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Abstract
The (2 + 1)-dimensional Chaffee–Infante equation and the dimensionless form of the
Zakharov equation have widespread scopes of function in science and engineering
fields, such as in nonlinear fiber optics, the waves of electromagnetic field, plasma
physics, the signal processing through optical fibers, fluid dynamics, coastal
engineering and remarkable to model of the ion-acoustic waves in plasma, the sound
waves. In this article, the first integral method has been assigned to search closed
form solitary wave solutions to the previously proposed nonlinear evolution
equations (NLEEs). We have constructed abundant soliton solutions and discussed
the physical significance of the obtained solutions of its definite values of the
included parameters through depicting figures and interpreted the physical
phenomena. It has been shown that the first integral method is powerful, convenient,
straightforward and provides further general wave solutions to diverse NLEEs in
mathematical physics.
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1 Introduction
Nonlinearity is a fascinating element of nature and many scientists consider nonlinear
science as the most important frontier for the fundamental understanding of nature. The
mathematical modeling of intricate phenomena that change with time depends intensely
on the investigation of diverse class of nonlinear ordinary and partial differential equa-
tions. These models are developed in highly dissimilar fields of study, ranging from the
physical and natural sciences, infectious disease epidemiology, neural networks, popula-
tion ecology to economics, optical fibers, elasticity, plasma physics, solid state physics,
and fluid mechanics. Therefore, an exciting and incredibly dynamic field of research for
the previous few decades has been the investigation of soliton solutions of the earlier stated
phenomena and the related issue is the development of closed form wave solutions to a
broad class of nonlinear evolution equations. Closed form solitary wave solutions pro-
vide better internal information about those phenomena. Therefore, considerable efforts
have been made by many mathematicians and physical scientists to obtain closed form
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wave solutions of such NLEEs and a number of powerful and efficient methods, such as
the Bäcklund transformation method [1], the first integral method [2], the modified sim-
ple equation method [3, 4], the Exp-function method [5], the (G′/G)-expansion method
[6], the sine-cosine method [7], the modified Kudryashov method [8], the homogeneous
balance method [9], the F-expansion method [10], the variational iteration method [11],
the tanh-function method [12], the Adomian decomposition method [13], the projective
Riccati equation method [14], the homotopy analysis method [15], and the (G′/G, 1/G)-
expansion method [16] have been developed.

Among these methods, the first integral method is one of the most important, direct
and effective algebraic methods for finding exact solutions to NLEEs. This method was
first proposed by Feng [17] in solving the Burgers–KdV equation which is based on the
ring theory of commutative algebra. Recently, this useful method has been widely used
by many researchers, as for instance, Raslan [18] examined the exact traveling wave solu-
tions to the Fisher equation by applying the first integral method. Taghizadeh et al. [19]
determined the exact wave solutions to the modified KdV–KP equation and the Burgers–
KP equation by using this method. Abbasbandy and Shirzadi [20] investigated the modi-
fied BBM equation by using the first integral method. Also Moosaei et al. [21] examined
the perturbed nonlinear Schrodinger equation with Kerr law nonlinearity by using this
method.

Motivated by the ongoing research, in this article, we have examined the (2 + 1)-
dimensional Chaffee–Infante equation and the dimensionless form of the Zakharov equa-
tion (ZE) through the first integral method to extract closed form solitary wave solutions
and solitons.

2 The first integral method
In this section, to facilitate further analysis, we initiate our study by briefly reviewing the
procedure.

Step 1: Let us consider a general NLEE of the form

P(u, ut , ux, uxx, utt , uxt , uxxx, . . . ) = 0, (1)

where u = u(x, t) is the solution of the NLEE (1). In order to investigate Eq. (1) by means
of the first integral method, we use the following transformation:

u(x, t) = f (ξ ), (2)

where ξ = x – ct, is the wave variable. This enables us to use the following changes:

∂

∂t
(·) = –c

∂

∂ξ
(·), ∂

∂x
(·) =

∂

∂ξ
(·), ∂2

∂x2 (·) =
∂2

∂ξ 2 (·), . . . (3)

Use Eq. (3) to change the NLEE (1) to nonlinear ordinary differential equation

G
(

f (ξ ),
∂f (ξ )
∂ξ

,
∂2f (ξ )
∂ξ 2 , . . .

)
= 0. (4)
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Step 2: We introduce the new independent variables

X(ξ ) = f (ξ ), Y (ξ ) =
∂f (ξ )
∂ξ

. (5)

Step 3: Under the conditions set out in Step 2, Eq. (4) can be converted into a system of
nonlinear ordinary differential equations as follows:

∂X(ξ )
∂ξ

= Y (ξ ),
∂Y (ξ )

∂ξ
= F

(
X(ξ ), Y (ξ )

)
. (6)

Step 4: As indicated in the qualitative principle of ordinary differential equations [22], if
we can uncover the first integrals of Eq. (6) under the same conditions, then the general
solutions of Eq. (6) can be found immediately. Yet, in general, it is certainly problematic to
understand this even for one first integral, because, for a given plane autonomous system,
there is no methodological hypothesis that can inform us as to how to get its first integrals,
nor is there a rational way to tell us what these first integrals are. We implement the reputed
division algorithm to get one first integral of Eq. (6) which transforms Eq. (4) to a first order
integrable ordinary differential equation. The outcome of the first order integrals provides
the solution of Eq. (1). At this time, let us review the division algorithm.

Division Theorem (Feng [2]) Assume that R(w, z), S(w, z) are two polynomials in the com-
plex domain C[w, z] such that R(w, z) is irreducible in C[w, z]. If S(w, z) vanishes at all zero
points of R(w, z), then there exists a polynomial F(w, z) in C[w, z] such that

S(w, z) = R(w, z)F(w, z).

3 Formulation of the solutions
In this section, we will analyze two NLEEs, namely, the (2 + 1)-dimensional Chaffee–
Infante equation and the dimensionless form of the Zakharov equation and establish use-
ful solutions by using the first integral method described in Sect. 2.

3.1 The (2 + 1)-dimensional Chaffee–Infante equation
We first consider the (2 + 1)-dimensional Chaffee–Infante equation (Sakthivel and Chun
[23]) in the following form:

uxt +
(
–uxx + αu3 – αu

)
x + σuyy = 0, (7)

where α is the coefficient of diffusion and σ are degradation coefficient. The diffusion of a
gas in a homogeneous medium is an important phenomenon in physical context and the
Chaffee–Infante equation provides a useful model to study such phenomena. The (2 + 1)-
dimensional Chaffee–Infante equation is a notable reaction Duffing equation arising in
the physical sciences (Constantin [23, 24]).

In order to investigate Eq. (7) by using the first integral method, we use the following
transformation:

u(x, y, t) = f (ξ ), ξ = x + y – ct, (8)

where c is the wave velocity.
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Substituting (8) into (7), we reach into the ordinary differential equation

–cf ′′ +
(
–f ′′ + αf 3 – αf

)′ + σ f ′′ = 0. (9)

Integrating Eq. (9) with respect to ξ and neglecting the constant of integration, yields

–f ′′ + σ f ′ – cf ′ + αf 3 – αf = 0. (10)

We are searching for solitary wave solutions and solitary waves are localized, so that they
decay as ξ → ±∞. Therefore, we have used the boundary conditions u(ξ ) → 0, u′(ξ ) → 0,
u′′(ξ ) → 0, . . . as ξ → ±∞ and these boundary conditions yield zero constant [25].

Equation (10) can be rewritten as follows:

f ′′ = σ f ′ – cf ′ + αf 3 – αf , (11)

where a prime means differentiation with respect to ξ .
Using (5) and (6) from (11), we get

Ẋ(ξ ) = Y (ξ ), (12a)

Ẏ (ξ ) = σY (ξ ) – cY (ξ ) + α
(
X(ξ )

)3 – αX(ξ ). (12b)

Following the first integral method, we suppose that X(ξ ) and Y (ξ ) are nontrivial solutions
of (12a)–(12b) and

q(X, Y ) =
m∑

i=0

ai(X)Y i = 0,

is an irreducible polynomial in the complex domain C[X, Y ] such that

q
(
X(ξ ), Y (ξ )

)
=

m∑
i=0

ai
(
X(ξ )

)
Y i(ξ ) = 0, (13)

where ai(X) (i = 0, 1, . . . , m), are polynomials of X such that am(X) �= 0. Eq. (13) is called the
first integral of (12a)–(12b). As indicated in the division hypothesis, there exists a polyno-
mial g(X) + h(X)Y in the complex domain C[X, Y ] such that

dq
dξ

=
∂q
∂X

∂X
∂ξ

+
∂q
∂Y

∂Y
∂ξ

=
(
g(X) + h(X)Y

) m∑
i=0

ai(X)Y i. (14)

For the Chaffee–Infante equation, we have discussed two different cases, m = 1 and
m = 2 in Eq. (13), and other values of m are ignored, since the algebraic complexity arises
rapidly, however, no viable solution can be found in this proportion.

Case 1: First suppose m = 1, then by comparing the coefficients of Y i (i = 2, 1, 0) on both
sides of (14), we obtain

ȧ1(X) = h(X)a1(X), (15a)
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ȧ0(X) = –a1(X)σ + a1(X)c + g(X)a1(X) + h(X)a0(X), (15b)

a1(X)
(
α
(
X(ξ )

)3 – αX(ξ )
)

= g(X)a0(X). (15c)

Since ai(X) (i = 0, 1) are polynomials, from (15a), we presume that a1(X) is constant and
h(X) = 0. For simplicity, we assume a1(X) = 1, and hence (15a)–(15c) can be written as

a1(X) = 1, (16a)

ȧ0(X) = –σ + c + g(X), (16b)

α
(
X(ξ )

)3 – αX(ξ ) = g(X)a0(X). (16c)

Balancing the degree of g(X) and a0(X), we conclude that deg g(X) = 1 only. Suppose that
g(X) = A1X + B0, therefore we find a0(X) as follows:

Substituting g(X) = A1X + B0 in (16b) and integrating with respect to X, we attain

a0(X) = –σX + cX +
A1X2

2
+ B0X + A0, (17)

where A0 is the integral constant.
Substituting g(X) and a0(X) into (16c) and setting all the coefficients of powers of X to

zero, we thus obtain a system of algebraic equations and by solving them with the aid of
Maple, provides

A1 = ±√
2α, A0 = ∓1

2
√

2α, B0 = 0, c = σ , (18a)

A1 = ±√
2α, A0 = 0, B0 = ±√

2α, c = σ ∓ 3
2
√

2α. (18b)

Family I: By means of the values assembled in (18a), from (13) we obtain

Y (ξ ) = ∓1
2
√

2αX2 ± 1
2
√

2α. (19)

Combining (19) and (12a), we obtain the closed form solution to Eq. (11) as follows:

f (ξ ) = ± tanh

(
1
2
√

2αξ + ξ0

)
, (20)

where ξ0 is an integral constant.
When α > 0, Eq. (20) can be resolved as

f (ξ ) = ±1 – ξ0e–
√

2αξ

1 + ξ0e–
√

2αξ
, (21)

where ξ0 is a constant of integration. Therefore the closed form wave solution of (7) can
be found in the following shape:

u(x, y, t) = ±1 – ξ0e–
√

2α(x+y–σ t)

1 + ξ0e–
√

2α(x+y–σ t)
. (22)



Akbar et al. Advances in Difference Equations        (2019) 2019:446 Page 6 of 18

Since ξ0 is an unknown constant its value can be selected as desired. Now, if we select
ξ0 = 1, from (22) we obtain the following wave solution:

u(x, y, t) = ± tanh

(
1
2
√

2α(x + y – σ t)
)

. (23)

Furthermore, if we select ξ0 = –1, then from (22) we obtain the under mentioned wave
solution

u(x, y, t) = ± coth

(
1
2
√

2α(x + y – σ t)
)

. (24)

When α < 0, we set α = –β , β > 0, then Eq. (20) can be reached to

f (ξ ) = ±1 – ξ0e–i
√

2βξ

1 + ξ0e–i
√

2βξ
, (25)

where ξ0 is an unspecified constant. Thus the exact solution of (7) can be written as

u(x, y, t) = ±1 – ξ0e–i
√

2β(x+y–σ t)

1 + ξ0e–i
√

2β(x+y–σ t)
. (26)

As ξ0 is an unspecified constant, we might set ξ0 = 1 into (26), we therefore obtain the
subsequent wave solution:

u(x, y, t) = ±i tan

(
1
2
√

–2α(x + y – σ t)
)

. (27)

However, if we set ξ0 = –1 into (26), we obtain the wave solution as

u(x, y, t) = ±i cot

(
1
2
√

–2α(x + y – σ t)
)

. (28)

Family II: Now, using the values of the constants arranged in (18b), from (13) we obtain

Y (ξ ) = ∓1
2
√

2αX2 ± 1
2
√

2αX. (29)

Combining (29) with (12a), we obtain the closed form wave solution to Eq. (11) as follows:

f (ξ ) =
1
2

± 1
2

tanh

(
1
4
√

2αξ + ξ0

)
, (30)

where ξ0 is a constant of integration.
When α > 0, Eq. (30) can be resolved into

f (ξ ) =
1
2

± 1
2

1 – ξ0e– 1
2
√

2αξ

1 + ξ0e– 1
2
√

2αξ
, (31)

where ξ0 is an arbitrary constant. Therefore the exact solution to (7) can be derived as

u(x, y, t) =
1
2

± 1
2

1 – ξ0e –1
2

√
2α(x+y–(σ∓ 3

2
√

2α)t)

1 + ξ0e –1
2

√
2α(x+y–(σ∓ 3

2
√

2α)t)
. (32)
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In particular, if we opt ξ0 = 1 into (32), we obtain the solitary wave solution

u(x, y, t) =
1
2

± 1
2

tanh

(
1
4
√

2α

(
x + y –

(
σ ∓ 3

2
√

2α

)
t
))

. (33)

Alternatively, if we opt ξ0 = –1 into (32), we obtain the solitary wave solution

u(x, y, t) =
1
2

± 1
2

coth

(
1
4
√

2α

(
x + y –

(
σ ∓ 3

2
√

2α

)
t
))

. (34)

When α < 0, putting α = –λ, λ > 0, Eq. (30) can be rebuild as

f (ξ ) =
1
2

± 1
2

1 – ξ0e –i
2

√
2λξ

1 + ξ0e– –i
2

√
2λξ

, (35)

where ξ0 is an arbitrary constant. Consequently the exact solution to (7) can be ob-
tained:

u(x, y, t) =
1
2

± 1
2

1 – ξ0e –i
2

√
2λ(x+y–(σ∓ 3i

2
√

2λ)t)

1 + ξ0e –i
2

√
2λ(x+y–(σ∓ 3i

2
√

2λ)t)
. (36)

Particularly, if we choose ξ0 = 1 into (36), we obtain the solitary wave solution

u(x, y, t) =
1
2

± i
2

tan

(
1
4
√

–2α

(
x + y –

(
σ ∓ 3

2
√

2α

)
t
))

. (37)

On the other hand, if we take ξ0 = –1 into (36), we obtain the solitary wave solu-
tion

u(x, y, t) =
1
2

∓ i
2

cot

(
1
4
√

–2α

(
x + y –

(
σ ∓ 3

2
√

2α

)
t
))

. (38)

Case 2: Suppose that m = 2, then by equating the coefficients of Y i (i = 3, 2, 1, 0) on both
sides of (14), we obtain

ȧ2(X) = h(X)a2(X), (39a)

ȧ1(X) = –2a2(X)σ + 2a2(X)c + g(X)a2(X) + a1(X)h(X), (39b)

ȧ0(X) = –a1(X)σ + a1(X)c – 2a2(X)
(
α
(
X(ξ )

)3 – αX(ξ )
)

+ g(X)a1(X) + h(X)a0(X), (39c)

a1(X)
(
α
(
X(ξ )

)3 – αX(ξ )
)

= g(X)a0(X). (39d)

Since ai(X) (i = 0, 1, 2) are polynomials, from (39a), we deduce that a2(X) is a constant
and h(X) = 0. For simplicity, we have taken a2(X) = 1, and hence (39a)–(39d) can be written
as

a2(X) = 1, (40a)

ȧ1(X) = –2σ + 2c + g(X), (40b)
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ȧ0(X) = –a1(X)σ + a1(X)c – 2α
(
X(ξ )

)3 + 2αX(ξ ) + g(X)a1(X), (40c)

a1(X)
(
α
(
X(ξ )

)3 – αX(ξ )
)

= g(X)a0(X). (40d)

Balancing the degree of g(X), a1(X) and a0(X), yield the deg(g(X)) = 1. Therefore, we
assume that g(X) = A1X + B0, and thus we find a1(X) and a0(X) as follows:

a1(X) =
A1X2

2
+ B0X + A0 + 2cX – 2σX, (41)

a0(X) = –
(

1
6

A1X3 +
1
2

B0X2 + A0X + cX2 – σX2
)

σ –
1
2
αX4 + αX2 +

1
8

A2
1X4

+
1
3

(
(–2σ + B0 + 2c)A1 +

1
2

A1B0

)
X3 +

1
2
(
A0A1 + (–2σ + B0 + 2c)B0

)
X2

+ A0B0X + c
(

1
6

A1X3 +
1
2

B0X2 + A0X + cX2 – σX2
)

+ d, (42)

where A0 and d are the integral constants.
Substituting g(X), a1(X) and a0(X) into (40d) and setting each coefficient of similar

power of X to zero provides a system of algebraic equations and solving them with the
aid of Maple, we obtain

A1 = ±2
√

2α, A0 = 0, c = ∓3
2
√

2α + σ , B0 = ±2
√

2α, d = 0, (43a)

A1 = ∓2
√

2α, A0 = ±√
2α, c = σ , B0 = 0, d =

1
2
α. (43b)

Family III: Setting (43a) into (13), we obtain

Y (ξ ) = ±1
2
√

2α
(
X – X2). (44)

Combining (44) and (12a), we obtain the solution to Eq. (11) as follows:

f (ξ ) =
1
2

± 1
2

tanh

(
1
4
√

2αξ + ξ0

)
, (45)

where ξ0 is a constant of integration.
When α > 0, from Eq. (45) it can be found

f (ξ ) =
1
2

± 1
2

1 – ξ0e– 1
2
√

2αξ

1 + ξ0e– 1
2
√

2αξ
, (46)

where ξ0 is an integral constant. Accordingly the exact wave solution of (7) can be written
as

u(x, y, t) =
1
2

± 1
2

1 – ξ0e– 1
2
√

2α(x+y–(σ∓ 3
2
√

2α)t)

1 + ξ0e– 1
2
√

2α(x+y–(σ∓ 3
2
√

2α)t)
. (47)

Particularly, if we set ξ0 = 1 into (47), we obtain the subsequent solitary wave solution

u(x, y, t) =
1
2

± 1
2

tanh

(
1
4
√

2α

(
x + y –

(
σ ∓ 3

2
√

2α

)
t
))

. (48)
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However, if we set ξ0 = –1 into (47), we obtain the succeeding solitary wave solution

u(x, y, t) =
1
2

± 1
2

coth

(
1
4
√

2α

(
x + y –

(
σ ∓ 3

2
√

2α

)
t
))

. (49)

When α < 0, we substitute α = –ν , ν > 0, Eq. (45) can be transformed to

f (ξ ) =
1
2

± 1
2

1 – ξ0e –i
2

√
2νξ

1 + ξ0e –i
2

√
2νξ

, (50)

where ξ0 is an arbitrary constant. Thus, the closed form solution to (7) can be written as

u(x, y, t) =
1
2

± 1
2

1 – ξ0e –i
2

√
2ν(x+y–(σ∓ 3i

2
√

2ν)t)

1 + ξ0e –i
2

√
2ν(x+y–(σ∓ 3i

2
√

2ν)t)
. (51)

Since ξ0 is an arbitrary constant, one might instinctively pick its value. Accordingly, if we
pick ξ0 = 1, from (51) we obtain the solitary wave solution

u(x, y, t) =
1
2

± i
2

tan

(
1
4
√

–2α

(
x + y –

(
σ ∓ 3i

2
√

–2α

)
t
))

. (52)

Moreover, if we pick ξ0 = –1, then from (51) we obtain the closed form wave solution

u(x, y, t) =
1
2

∓ i
2

cot

(
1
4
√

–2α

(
x + y –

(
σ ∓ 3i

2
√

–2α

)
t
))

. (53)

Family IV : Again, using (43b) into (13), we obtain

Y (ξ ) = ±1
2
√

2α
(
X2 – 1

)
. (54)

Combining (54) with (12a), we obtain the exact solution to Eq. (11) as follows:

f (ξ ) = ± tanh

(
1
2
√

2αξ + ξ0

)
, (55)

where ξ0 is an integral constant.
When α > 0, Eq. (55) can be solved as

f (ξ ) = ±1 – ξ0e–
√

2αξ

1 + ξ0e–
√

2αξ
. (56)

Consequently, we extract the closed form wave solution to Eq. (7):

u(x, y, t) = ∓1 – ξ0e–
√

2α(x+y–σ t)

1 + ξ0e–
√

2α(x+y–σ t)
. (57)

Inasmuch as ξ0 is unspecified constant, we can sort the value of ξ0 randomly. For simplicity
and conciseness, we have selected ξ0 = 1 and thus from (57), we attain the following closed
form wave solution:

u(x, y, t) = ∓ tanh

(
1
2
√

2α(x + y – σ t)
)

. (58)
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Again, if we select ξ0 = –1, then from (57), we achieve the following wave solution:

u(x, y, t) = ∓ coth

(
1
2
√

2α(x + y – σ t)
)

. (59)

When α < 0, we use α = –μ, μ > 0, hence from (55) it can be obtained

f (ξ ) = ∓1 – ξ0e–i
√

2μξ

1 + ξ0e–i
√

2μξ
, (60)

where ξ0 is an unknown constant. Thus, the exact wave solution to (7) can be found as

u(x, y, t) = ∓1 – ξ0e–i
√

2μ(x+y–σ t)

1 + ξ0e–i
√

2μ(x+y–σ t)
. (61)

Forasmuch as ξ0 is an unknown constant, for compact form solution, we have first ac-
cepted ξ0 = 1, then from (61), we acquire the wave solution

u(x, y, t) = ∓i tan

(
1
2
√

–2α(x + y – σ t)
)

. (62)

On the other hand, if we accept ξ0 = –1, then from (61), we gain the compact form solution
wave solution

u(x, y, t) = ±i cot

(
1
2
√

–2α(x + y – σ t)
)

. (63)

It is remarkable to observe that the obtained closed form wave solutions to the (2 + 1)-
dimensional Chaffee–Infante equation are significant and practically well suited. The so-
lutions are obtained in compact form and thus might be useful to analyze the gas diffusion
in a homogeneous medium.

3.2 The dimensionless form of the Zakharov equation (ZE)
In order to interpret the interaction between low-frequency ion-acoustic waves and the
high-frequency Langmuir waves, Zakharov [26, 27] first derived the dimensionless form
of the ZE. In this subsection, we will consider the dimensionless form of the ZE [26–28]
in the following form:

iqt + qxx + bF
(|q|2)q = qr, (64)

rtt – rxx =
(|q|2γ

)
xx. (65)

Here the potential function r(x, t) is the plasma density determined from its equilibrium
state and the complex potential q(x, t) is envelope of the high-frequency electric field [26].
The ZE can be deduced from the hydrodynamic explanation of the plasma and a simplified
model of strong Langmuir turbulence [29]. Therefore, the ZE was summed up by consid-
ering more components. The generalized Zakharov equation (GZE) is a set of coupled
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equations and might be written as [26]:

iqt + qxx = rq + b1|q|2γ q + b2|q|4γ q, (66)

rtt – rxx =
(|q|2γ

)
xx, (67)

where b1, b2,γ > 0 are real parameters and the above process can be transformed to the
original Zakharov equations of plasma physics by setting b1 = 0, b2 = 0 and γ = 1. Since
it is very difficult to examine the closed form wave solutions to the GZE due to strong
nonlinearity and if we set b1 = –b, b2 = 0, F(|q|2) = |q|2γ and γ = 1, the GZE is converted
into the dimensionless form of the Zakharov equation, in this article, we have studied the
dimensionless form of the ZE (64) and (65).

In (64), F is a real-valued algebraic nonlinear function and it is necessary to have the
smoothness of the complex function F(|q|2)q : C �→ C. Considering the complex plane C
as a two-dimensional linear space R2, the function F(|q|2)q is k times continuously differ-
entiable, so that (Kohl [30])

F
(|q|2)q ∈

∞⋃
m,n=1

Ck((–n, n) × (–m, m); R2). (68)

Therefore, Eqs. (64) and (65) can be rewritten in the following form:

iqt + qxx + b(|q|2)q = qr,
rtt – rxx = (|q|2)xx.

}
(69)

Here, F(|q|2) = |q|2 and γ = 1.
In order to investigate Eq. (69) by using the first integral method, we use the following

transformation:

q(x, t) = f (ξ )eiφ , ξ = x – ct,φ = –kx + ωt + θ and r(x, t) = h(ξ ), (70)

where f (ξ ) represents the shape of the pulse and c is the velocity of the soliton, k is the
wave number, while ω is the frequency and θ is the phase constant.

Substituting (70) into (69), we obtain the subsequent ordinary differential equations:

(–icf ′ – ωf + f ′′ – 2ikf ′ – k2f + bf 3 – fh)eiφ = 0,
c2h′′ – h′′ – (f 2)′′ = 0.

}
(71)

Equation (71) can be rewritten as follows:

–i(2k + c)f ′ + f ′′ – (ω + k2)f + bf 3 – fh = 0, eiφ �= 0,
c2h′′ – h′′ – (f 2)′′ = 0.

}
(72)

In actuality, we might set 2k + c = 0 in the first equation of (72) and integrating the second
equation of (72) twice with respect to ξ , considering the constant of integration being zero,
yields

f ′′ – (ω + k2)f + bf 3 – fh = 0,
c2h – h – f 2 = 0.

}
(73)
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From the second equation of (73), we obtain the affinity

h =
f 2

c2 – 1
. (74)

Now, using the first equation of (73) and the affinity (74), we obtain to the following ordi-
nary differential equation:

f ′′ –
(
ω + k2)f +

(
b –

1
c2 – 1

)
f 3 = 0. (75)

Using (5) and (6), we get

Ẋ(ξ ) = Y (ξ ), (76a)

Ẏ (ξ ) =
((

ω + k2)X(ξ ) –
(

b –
1

c2 – 1

)(
X(ξ )

)3
)

. (76b)

According to the first integral method, we suppose that X(ξ ) and Y (ξ ) are nontrivial so-
lutions of (76a)–(76b), and

q(X, Y ) =
m∑

i=0

ai(X)Y i = 0,

is an irreducible polynomial in the complex domain C[X, Y ] such that

q
(
X(ξ ), Y (ξ )

)
=

m∑
i=0

ai
(
X(ξ )

)
Y i(ξ ) = 0, (77)

where ai(X) (i = 0, 1, . . . , m), are polynomials of X and am(X) �= 0. Eq. (77) is called the first
integral of (76a)–(76b). As a result of the division hypothesis, there exists a polynomial
g(X) + h(X)Y , in the complex domain C[x, Y ] such that

dq
dξ

=
∂q
∂X

∂X
∂ξ

+
∂q
∂Y

∂Y
∂ξ

=
(
g(X) + h(X)Y

) m∑
i=0

ai(X)Y i. (78)

Suppose that m = 1 and by comparing with the coefficients of Y i (i = 2, 1, 0) on both sides
of (78), we obtain

ȧ1(X) = h(X)a1(X), (79a)

ȧ0(X) = g(X)a1(X) + h(X)a0(X), (79b)

a1(X)
{(

ω + k2)X(ξ ) –
(

b –
1

c2 – 1

)(
X(ξ )

)3
}

= g(X)a0(X). (79c)

Since ai(X) (i = 0, 1) are polynomials, thus from (79a), we deduce that a1(X) is constant
and h(X) = 0. For simplicity, we assume a1(X) = 1, and hence (79a)–(79c) can be written
as

a1(X) = 1, (80a)
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ȧ0(X) = g(X), (80b)

(
ω + k2)X(ξ ) –

(
b –

1
c2 – 1

)(
X(ξ )

)3 = g(X)a0(X). (80c)

Balancing the degree of g(X) and a0(X), we conclude that deg g(X) = 1 only. Suppose that
g(X) = A1X + B0, therefore we find a0(X) as follows:

a0(X) =
A1X2

2
+ B0X + A0, (81)

where A0 is the integral constant.
Substituting g(X) and a0(X) into (80c) and setting all the coefficients of powers of X to

zero, we obtain a system of nonlinear algebraic equations and by solving it with the aid of
Maple, we obtain

c = ±
√

A2
1 + 2b + 2
2b + A2

1
, A0 =

ω + k2

A1
, B0 = 0. (82)

Now, using (82) into (77), we obtain

Y = –
1
2

A1X2 –
ω + k2

A1
. (83)

Combining (83) and (76a), we obtain the exact solution to Eq. (75) as follows:

f (ξ ) =
–1
A1

√
2
(
ω + k2

)
tan

(
1
2

√
2
(
ω + k2

)
ξ + ξ0

)
, (84)

where ξ0 is an integral constant.
When ω + k2 > 0, Eq. (84) can be written as

f (ξ ) =
–1
A1

√
2
(
ω + k2

)
tan

(
1
2

√
2
(
ω + k2

)
ξ

)
. (85)

Thus, the exact solution of (69) reduces to

q(x, t) =
–1
A1

√
2
(
ω + k2

)
tan

(
1
2

√
2
(
ω + k2

)(
x ∓

√
A2

1 + 2b + 2
2b + A2

1
t
))

ei(–kx+ωt+θ ) (86)

and

r(x, t) =
(ω + k2)(2b + A2

1)
A2

1
tan2

(
1
2

√
2
(
ω + k2

)(
x ∓

√
A2

1 + 2b + 2
2b + A2

1
t
))

. (87)

When ω + k2 < 0, then from Eq. (84), we obtain

f (ξ ) =
1

A1

√
–2

(
ω + k2

)( 1 – ξ0e–
√

–2(ω+k2)ξ

1 + ξ0e–e–
√

–2(ω+k2)ξ

)
, (88)

where ξ0 is an arbitrary constant.
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Particularly, if we set ξ0 = 1 into (88), we obtain the solitary wave solution

f (ξ ) =
1

A1

√
–2

(
ω + k2

)
tanh

(
1
2

√
–2

(
ω + k2

)
ξ

)
. (89)

Thus, the exact solution to (69) transformed to:

q(x, t) =
1

A1

√
–2

(
ω + k2

)
tanh

(
1
2

√
–2

(
ω + k2

)(
x ∓

√
A2

1 + 2b + 2
2b + A2

1
t
))

ei(–kx+ωt+θ ) (90)

and

r(x, t) = –
(ω + k2)(2b + A2

1)
A2

1
tanh2

(
1
2

√
–2

(
ω + k2

)(
x ∓

√
A2

1 + 2b + 2
2b + A2

1
t
))

. (91)

On the other hand, if we set ξ0 = –1 into (88), we obtain the solitary wave solution

f (ξ ) =
1

A1

√
–2

(
ω + k2

)
coth

(
1
2

√
–2

(
ω + k2

)
ξ

)
. (92)

Thus, the exact solution to (69) can be written as

q(x, t) =
1

A1

√
–2

(
ω + k2

)
coth

(
1
2

√
–2

(
ω + k2

)(
x ∓

√
A2

1 + 2b + 2
2b + A2

1
t
))

ei(–kx+ωt+θ ) (93)

and

r(x, t) =
–(ω + k2)(2b + A2

1)
A2

1a
coth2

(
1
2

√
–2

(
ω + k2

)(
x ∓

√
A2

1 + 2b + 2
2b + A2

1
t
))

. (94)

The obtained solutions are convenient to search the nature the wave profile of the ion-
acoustic waves in plasma, the waves of electromagnetic field, the sound waves, the signal
processing waves through optical fibers, material science etc.

4 Graphical representations
In this section, we have recapitulated the graphical representations and physical signifi-
cance of the obtained solutions for the definite values of the included parameters through
depicting 3D figures by means of symbolic computational software like Mathematica
which are given now.

4.1 The (2 + 1)-dimensional Chaffee–Infante equation
In this subsection, we have depicted the shape of figures of the obtained solutions to the
(2 + 1)-dimensional Chaffee–Infante equation which is given below.

The figures of the obtained solutions (23), (33), (48) and (58) are kink shape soliton. For
conciseness, we have plotted only the figure of the obtained solution (33) for the definite
values of the parameters α = 3, σ = 2.75, t = 1.40 (Fig. 1).

The figures of the attained solutions (24), (34), (49) and (59) are singular kink shape
solitons. For brevity, we have plotted only the figure of the attained solution (24) for the
definite values of the parameters α = 1.35, σ = –0.1, t = 0.75 (Fig. 2).
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Figure 1 3D plot of kink shape soliton of solution (33) within
the interval –10≤ x, y ≤ 10

Figure 2 3D plot of singular kink shape soliton of solution
(24) within the interval –10≤ x, y ≤ 10

Figure 3 3D modulus plot of solution (27) which is anti-bell
shape soliton within the interval –10≤ x, y ≤ 10

Figure 4 3D modulus plot of solution (37) which is bell
shape soliton within the interval –10≤ x, y ≤ 10

The figure of the acquired solutions (27) and (58) are anti-bell shape soliton. For mini-
malism, we have sketched merely the figure of the acquired solution (27) for the definite
values α = –0.08, σ = 1, t = 0.30 of the parameters and given in Fig. 3.

The figure of the obtained solutions (37) and (52) are bell shape soliton. For compact-
ness, we have depicted only the figure of the obtained solution (37) for the definite values
α = –3, σ = 2.50, t = 0 of the parameters and given in Fig. 4.

The figure of the achieved solutions (28) and (63) are of a singular bell shape soliton. For
simplicity, we have outlined only the figure of the achieved solution (28) for the definite
values α = –2.15, σ = 1.50, t = 0.1 of the parameters (Fig. 5).
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Figure 5 3D modulus plot of solution (28) which is singular
bell shape soliton within the interval –10≤ x, y ≤ 10

Figure 6 3D plot of singular periodic wave of solution (86)
within the interval –5 ≤ x, t ≤ 5

Figure 7 3D plot of kink wave of solution (90) within the
interval –20 ≤ x ≤ 20, –40 ≤ t ≤ 40

4.2 The dimensionless form of the Zakharov equation (ZE)
In this subsection, we have depicted the shape of figures of the obtained solutions to the
dimensionless form of the ZE:

The shape of the solutions (86) and (87) are singular periodic soliton. We have portrayed
the figure of the solution (86) only for the definite values b = 0.45, k = 0.65, θ = –0.45,
ω = 0.10, A1 = –1.20 of the parameters (Fig. 6).

The shape of the solution (90) is kink-type soliton. In Fig. 7 it has been interpreted for
the definite values of the parameters b = 0.46, k = 1, θ = 2, ω = –2, A1 = –2.

The shape of the solutions (91) and (94) is a singular bell shape soliton. We have por-
trayed the solution (91) only to shorten the article for the definite values b = 1, k = 1,
ω = –2, A1 = 1 of the parameters (Fig. 8).

The solution (93) has been traced for the definite values b = 0.60, k = 1, θ = 2, ω = –2,
A1 = 1 of the parameters (Fig. 9).

From the graphical representations clssified above of the attained closed form wave solu-
tions for their definite values of the parameters of the (2 + 1)-dimensional Chaffee–Infante
equation and the dimensionless form of the Zakharov equation by using the first integral
method, we assert that the solutions might be useful to analyze the physical phenomena.
It is noteworthy to observe that we have found different well-known shapes of wave solu-
tions, like, kink-type wave solutions, singular kink-type wave solutions, bell shaped wave
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Figure 8 3D plot of solution (91) which is singular bell shape
soliton within the interval –10 ≤ x, t ≤ 10

Figure 9 3D plot of singular kink wave of solution (93)
within the interval –8 ≤ x ≤ 8, –10 ≤ t ≤ 10

solutions, singular bell shaped wave solutions, anti-bell shaped wave solutions, and sin-
gular periodic-type wave solutions for suitable intervals.

5 Conclusion
In this article, we have successfully extracted new, useful and further general exact soli-
ton solutions to the (2 + 1)-dimensional Chaffee–Infante equation and the dimensionless
form of the ZE through the first integral method. The soliton solutions attained in this
study might be useful to analyze the signal through optical fibers, the waves of electromag-
netic field and plasma physics. It is remarkable to discern that the solutions are formulated
subject to the hyperbolic, trigonometric and exponential functions. The results show that
the first integral method is powerful, accurate and effective. Most of the extracted closed
form solitary wave solutions may be useful for describing certain nonlinear physical phe-
nomena. Computational software, namely Maple, has been used for computations and
programming in this paper. The obtained solutions were verified to check the correctness
by putting them back into the original equation and they were found to be correct.
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