2li+1 + li

h2 , Mi+2 =
li+3 – 2li+2 + li+1

h2 .

Using the above equations, we have

1
h4

[
li+3 – 2li+2 + li+1

h2 – 4
(

li+2 – 2li+1 + li

h2

)

+ 6
(

li+1 – 2li + li–1

h2

)

– 4
(

li – 2li–1 + li–2

h2

)

+
(

li–1 – 2li–2 + li–3

h2

)]

= w(6)(zi) + O
(
h2).

Simplifying

1
h6 (li+3 – 2li+2 + li+1 – 4li+2 + 8li+1 – 4li + 6li+1 – 12li + 6li–1 – 4li + 8li–1 – 4li–2

+ li–1 – 2li–2 + li–3) = w(6)(zi) + O
(
h2).

Neglecting the error order, we have

w(6)(zi) = s(6)(zi) =
li+3 – 6li+2 + 15li+1 – 20li + 15li–1 – 6li–2 + li–3

h6 . (10)

2.2 Cubic B-spline solutions of sixth order BVP
Let w(z) = s(z) =

∑n+1
i=–1 liBi(z) be the approximate solution of sixth order BVP

w(6)(z) + a1(z)w(5)(z) + a2(z)w(4)(z) + a3(z)w(3)(z)

+ a4(z)w(2)(z) + a5(z)w(1)(z) + a6(z)w(z) = f (z), z ∈ [a, b]

with boundary conditions

w(m)(a) = αm, w(m)(b) = βm, m = 0, 1, 2,



Khalid et al. Advances in Difference Equations        (2019) 2019:492 Page 6 of 16

where α0, α1, α2 and β0, β1, β2 are given real constants (ai(z); i = 1, 2, . . . , 6) and f is con-
tinuous on the given interval [a, b].

w(6)(zi) + a1(zi)w(5)(zi) + a2(zi)w(4)(zi) + a3(zi)w(3)(zi)

+ a4(zi)w(2)(zi) + a5(zi)w(1)(zi) + a6(zi)w(zi) = f (zi), z ∈ [a, b]. (11)

Using Eqs. (8) and (10) in Eq. (11), we have

li+3 – 6li+2 + 15li+1 – 20li + 15li–1 – 6li–2 + li–3

h6

+ a1(zi)
li+3 – 4li+2 + 5li+1 + 5li–1 + 4li–2 – li–3

2h5

+ a2(zi)
li+2 – 4li+1 + 6li – 4li–1 + li–2

h4 + a3(zi)
li+2 – 2li+1 + 2li–1 – li–2

2h3

+ a4(zi)
li+1 – 2li + li–1

h2 + a5(zi)
li+1 – li–1

2h
+ a6(zi)

li–1 + 4li + li+1

6

= fi(zi), z ∈ [a, b].

Simplifying

6(li+3 – 6li+2 + 15li+1 – 20li + 15li–1 – 6li–2 + li–3) + 3ha1(zi)(li+3 – 4li+2 + 5li+1

+ 5li–1 + 4li–2 – li–3) + 6h2a2(zi)(li+2 – 4li+1 + 6li – 4li–1 + li–2)

+ 3h3a3(zi)(li+2 – 2li+1 + 2li–1 – li–2) + 6h4a4(zi)(li+1 – 2li + li–1)

+ 3h5a5(zi)(li+1 – li–1) + h6a6(zi)(li–1 + 4li + li+1)

= 6h6fi(zi), z ∈ [a, b]. (12)

By solving Eq. (12) we will have a linear system of (n – 3) linear equations (i = 2, 3, . . . , n – 2)
with (n + 3) unknowns li, where i = –1, 0, 1, . . . , n + 1, so six more equations are desirable.
By the boundary conditions at z = a, we get

w(a) = α0 ⇒ l–1 + 4l0 + l1 = 6α0,

w′(a) = α1 ⇒ –l–1 + l1 = 2α1h,

w′′(a) = α2 ⇒ l–1 – 2l0 + l1 = α2h2.

(13)

Similarly, for z = b,

w(b) = β0 ⇒ ln–1 + 4ln + ln+1 = 6β0,

w′(b) = β1 ⇒ –ln–1 + ln+1 = 2β1h,

w′′(b) = β2 ⇒ ln–1 – 2ln + ln+1 = β2h2.

(14)

The approximate solution w(z) = s(z) =
∑n+1

i=–1 liBi(z) is attained by resolving the above sys-
tem of (n + 3) linear equations in (n + 3) unknowns using the above set of Eqs. (12)–(14).
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3 Results and discussion
In the numerical section, we have solved four examples to show the efficiency of cubic
B-spline method. Obviously, the results of our method are very encouraging because this
method signifies the fastest convergence as well as an incredibly low error.

Problem 1

w(6)(z) – w(z) = –6ez, 0 ≤ z ≤ 1,

subject to

w(0) = 1, w(1) = 0, w′(0) = 0, w′(1) = –e,

w′′(0) = –1, w′′(1) = –2e.

The precise solution is w(z) = (1 – z)ez . Algebraic outcomes for this problem are pre-
sented in Table 2 for h = 1

10 and Table 3 for h = 1
5 respectively. The graphical comparison

of absolute errors at h = 1
10 and h = 1

5 is demonstrated in Figs. 1 and 2 respectively.
At h = 1

10 we will have unknowns li where i = –1, 0, 1, . . . , n + 1. At n = 10 we will
have seven equations from Eq. (12), three equations from Eq. (13), three equations from
Eq. (14), so in total we will have thirteen equations and thirteen unknowns. The values of

Table 2 Algebraic outcomes for Problem 1 at h = 1
10

z Exact solution Cubic B-spline
solution

Absolute error
at h = 1

10

[24] and [30]

0.1 0.99465383 0.99464116 1.18E-05 4.09E-04
0.2 0.97712221 0.97707373 4.29E-05 7.78E-04
0.3 0.94490117 0.94480278 8.53E-05 1.07E-03
0.4 0.89509482 0.89494682 1.28E-04 1.26E-03
0.5 0.82436064 0.82417890 1.59E-04 1.32E-03
0.6 0.72884752 0.72866061 1.67E-04 1.26E-03
0.7 0.60412581 0.60396796 1.45E-04 1.07E-03
0.8 0.44510819 0.44500816 9.47E-05 7.78E-04
0.9 0.24596031 0.24592622 3.33E-05 4.09E-04

Error* = Exact solution – Approximate solution

Table 3 Algebraic outcomes for Problem 1 at h = 1
5

z Exact solution Cubic B-spline
solution

Absolute error
at h = 1

5

Pervaiz [1]

0.2 0.97712221 0.976933603 1.89E-04 1.21E-03
0.4 0.89509482 0.894500554 5.94E-04 1.97E-03
0.6 0.72884752 0.728081868 7.66E-04 2.17E-03
0.8 0.44510819 0.444697112 4.11E-04 1.61E-03
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Figure 1 Comparison of our method and [24] and [30] for Problem 1

Figure 2 Comparison of our method and [1] for Problem 1

thirteen unknowns li where i = –1, 0, 1, . . . , 11 are

l–1 = 0.330000000000000, l0 = 1.001666666666667,

l1 = 0.996666666666667, l2 = 0.979513602244758,

l3 = 0.947721275080079, l4 = 0.898417972748468,

l5 = 0.828287737175295, l6 = 0.733504478738225,

l7 = 0.609658034368616, l8 = 0.451671157504189,

l9 = 0.253706303989511, l10 = 0.009060939428197,

l11 = –0.289950061702298.

At h = 1
5 we will have unknowns li where i = –1, 0, 1, . . . , n + 1. At n = 5 we will have two

equations from Eq. (12), three equations from Eq. (13), three equations from Eq. (14), so
in total we will have eight equations and eight unknowns. The values of eight unknowns
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Table 4 The results of Problem 1 from [9]

z Exact solution Sinc-Galerkin
solution

Absolute relative
error (ARE) 1.0× e–3

0.0414 0.99911 0.99911 0.0
0.3131 0.93944 0.93943 0.01
0.5 0.82436 0.82432 0.03
0.6868 0.62243 0.62239 0.07
0.8278 0.39404 0.39400 0.09
0.9585 0.10822 0.10821 0.10

Table 5 Estimated derivative at the knots for Problem 1

z Exact w(1)(z) Cubic B-spline
w(1)(z)

Absolute error
of w(1)(z)

Exact w(2)(z) Cubic B-spline
w(2)(z)

Absolute error
of w(2)(z)

0.1 –0.110517092 –0.11074035 2.23E-04 –1.21568801 –1.214807005 8.81E-04
0.2 –0.244280552 –0.244660538 3.80E-04 –1.46568331 –1.463596755 2.09E-03
0.3 –0.404957642 –0.405399753 4.42E-04 –1.75481645 –1.751187536 3.63E-03
0.4 –0.596729879 –0.59711663 3.87E-04 –2.088554577 –2.083150017 5.40E-03
0.5 –0.824360635 –0.824568788 2.08E-04 –2.473081906 –2.465893125 7.19E-03
0.6 –1.09327128 –1.093201278 7.00E-05 –2.915390081 –2.906756682 8.63E-03
0.7 –1.409626895 –1.40924466 3.82E-04 –3.423379603 –3.414110953 9.27E-03
0.8 –1.780432743 –1.779823367 6.09E-04 –4.005973671 –3.997463193 8.51E-03
0.9 –2.2136428 –2.213075086 5.68E-04 –4.673245911 –4.66757119 5.67E-03

li where i = –1, 0, 1, . . . , 6 are

l–1 = 0.986666666666667, l0 = 1.001666666666667,

l1 = 0.986666666666667, l2 = 0.908268286018834,

l3 = 0.747263518996417, l4 = 0.471168850266235,

l5 = 0.036243757712787, l6 = –0.616143881117384.

The results of [9] for Problem 1 is demonstrated as follows in Table 4, and obviously our
results are encouraging.

Solving with cubic B-spline method, we also can acquire the estimated derivative at the
knots, which is described in Table 5, which is the main advantage of cubic B-spline method,
as other methods are unable to obtain these values.

Problem 2

w(6)(z) + zw(z) = –
(
24 + 11z + (z)3)ez, 0 ≤ z ≤ 1,

subject to

w(0) = 0, w(1) = 0, w′(0) = 1, w′(1) = –e,

w′′(0) = 0, w′′(1) = –4e.

The exact solution is w(z) = z(1 – z)ez . Algebraic outcomes for this problem are pre-
sented in Table 6 for h = 1

10 and Table 7 for h = 1
5 respectively. The graphical comparison

of absolute errors at h = 1
10 and h = 1

5 is demonstrated in Fig. 3.
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Table 6 Algebraic outcomes for Problem 2 at h = 1
10

z Exact solution Cubic B-spline
solution

Absolute error
at h = 1

10

0.1 0.099465383 0.099427251 3.81E-05
0.2 0.195424441 0.195265639 1.59E-04
0.3 0.283470350 0.283129607 3.41E-04
0.4 0.358037927 0.357504923 5.33E-04
0.5 0.412180318 0.411506700 6.74E-04
0.6 0.437308512 0.436600310 7.08E-04
0.7 0.422888069 0.422279569 6.08E-04
0.8 0.356086549 0.355695711 3.91E-04
0.9 0.221364280 0.221229780 1.35E-04

Table 7 Algebraic outcomes for Problem 2 at h = 1
5

z Exact solution Cubic B-spline
solution

Absolute error
at h = 1

5

0.2 0.19542444 0.19482537 5.99E-04
0.4 0.35803793 0.35592277 2.12E-03
0.6 0.43730851 0.43442415 2.88E-03
0.8 0.35608655 0.35449012 1.60E-03

Figure 3 Comparison of exact and cubic-B solution for Problem 2

At h = 1
10 we will have unknowns li where i = –1, 0, 1, . . . , n + 1. At n = 10 we will

have seven equations from Eq. (12), three equations from Eq. (13), three equations from
Eq. (14), so in total we will have thirteen equations and thirteen unknowns. The values of
thirteen unknowns li where i = –1, 0, 1, . . . , 11 are

l–1 = –0.100000000000, l0 = 0, l1 = 0.100000000000,

l2 = 0.196563506057683, l3 = 0.285339812568966,

l4 = 0.360854884390805, l5 = 0.416270189387388,

l6 = 0.443104558445803, l7 = 0.430913439191555,

l8 = 0.366919100583079, l9 = 0.235584425133117,

l10 = 0.018121878856394, l11 = –0.308071940558692.
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Table 8 The maximum absolute errors of Problem 2 from [30]

N Second order
method

7 2.99× 10–2

15 7.00× 10–3

31 1.80× 10–3

Table 9 Estimated derivative at the knots for Problem 2

z Exact w(1)(z) Cubic B-spline
w(1)(z)

Absolute error
of w(1)(z)

Exact w(2)(z) Cubic B-spline
w(2)(z)

Absolute error
of w(2)(z)

0.1 0.983602117 0.98281753 7.85E-04 –0.342603 –0.343649394 1.05E-03
0.2 0.928266096 0.926699063 1.57E-03 –0.781698 –0.778719955 2.98E-03
0.3 0.823413873 0.821456892 1.96E-03 –1.336360 –1.326123469 1.02E-02
0.4 0.656402867 0.654651884 1.75E-03 –2.028882 –2.009976683 1.89E-02
0.5 0.412180318 0.41124837 9.32E-04 –2.885262 –2.858093594 2.72E-02
0.6 0.072884752 0.073216249 3.31E-04 –3.935777 –3.902548831 3.32E-02
0.7 –0.382613014 –0.380927289 1.69E-03 –5.215620 –5.180321935 3.53E-02
0.8 –0.979238009 –0.97664507 2.59E-03 –6.765644 –6.734033684 3.16E-02
0.9 –1.746318209 –1.743986109 2.33E-03 –8.633207 –8.612787083 2.04E-02

At h = 1
5 we will have unknowns li where i = –1, 0, 1, . . . , n + 1. At n = 5 we will have two

equations from Eq. (12), three equations from Eq. (13), three equations from Eq. (14), so
in total we will have eight equations and eight unknowns. The values of eight unknowns
li where i = –1, 0, 1, . . . , 6 are

l = –0.2000000002806, l0 = –0.0000000002242,

l1 = 0.2000000015886, l2 = 0.3689521916188,

l3 = 0.4597278365167, l4 = 0.3986813363644,

l5 = 0.0724875152029, l6 = –0.6886313967683.

The maximum absolute errors corresponding to Problem 2 in [30] are demonstrated in
Table 8, and obviously our results are encouraging.

Solving with cubic B-spline method, we also can acquire the estimated derivative at the
knots, which is described in Table 9, which is the main advantage of cubic B-spline method,
as other methods are unable to obtain these values.

Problem 3

w(6)(z) + e–zw(z) = –720 +
(
z – (z)2)3e–z, 0 ≤ z ≤ 1,

subject to

w(0) = 0, w(1) = 0, w′(0) = 0, w′(1) = 0, w′′(0) = 0, w′′(1) = 0.

The exact solution is w(z) = (z)3(1 – z)3. Algebraic outcomes for this problem are pre-
sented in Table 10 for h = 1

10 and Table 11 for h = 1
5 respectively. The graphical comparison

of absolute errors at h = 1
10 and h = 1

5 is demonstrated in Fig. 4.
At h = 1

10 we will have unknowns li where i = –1, 0, 1, . . . , n + 1. At n = 10 we will
have seven equations from Eq. (12), three equations from Eq. (13), three equations from
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Table 10 Algebraic outcomes for Problem 3 at h = 1
10

z Exact solution Cubic B-spline
solution

Absolute error
at h = 1

10

0.1 0.000729 0.000504 2.25E-04
0.2 0.004096 0.003360 7.36E-04
0.3 0.009261 0.007980 1.28E-03
0.4 0.013824 0.012144 1.68E-03
0.5 0.015625 0.013800 1.83E-03
0.6 0.013824 0.012144 1.68E-03
0.7 0.009261 0.007980 1.28E-03
0.8 0.004096 0.003360 7.36E-04
0.9 0.000729 0.000504 2.25E-04

Table 11 Algebraic outcomes for Problem 3 at h = 1
5

z Exact solution Cubic B-spline
solution

Absolute error
at h = 1

5

0.2 0.004096 0.001536 2.56E-03
0.4 0.013824 0.007680 6.14E-03
0.6 0.013824 0.007680 6.14E-03
0.8 0.004096 0.001536 2.56E-03

Figure 4 Comparison of exact and cubic-B solution for Problem 3

Eq. (14), so in total we will have thirteen equations and thirteen unknowns. The values of
thirteen unknowns li where i = –1, 0, 1, . . . , 11 are

l–1 = 0, l0 = 0, l1 = 0, l2 = 0.003023996050353,

l3 = 0.008063989424737, l4 = 0.012599983512128,

l5 = 0.014399981311357, l6 = 0.012599983874666,

l7 = 0.008063989877409, l8 = 0.003023996294690,

l9 = 0, l10 = 0, l11 = 0.

At h = 1
5 we will have unknowns li where i = –1, 0, 1, . . . , n + 1. At n = 5 we will have two

equations from Eq. (12), three equations from Eq. (13), three equations from Eq. (14), so
in total we will have eight equations and eight unknowns. The values of eight unknowns
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Table 12 The maximum absolute errors of Problem 3 from [9]

z Exact solution Sinc-Galerkin
solution

Absolute relative
error (ARE) 1.0e–3

0.2764 0.008000 0.008997 0.32
0.4205 0.014469 0.014465 0.26
0.5 0.015625 0.015620 0.25
0.6550 0.011539 0.011536 0.28
0.8324 0.002715 0.002714 0.45

Table 13 Estimated derivative at the knots for Problem 3

z Exact w(1)(z) Cubic B-spline
w(1)(z)

Absolute error
of w(1)(z)

Exact w(2)(z) Cubic B-spline
w(2)(z)

Absolute error
of w(2)(z)

0.1 0.01944 0.01511998 4.32E-03 0.297 0.302399605 5.40E-03
0.2 0.04608 0.040319947 5.76E-03 0.192 0.201599732 9.60E-03
0.3 0.05292 0.047879937 5.04E-03 –0.063 –0.050399929 1.26E-02
0.4 0.03456 0.031679959 2.88E-03 –0.288 –0.273599629 1.44E-02
0.5 0 1.81884E-09 1.82E-09 –0.375 –0.359999523 1.50E-02
0.6 –0.03456 –0.031679957 2.88E-03 –0.288 –0.273599656 1.44E-02
0.7 –0.05292 –0.047879938 5.04E-03 –0.063 –0.050399959 1.26E-02
0.8 –0.04608 –0.040319949 5.76E-03 0.192 0.201599729 9.60E-03
0.9 –0.01944 –0.015119981 4.32E-03 0.297 0.302399629 5.40E-03

li where i = –1, 0, 1, . . . , 6 are

l–1 = 0, l0 = 0, l1 = 0, l2 = 0.009215951379013,

l3 = 0.009215952744138, l4 = 0, l5 = 0, l6 = 0.

The results of [9] for Problem 3 are demonstrated in Table 12 and obviously our results
are encouraging.

Solving with Cubic B-spline method, we also can acquire the estimated derivative at
the knots, which is described in Table 13, which is the main advantage of cubic B-spline
method, as other methods are unable to obtain these values.

Problem 4

w(6)(z) = Cos(z) – Sin(z), 0 ≤ z ≤ 1,

subject to

w(0) = 1, w(1) = Cos(1) + Sin(1), w′(0) = 1, w′(1) = Cos(1) – Sin(1),

w′′(0) = –1, w′′(1) = – Cos(1) – Sin(1).

The precise solution is w(z) = Cos(z) + Sin(z). Algebraic outcomes for this problem are
presented in Table 14 for h = 1

10 and Table 15 for h = 1
5 respectively. The graphical com-

parison of absolute errors at h = 1
10 and h = 1

5 is demonstrated in Fig. 5.
At h = 1

10 we will have unknowns li where i = –1, 0, 1, . . . , n + 1. At n = 10 we will
have seven equations from Eq. (12), three equations from Eq. (13), three equations from
Eq. (14), so in total we will have thirteen equations and thirteen unknowns. The values of
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Table 14 Algebraic outcomes for Problem 4 at h = 1
10

z Exact solution Cubic B-spline
solution

Absolute error
at h = 1

10

0.1 1.094837582 1.094840345 2.76E-06
0.2 1.178735909 1.178742216 6.31E-06
0.3 1.250856696 1.250865071 8.38E-06
0.4 1.310479336 1.310489051 9.72E-06
0.5 1.357008100 1.357019339 1.12E-05
0.6 1.389978088 1.389990786 1.27E-05
0.7 1.409059875 1.409072555 1.27E-05
0.8 1.414062800 1.414072477 9.68E-06
0.9 1.404936878 1.404940836 3.96E-06

Table 15 Algebraic outcomes for Problem 4 at h = 1
5

z Exact solution Cubic B-spline
solution

Absolute error
at h = 1

5

0.2 1.178735909 1.178768884 3.30E-05
0.4 1.310479336 1.310520396 4.11E-05
0.6 1.389978088 1.390034444 5.64E-05
0.8 1.414062800 1.414109078 4.63E-05

Figure 5 Comparison of exact and cubic-B solution for Problem 4

thirteen unknowns li where i = –1, 0, 1, . . . , 11 are

l–1 = 0.896666666666667, l0 = 1.001666666666667,

l1 = 1.096666666666667, l2 = 1.180708735596316,

l3 = 1.252951688415917, l4 = 1.312674935541193,

l5 = 1.359282877916855, l6 = 1.392309586646931,

l7 = 1.411423490072131, l8 = 1.416431780494556,

l9 = 1.407284247601092, l10 = 1.384076246160497,

l11 = 1.347050511813141.

At h = 1
5 we will have unknowns li where i = –1, 0, 1, . . . , n + 1. At n = 5 we will have two

equations from Eq. (12), three equations from Eq. (13), three equations from Eq. (14), so
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Table 16 Estimated derivative at the knots for Problem 4

z Exact w(1)(z) Cubic B-spline
w(1)(z)

Absolute error
of w(1)(z)

Exact w(2)(z) Cubic B-spline
w(2)(z)

Absolute error
of w(2)(z)

0.1 0.895170749 0.895210345 3.96E-05 –1.094837582 –1.095793107 9.56E-04
0.2 0.781397247 0.781425109 2.79E-05 –1.178735909 –1.179911611 1.18E-03
0.3 0.659816282 0.659831 1.47E-05 –1.250856696 –1.251970569 1.11E-03
0.4 0.531642652 0.531655948 1.33E-05 –1.310479336 –1.311530475 1.05E-03
0.5 0.398157023 0.398173256 1.62E-05 –1.3570081 –1.358123365 1.12E-03
0.6 0.260693142 0.260703061 9.92E-06 –1.389978088 –1.39128053 1.30E-03
0.7 0.1206245 0.120610969 1.35E-05 –1.409059875 –1.4105613 1.50E-03
0.8 –0.020649382 –0.020696212 4.68E-05 –1.4140628 –1.415582332 1.52E-03
0.9 –0.161716941 –0.161777672 6.07E-05 –1.406046855 –1.406046855 1.11E-03

in total we will have eight equations and eight unknowns. The values of eight unknowns
li where i = –1, 0, 1, . . . , 6 are as follows.

Solving with cubic B-spline method, we also can acquire the estimated derivative at
the knots, which is described in Table 16, which is the main advantage of cubic B-spline
method, as other methods are unable to obtain these values.

4 Conclusion
The preceding segments demonstrate that the cubic B-spline technique is a sensible tac-
tic to the numerical solution of sixth order BVP. The calculations associated with the
examples deliberated above were accomplished by using Matlab R2015a. The algebraic
outcomes validate the effectiveness and accurateness of the anticipated scheme. The an-
ticipated algorithm formed a rapidly convergent series. We recommend that the cubic
B-spline technique can also be accommodating when we investigate further higher order
BVPs. It works soundly for higher order problems and signifies the fastest convergence as
well as a notably low error.
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