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Abstract
In this paper, we study the modelling and nonlinear boundary stabilization problem
of the modified generalized Korteweg–de Vries–Burgers equation (MGKdVB) when
the spatial domain is [0, 1]. First, the MGKdVB equation is derived using the long-wave
approximation and perturbation method. Then, two nonlinear boundary controllers
are proposed for this equation and the L2-global exponential stability of the solution
is shown. Numerical simulations are given to illustrate the efficiency of the developed
control schemes.
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1 Introduction
The following modified generalized Korteweg–de Vries–Burgers (MGKdVB) equation is
considered:

∂u
∂t

+ γ1uα ∂u
∂x

– v
∂2u
∂x2 + μ

∂3u
∂x3 + γ2

∂4u
∂x4 = 0, x ∈ (0, 1), t > 0, (1)

subject to the following boundary conditions:

u(0, t) = 0, t > 0, (2)

∂2u
∂x2 (0, t) = 0, t > 0, (3)

∂u
∂x

(1, t) = w1(t), t > 0, (4)

∂2u
∂x2 (1, t) = w2(t), t > 0, (5)

and the following initial condition:

u(x, 0) = u0(x), x ∈ (0, 1), (6)

where w1(t) and w2(t) are nonlinear boundary controls.
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In Eq. (1), α is a positive integer and all the parameters γ1, v,μ and γ2 are nonzero known
positive real constants. The MGKdVB equation is a nonlinear partial differential equation
that is of first order in time and of fourth order in space. It exhibits the standard elements of
any nonlinear process that involves wave evolution. The terms ∂2u

∂x2 and ∂4u
∂x4 in Eq. (1) show

the features of dissipation and the terms ∂3u
∂x3 and uα ∂u

∂x show the features of dispersion and
nonlinearity, respectively.

The MGKdVB equation is of significant importance when it comes to describing the
physical processes in motion of turbulence and other chaotic process systems. Different
physical systems can be modeled using this equation depending on the values of γ1, v, μ

and γ2. In fact, if α = 1,γ2 = γ1 = 1,μ = 0 and v is negative in Eq. (1), then the MGKdVB
equation reduces to the Kuramoto–Sivashinsky (KS) equation. Note that Kuramoto [1]
derived the KS equation independently to model reaction-diffusion systems, and it was
also derived by Sivashinsky [2] to model flame front propagation in turbulent flows. The
KS equation is considered as a fourth order nonlinear equation and has been the subject
of many research studies [3–13].

When α = γ1 = 1 and v is negative, the MGKdVB equation becomes the Generalized
Kuramoto–Sivashinsky (GKS) equation [14–18]. If v = γ2 = 0, and α = γ1 = 1 in Eq. (1), the
MGKdVB equation becomes the Korteweg–de Vries (KdV) equation which was derived
by Korteweg and de Vries to model the translation of water waves observed by Russell [19].
The KdV equation was used to describe several phenomena such as waves in a rotating
atmosphere or ion-acoustic waves in plasma [20].

Also, the Burgers equation can be obtained from Eq. (1) by setting α = γ1 = 1 and μ =
γ2 = 0. This equation was first derived by Burgers [21] as a prototype model for turbulent
liquid flow. Many scientists have intensively studied this equation [22–24]. Furthermore,
when α = γ1 = 1 and γ2 = 0, the MGKdVB equation reduces to the Korteweg–de Vries–
Burgers (KdVB) equation [25–30].

When γ1 = 1 and γ2 = 0 in Eq. (1), the MGKdVB equation gives the generalized
Korteweg–de Vries–Burgers (GKdVB) equation; the non-adaptive and adaptive control
problems of this equation were studied by Smaoui and Jamal [30] and Smaoui et al. [31–
33].

Since the nonlinear stabilization problem of the MGKdVB equation has not been inves-
tigated elsewhere, we study this equation analytically as well as numerically and show the
L2-global exponential stability of its solutions.

The existence and uniqueness of solutions of the MGKdVB equation have been inves-
tigated by Smaoui et al. [34]. The work in this paper is build upon assuming the exis-
tence of a unique solution u(x, t) of this equation in the following space: L∞(0, T ; H1

0 (0, 1)∩
H4(0, 1)) ∩ C(0, T ; H1

0 (0, 1) ∩ H2(0, 1)).
This paper is arranged as follows. In Sect. 2, the MGKdVB equation is derived based

on the long-wave approximation and perturbation method when α = 3. In Sects. 3 and
4, two nonlinear boundary controllers are proposed for the MGKdVB equation when the
parameters v,μ,γ1 and γ2 are known and positive real constants, and when α is a posi-
tive integer. A qualitative and numerical study shows the global exponential stability of
the solutions in L2(0, 1). Section 5 presents a numerical simulation of the uncontrolled
MGKdVB equation. In Sect. 6, the rates of convergence for the solutions of the two de-
signed controllers are compared with the solution obtained without control. Finally, some
concluding remarks are presented in Sect. 7.
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2 The derivation of the modified generalized Korteweg–de Vries–Burgers
equation

In this section, we use the long-wave approximation and the perturbation method [35,
36] to derive the MGKdVB equation when α = 3. It should be noted that the asymptotic
constructions presented here are formal and only have the goal to derive the MGKdVB
equation (1).

In the same spirit of the work of Demiray [35], we assume that blood behaves like an
incompressible Newtonian fluid [37], then the conservation of mass and linear momentum
equations governing the motion of prestressed thick elastic tube filled with a viscous fluid
can be derived in cylindrical polar coordinates as follows:

∂Ur

∂r
+

Ur

r
+

∂Uz

∂z
= 0, (7)

∂Ur

∂t
+ Ur

∂Ur

∂r
+ Uz

∂Ur

∂z
+

1
ρ

∂P
∂r

– ν

(
∂2Ur

∂r2 +
1
r

∂Ur

∂r
–

Ur

r2 +
∂2Ur

∂z2

)
= 0, (8)

∂Uz

∂t
+ Ur

∂Uz

∂r
+ Uz

∂Uz

∂z
+

1
ρ

∂P
∂z

– ν

(
∂2Uz

∂r2 +
1
r

∂Uz

∂r
+

∂2Uz

∂z2

)
= 0, (9)

where Ur is the radial fluid velocity component, and Uz is the axial fluid velocity compo-
nent. ρ is the mass density, P is the fluid pressure function, and ν is the kinematic viscosity
of the fluid.

In 2003, Demiray [35] applied an averaging procedure to Eqs. (7)–(9), where he derived
the following dimensionless equations to show the propagation of small but finite am-
plitude wave in a prestressed thick viscoelastic tube that was filled with a viscous fluid
(blood):

2
∂u
∂t

+ (1 + u)
∂w
∂x

+ 2w
∂u
∂x

= 0, (10)

∂w
∂t

+ w
∂w
∂x

+
∂p
∂x

– v
(

–
8w

(1 + u)2 +
∂2w
∂x2

)
= 0, (11)

where the dimensionless pressure equation can be represented by

p = β1u + β2
∂2u
∂x2 + β3

∂2u
∂t2 + β4

∂u
∂t

+ β5
∂3u

∂x2∂t
+ β6u2 + β7u3 + · · · , (12)

and where u, w and v characterize the dimensionless dynamical radial displacement, the
averaged axial fluid velocity divided by the Moens–Korteweg speed and the kinematic
viscosity, respectively. The coefficients β1,β2,β6 and β7 are the elastic effects, β4 and β5

are the viscous effects, and β3 shows the inertial effect.
Next introduce the following coordinate’s transformation:

ξ = εδ(x – gt) (13)

and

τ = εδ+γ gt, (14)
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where the parameter ε measures the size of the nonlinearity, dispersion and dissipation;
δ and γ are positive constants, and the parameter g scales the speed of a linearized wave.
By applying the above transformation to Eqs. (10)–(12) one will get the following:

2g
(

–
∂u
∂ξ

+ εγ ∂u
∂τ

)
+ (1 + u)

∂w
∂ξ

+ 2w
∂u
∂ξ

= 0, (15)

g
(

–
∂w
∂ξ

+ εγ ∂w
∂τ

)
+ w

∂w
∂ξ

+
∂p
∂ξ

– vε–δ

(
–

8w
(1 + u)2 + ε2δ ∂2w

∂ξ 2

)
= 0, (16)

and

p = β1u + ε2δβ2
∂2u
∂ξ 2 + ε2δg2β3

(
∂2u
∂ξ 2 – 2εγ ∂2u

∂ξ∂τ
+ ε2δ ∂2u

∂τ 2

)

+ ε(δ+β)gβ4

(
–

∂u
∂ξ

+ εδ ∂u
∂τ

)
+ ε(3δ+β)gβ5

(
–

∂3u
∂ξ 3 + εδ ∂3u

∂ξ 2∂τ

)
+ β6u2 + β7u3. (17)

It should be noted that, since the derivation when γ = 3 was not treated in [35], we will
only consider here this case, and we refer the reader to Demiray [35] for the cases γ = 1
and γ = 2.

Assuming that the viscoelastic coefficients are of order εβ , and by using the power series
representation of the variables u, w and p in ε as:

u =
∞∑

n=1

εnun(ξ , τ ), w =
∞∑

n=1

εnwn(ξ , τ ), p =
∞∑

n=1

εnpn(ξ , τ ), (18)

into Eq. (15) and taking γ = 3, we obtain the following asymptotic expansion in ε:

–2g
(

ε
∂u1

∂ξ
+ ε2 ∂u2

∂ξ
+ ε3 ∂u3

∂ξ
+ ε4 ∂u4

∂ξ
+ · · ·

)

+ 2gε3
(

ε
∂u1

∂τ
. . .

)
+

(
ε
∂w1

∂ξ
+ ε2 ∂w2

∂ξ
+ ε3 ∂w3

∂ξ
+ ε4 ∂w4

∂ξ
+ · · ·

)

+
(
εu1 + ε2u2 + ε3u3 + ε4u4 + · · · )

(
ε
∂w1

∂ξ
+ ε2 ∂w2

∂ξ
+ ε3 ∂w3

∂ξ
+ ε4 ∂w4

∂ξ
+ · · ·

)

+ 2
(
εw1 + ε2w2 + ε3w3 + ε4w4 + · · · )

(
ε
∂u1

∂ξ
+ ε2 ∂u2

∂ξ
+ ε3 ∂u3

∂ξ
+ ε4 ∂u4

∂ξ
+ · · ·

)
= 0,

or

ε

(
–2g

∂u1

∂ξ
+

∂w1

∂ξ

)
+ ε2

(
–2g

∂u2

∂ξ
+

∂w2

∂ξ
+ u1

∂w1

∂ξ
+ 2w1

∂u1

∂ξ

)

+ ε3
(

–2g
∂u3

∂ξ
+

∂w3

∂ξ
+ u1

∂w2

∂ξ
+ u2

∂w1

∂ξ
+ 2w1

∂u2

∂ξ
+ 2w2

∂u1

∂ξ

)

+ ε4
(

–2g
∂u4

∂ξ
+ 2g

∂u1

∂τ
+

∂w4

∂ξ
+ u1

∂w3

∂ξ
+ u2

∂w2

∂ξ
+ u3

∂w1

∂ξ

+ 2w1
∂u3

∂ξ
+ 2w2

∂u2

∂ξ
+ 2w3

∂u1

∂ξ

)
= 0. (19)
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Similarly, Eq. (16) can be written as

–g
(

ε
∂w1

∂ξ
+ ε2 ∂w2

∂ξ
+ ε3 ∂w3

∂ξ
+ ε4 ∂w4

∂ξ
+ · · ·

)
+ gε3

(
ε
∂w1

∂τ
+ · · ·

)

+
(
εw1 + ε2w2 + ε3w3 + · · · )

(
ε
∂w1

∂ξ
+ ε2 ∂w2

∂ξ
+ ε3 ∂w3

∂ξ
+ · · ·

)

+
(

ε
∂p1

∂ξ
+ ε2 ∂p2

∂ξ
+ ε3 ∂p3

∂ξ
+ ε4 ∂p4

∂ξ
+ · · ·

)

– vε–δ

[
–8

∑∞
n=1 εnwn

(1 +
∑∞

n=1 εnun)2 + ε2δ

(
ε
∂2w1

∂ξ 2 + · · ·
)]

= 0,

or

ε

(
–g

∂w1

∂ξ
+

∂p1

∂ξ

)
+ ε2

(
–g

∂w2

∂ξ
+ w1

∂w1

∂ξ
+

∂p2

∂ξ

)

+ ε3
(

–g
∂w3

∂ξ
+ w1

∂w2

∂ξ
+ w2

∂w1

∂ξ
+

∂p3

∂ξ

)

+ ε4
(

–g
∂w4

∂ξ
+ g

∂w1

∂τ
+ w1

∂w3

∂ξ
+ w2

∂w2

∂ξ
+ w3

∂w1

∂ξ
+

∂p4

∂ξ
+ 8vε–(δ+3)w1

)
= 0. (20)

Also, Eq. (17) can be expanded to yield

εp1 + ε2p2 + ε3p3 + ε4p4 + · · ·

=
(
εβ1u1 + ε2β1u2 + ε3β1u3 + ε4β1u4 + · · · ) + ε2δβ2

(
ε
∂2u1

∂ξ 2 + ε2 ∂2u2

∂ξ 2 + · · ·
)

+ β3ε
2δg2

(
ε
∂2u1

∂ξ 2 + ε2 ∂2u2

∂ξ 2 + · · ·
)

– 2β3ε
2δ+3g2

(
ε

∂2u1

∂ξ∂τ
+ · · ·

)

+ β3ε
2δg2ε6

(
ε
∂2u1

∂τ 2 + · · ·
)

– β4ε
δ+βg

(
ε
∂u1

∂ξ
+ · · ·

)

+ β4ε
δ+βgε3

(
ε
∂u1

∂τ
+ · · ·

)
– β5ε

3δ+βg
(

ε
∂3u1

∂ξ 3 + ε2 ∂3u2

∂ξ 3 + · · ·
)

+ β5ε
3δ+βgε3

(
ε

∂3u1

∂ξ 2∂τ
+ · · ·

)
+ β6

(
εu1 + ε2u2 + ε3u3

)(
εu1 + ε2u2 + ε3u3

)

+ β7
(
εu1 + ε2u2 + ε3u3

)(
εu1 + ε2u2 + ε3u3

)(
εu1 + ε2u2 + ε3u3

)
,

that is,

εp1 + ε2p2 + ε3p3 + ε4p4

= ε(β1u1) + ε2(β1u2 + β6u2
1
)

+ ε3(β1u3 + 2β6u1u2 + β7u3
1
)

+ ε4
(

β1u4 + ε(2δ–3)β2
∂2u1

∂ξ 2 + β3ε
(2δ–3)g2 ∂2u1

∂ξ 2 – β4ε
δ+β–3g

∂u1

∂ξ

– β5ε
3δ+β–3g

∂3u1

∂ξ 3 + 2β6u1u3 + β6u2
2 + 3β7u2

1u2

)
. (21)
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By setting the like powers in Eqs. (19)–(21) to zero, we will get the following set of differ-
ential equations.

The O(ε) equations:

–2g
∂u1

∂ξ
+

∂w1

∂ξ
= 0,

–g
∂w1

∂ξ
+

∂p1

∂ξ
= 0, (22)

p1 = β1u1.

The O(ε2) equations:

–2g
∂u2

∂ξ
+

∂w2

∂ξ
+ u1

∂w1

∂ξ
+ 2w1

∂u1

∂ξ
= 0,

–g
∂w2

∂ξ
+ w1

∂w1

∂ξ
+

∂p2

∂ξ
= 0, (23)

p2 = β1u2 + β6u2
1.

The O(ε3) equations:

–2g
∂u3

∂ξ
+

∂w3

∂ξ
+ u1

∂w2

∂ξ
+ u2

∂w1

∂ξ
+ 2w1

∂u2

∂ξ
+ 2w2

∂u1

∂ξ
= 0,

–g
∂w3

∂ξ
+ w1

∂w2

∂ξ
+ w2

∂w1

∂ξ
+

∂p3

∂ξ
= 0, (24)

p3 = β1u3 + 2β6u1u2 + β7u3
1.

The O(ε4) equations:

–2g
∂u4

∂ξ
+ 2g

∂u1

∂τ
+

∂w4

∂ξ
+ u1

∂w3

∂ξ
+ u2

∂w2

∂ξ
+ u3

∂w1

∂ξ

+ 2w1
∂u3

∂ξ
+ 2w2

∂u2

∂ξ
+ 2w3

∂u1

∂ξ
= 0,

–g
∂w4

∂ξ
+ g

∂w1

∂τ
+ w1

∂w3

∂ξ
+ w2

∂w2

∂ξ
+ w3

∂w1

∂ξ
+

∂p4

∂ξ
+ 8vε–(δ+3)w1 = 0,

p4 = β1u4 + ε2δ–3(β2 + g2β3
)∂2u1

∂ξ 2 – β4ε
δ+β–3g

∂u1

∂ξ
– β5ε

3δ+β–3g
∂3u1

∂ξ 3

+ 2β6u1u3 + β6u2
2 + 3β7u2

1u2.

(25)

For the solution of set (22), we set

u1 = U(ξ , t), w1 = 2gU(ξ , t), g2 =
β1

2
and p1 = 2g2U(ξ , t), (26)

where U(ξ , τ ) is unknown.
Inserting Eqs. (26) into (23), and noting that 5β1 + 2β6 = 0, we get

w2 = 2gu2 – 3gU2, p2 = 2g2u2 – 5g2U2. (27)
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Introducing (26)–(27) into the first equation in (24), we get

–2g
∂u3

∂ξ
+

∂w3

∂ξ
+ U(ξ , t)

∂

∂ξ

(
2gu2 – 3gU2)

+ u2
∂

∂ξ
(2gU) + 2(2gU)

∂u2

∂ξ
+ 2

(
2gu2 – 3gU2)∂U

∂ξ
= 0.

The previous equation leads to

–2g
∂u3

∂ξ
+

∂w3

∂ξ
+ U(ξ , t)2g

∂u2

∂ξ
– 3gU

∂(U2)
∂ξ

+ 2u2g
∂U
∂ξ

+ 4gU
∂u2

∂ξ
+

(
4gu2 – 6gU2)∂U

∂ξ
= 0.

Hence,

∂w3

∂ξ
= 2g

∂u3

∂ξ
– 6gU(ξ , t)

∂u2

∂ξ
+ 6gU2 ∂U

∂ξ
– 6gu2

∂U
∂ξ

+ 3gU
∂(U2)
∂ξ

.

This implies that

∂w3

∂ξ
= 2g

∂u3

∂ξ
– 6g

∂(u2U)
∂ξ

+ 12gU2 ∂U
∂ξ

.

Therefore,

w3 = 2gu3 – 6gu2U + 4gU3

and

p3 = β1u3 + 2β6Uu2 + β7U3. (28)

Introducing the results in (26)–(28) into the first equation in (25) gives the following:

–2g
∂u4

∂ξ
+ 2g

∂U
∂τ

+
∂w4

∂ξ
+ U

∂

∂ξ

(
2gu3 – 6gu2U + 4gU3)

+ u2
∂

∂ξ

(
2gu2 – 3gU2) + u3

∂

∂ξ
(2gU)

+ 2(2gU)
∂u3

∂ξ
+ 2

(
2gu2 – 3gU2)∂u2

∂ξ
+ 2

(
2gu3 – 6gu2U + 4gU3)∂U

∂ξ
= 0,

that is,

–2g
∂u4

∂ξ
+ 2g

∂U
∂τ

+
∂w4

∂ξ
+ 2gU

∂u3

∂ξ
– 6gU

∂

∂ξ
(u2U)

+ 4gU
∂U3

∂ξ
+ 2gu2

∂u2

∂ξ
– 3gu2

∂U2

∂ξ
+ 2u3g

∂U
∂ξ

+ 4gU
∂u3

∂ξ
+ 4gu3

∂U
∂ξ

– 12gu2U
∂U
∂ξ

+ 8gU3 ∂U
∂ξ

+ 4gu2
∂u2

∂ξ
– 6gU2 ∂u2

∂ξ
= 0.
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This simplifies to

–2g
∂u4

∂ξ
+ 2g

∂U
∂τ

+
∂w4

∂ξ
+ 6gU

∂u3

∂ξ
– 6gU

∂

∂ξ
(u2U) + 6gu2

∂u2

∂ξ

– 18gu2U
∂U
∂ξ

+ 6gu3
∂U
∂ξ

+ 20gU3 ∂U
∂ξ

– 6gU2 ∂u2

∂ξ
= 0,

that is,

–2g
∂u4

∂ξ
+ 2g

∂U
∂τ

+
∂w4

∂ξ
+ 6g

∂(u3U)
∂ξ

– 6gU
∂

∂ξ
(u2U) + 6gu2

∂u2

∂ξ
– 18gu2U

∂U
∂ξ

+ 20gU3 ∂U
∂ξ

– 6gU2 ∂u2

∂ξ
= 0. (29)

Doing the same for the second equation in the set (25) yields

–g
∂w4

∂ξ
+ g

∂

∂τ
(2gU) + (2gU)

∂

∂ξ

(
2gu3 – 6gu2U + 4gU3)

+
(
2gu2 – 3gU2) ∂

∂ξ

(
2gu2 – 3gU2)

+
(
2gu3 – 6gu2U + 4gU3) ∂

∂ξ
(2gU) +

∂p4

∂ξ
+ 8vε–(δ+3)(2gU) = 0,

that is,

–g
∂w4

∂ξ
+ g

∂

∂τ
(2gU) + 4g2u2

∂u2

∂ξ
– 6g2u2

∂U2

∂ξ
– 6g2U2 ∂u2

∂ξ

+ 9g2U2 ∂U2

∂ξ
+ 4g2u3

∂U
∂ξ

– 12g2u2U
∂U
∂ξ

+ 8g2U3 ∂U
∂ξ

+ 4g2U
∂u3

∂ξ
– 12g2U

∂(u2U)
∂ξ

+ 8g2U
∂U3

∂ξ
+

∂p4

∂ξ
+ 16gvε–(δ+3)U = 0. (30)

Similarly, the third equation in (25) can be written as

p4 = β1u4 + ε2δ–3(β2 + g2β3
)∂2U
∂ξ 2 – β4ε

δ+β–3g
∂U
∂ξ

– β5ε
3δ+β–3g

∂3U
∂ξ 3

+ 2β6Uu3 + β6u2
2 + 3β7U2u2. (31)

Multiplying (29) by g and then adding it to (30) to eliminate u4, w4 and p4 from Eq. (29)–
(31) gives the following equation:

4g2 ∂U
∂τ

+
(
10g2 + 2β6

) ∂

∂ξ
(u3U) +

(
10g2 + 2β6

)
u2

∂u2

∂ξ
– β4ε

δ+β–3g
∂2U
∂ξ 2

– β5ε
3δ+β–3g

∂4U
∂ξ 4 + ε2δ–3(β2 + g2β3

)∂3U
∂ξ 3 + 70g2U3 ∂U

∂ξ
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+ 16gvε–(δ+3)U +
(
–30g2 + 3β7

)
U2 ∂u2

∂ξ
+

(
–60g2 + 6β7

)
Uu2

∂U
∂ξ

= 0. (32)

Dividing Eq. (32) by 4g2 and noting that 10g2 + 2β6 = 0,β1 = 2g2 and assuming that –10g2 +
β7 = 0, we get

∂U
∂τ

–
β4ε

δ+β–3

4g
∂2U
∂ξ 2 –

β5

4g
ε3δ+β–3 ∂4U

∂ξ 4 + ε2δ–3
(

β2

2β1
+

β3

4

)
∂3U
∂ξ 3 +

70
4

U3 ∂U
∂ξ

+
4
g

vε–(δ+3)U = 0. (33)

Set the coefficients α1,α2,α3,α4 and α5 in Eq. (33) as follows:

α1 =
70
4

, α2 =
β4ε

δ+β–3

4g
, α3 =

(
β2

2β1
+

β3

4

)
ε2δ–3,

α4 =
4
g

vε–(δ+3) and α5 =
β5

4g
ε3δ+β–3.

(34)

We get the following master equation:

∂U
∂τ

+ α1U3 ∂U
∂ξ

– α2
∂2U
∂ξ 2 + α3

∂3U
∂ξ 3 + α4U – α5

∂4U
∂ξ 4 = 0. (35)

Setting δ = 0,β = 3 and v = O(ε4), and assuming that ( β2
2β1

+ β3
4 ) is of O (ε3), Eq. (35) reduces

to the following equation:

∂U
∂τ

+ α1U3 ∂U
∂ξ

– α2
∂2U
∂ξ 2 + α3

∂3U
∂ξ 3 – α5

∂4U
∂ξ 4 = 0. (36)

Now, if we let

α1 = γ1, α2 = v, α3 = μ, α5 = –γ2, u = U , t = τ , x = ξ ,

Eq. (36) reduces to the MGKdVB equation with nonlinearity of order 3 (i.e. α = 3 in Eq. (1)):

∂u
∂t

+ γ1u3 ∂u
∂x

– v
∂2u
∂x2 + μ

∂3u
∂x3 + γ2

∂4u
∂x4 = 0. (37)

Remarks It should be noted that one can obtain the following equations from the master
equation (35):

(i) When δ = 3,β = 0, v = O(ε7), Eq. (35) reduces to the Burgers’ equation:

∂U
∂τ

+ α1U3 ∂U
∂ξ

– α2
∂2U
∂ξ 2 = 0. (38)

(ii) When δ = 3,β = 0, v = O(ε6), Eq. (35) becomes the perturbed Burgers’ equation:

∂U
∂τ

+ α1U3 ∂U
∂ξ

– α2
∂2U
∂ξ 2 + α4U = 0. (39)
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(iii) When δ = 3
2 ,β = 2, v = O(ε6), Eq. (35) reduces to the well-known KdV equation:

∂U
∂τ

+ α1U3 ∂U
∂ξ

+ α3
∂3U
∂ξ 3 = 0. (40)

(iv) If δ = 3
2 ,β = 2, v = O(ε9/2), the master equation produces the perturbed KdV

equation:

∂U
∂τ

+ α1U3 ∂U
∂ξ

+ α3
∂3U
∂ξ 3 + α4U = 0. (41)

3 The first nonlinear boundary control law for the MGKDVB equation
This section describes the first nonlinear boundary control law for the MGKdVB equation.
The following theorem presents the first result of our nonlinear boundary control law.

3.1 Design of the first controller
Theorem 1 Let α be a positive integer and all the parameters γ1, v,μ and γ2 are nonzero
known positive real constants. The modified generalized Korteweg–de Vries–Burgers
(MGKdVB) equation given by Eq. (1) subject to the boundary conditions given by Eqs. (2)–
(5) and with the initial condition u0(x) ∈ L2(0, 1) is globally exponentially stable in the
L2(0, 1)-sense, by applying the following nonlinear control law:

w1(t) =
–2v
μ

u(1, t), (42)

w2(t) =
–γ1μ

(α + 2)(2γ2v + μ2)
uα+1(1, t) –

γ2μ

2γ2v + μ2
∂3u
∂x3 (1, t). (43)

Proof Consider the Lyapunov function candidate:

V (t) =
1
2

∫ 1

0
u2(x, t) dx.

Note that V > 0 when u �= 0, and V = 0 iff u = 0.
Taking the derivative of V (t) with respect to time and using Eq. (1), we obtain

V̇ (t) =
∫ 1

0
u(x, t)

∂u
∂t

(x, t) dx

=
∫ 1

0
u
[

v
∂2u
∂x2 – μ

∂3u
∂x3 – γ1uα ∂u

∂x
– γ2

∂4u
∂x4

]
dx. (44)

That is,

∫ 1

0
u(x, t)

∂u
∂t

(x, t) dx – v
∫ 1

0
u(x, t)

∂2u
∂x2 (x, t) dx + μ

∫ 1

0
u(x, t)

∂3u
∂x3 (x, t) dx

+ γ1

∫ 1

0
u(x, t)uα(x, t)

∂u
∂x

(x, t) dx + γ2

∫ 1

0
u(x, t)

∂4u
∂x4 (x, t) dx = 0. (45)
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Integrating by parts, Eq. (45) yields

1
2

d
dt

∥∥u(x, t)
∥∥2

= –v
∥∥∥∥∂u

∂x
(x, t)

∥∥∥∥
2

+ vu(1, t)
∂u
∂x

(1, t) – vu(0, t)
∂u
∂x

(0, t) – μu(1, t)
∂2u
∂x2 (1, t)

+ μu(0, t)
∂2u
∂x2 (0, t) +

μ

2

(
∂u
∂x

)2

(1, t) –
μ

2

(
∂u
∂x

)2

(0, t) –
γ1

α + 2
uα+2(1, t)

+
γ1

α + 2
uα+2(0, t) – γ2u(1, t)

∂3u
∂x3 (1, t) + γ2u(0, t)

∂3u
∂x3 (0, t) + γ2

∂u
∂x

(1, t)
∂2u
∂x2 (1, t)

– γ2
∂u
∂x

(0, t)
∂2u
∂x2 (0, t) – γ2

∥∥∥∥∂2u
∂x2 (x, t)

∥∥∥∥
2

.

(46)

Using the boundary conditions (2)–(5), and noting that –μ

2 ( ∂u
∂x )2(0, t) ≤ 0, and that

–γ2‖ ∂2u
∂x2 (x, t)‖2 ≤ 0, Eq. (46) becomes

1
2

d
dt

∥∥u(x, t)
∥∥2 ≤ –v

∥∥∥∥∂u
∂x

(x, t)
∥∥∥∥

2

+ w1(t)
(

vu(1, t) +
μ

2
w1(t)

)

–
γ1

α + 2
uα+2(1, t) – γ2u(1, t)

∂3u
∂x3 (1, t)

+ w2(t)
(
γ2w1(t) – μu(1, t)

)
. (47)

Applying the first nonlinear control law (i.e. (42)–(43)), we obtain

1
2

d
dt

∥∥u(x, t)
∥∥2 ≤ –v

∥∥∥∥∂u
∂x

(x, t)
∥∥∥∥

2

. (48)

Using Poincaré inequality leads to

d
dt

∥∥u(x, t)
∥∥2 ≤ –2v

∥∥∥∥∂u
∂x

(x, t)
∥∥∥∥

2

≤ –2v
∥∥u(x, t)

∥∥2.

Thus,

d
dt

∥∥u(x, t)
∥∥2 ≤ –2v

∥∥u(x, t)
∥∥2. (49)

Integrating inequality (49) with respect to time, we obtain

∥∥u(x, t)
∥∥ ≤ e–vt∥∥u0(x)

∥∥. (50)

Since u0(x) ∈ L2(0, 1), one can conclude from inequality (50) that ‖u(x, t)‖ converges ex-
ponentially to zero as t −→ ∞. This proves that the equation is exponentially stable under
the first nonlinear non-adaptive control law. �

In the next subsection, we present the dynamical behavior of the MGKdVB equation
numerically when applying the nonlinear boundary control law presented in Eqs. (42)–
(43).
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Figure 1 A 3-d landscape of the dynamics of the MGKdVB equation when using the first nonlinear control
law; v = 0.01,μ = 0.001,γ1 = 1,γ2 = 0.0005 and u0(x) = sin(πx); (a) α = 1; (b) α = 2; (c) α = 3; (d) α = 4

3.2 Numerical solutions of the MGKdVB equation using the first nonlinear control
law

The dynamical behavior of the MGKDVB equation, subject to the controllers w1(t) and
w2(t) given by Eqs. (42)–(43), is simulated using the COMSOL Multiphysics software
which is based on the Finite Element Method (FEM) . The simulations are shown for sev-
eral values of α, namely, α = 1, 2, 3, and 4.

Different initial conditions u0(x) were considered in our study. In the numerical simula-
tions reported in this section, we set the kinematic viscosity v to be 0.01, while the dynamic
viscosity μ is chosen to be 0.001, and the parameters γ1 and γ2 are set to be 1 and 0.0005,
respectively. Figures 1(a)–(d) depict the numerical results obtained when u0(x) = sin(πx).
Moreover, the L2-norm of u(x, t), ‖u(x, t)‖, versus time and the natural logarithm of the
L2-norm of u(x, t), ln(‖u(x, t)‖) versus time are presented in Fig. 2 and Fig. 3, respectively.
A careful look at Fig. 3 shows that the curves of ln(‖u(x, t)‖) after approximately t = 4 sec-
onds are presented by parallel lines with a negative slope less than –ν = –0.01, and this is
in accordance with the analytical results given by inequality (50). Therefore, one can con-
clude from Figs. 1–3 that the L2-norm, ‖u(x, t)‖, converges exponentially to zero as t tends
to infinity. In addition, Figs. 1–3 indicate that, as α increases from 1 to 4, the solutions of
the MGKdVB equation takes longer time to reach the steady state solution. This is due to
the effect of the nonlinear term uα ∂u

∂x over the diffusion term ∂2u
∂x2 , and the dispersion term

∂3u
∂x3 .

Figures 4(a)–4(d) depict the solution of the MGKdVB equation when the initial condi-
tion u0(x) = sin(2πx). Figures 5 and 6 present the L2-norm of u(x, t), ‖u(x, t)‖, versus time
and the natural logarithm of the L2-norm of u(x, t), ln(‖u(x, t)‖) versus time, respectively.
Again, a careful look at Fig. 6 shows that the curves of ln(‖u(x, t)‖) after approximately
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Figure 2 The L2-norm of u(x, t), ‖u(x, t)‖, versus time for various values of α when using the first nonlinear
non-adaptive control law; v = 0.01,μ = 0.001,γ1 = 1,γ2 = 0.0005 and u0(x) = sin(πx)

Figure 3 The natural logarithm of the L2-norm of u(x, t), ln(‖u(x, t)‖), versus time for various values of α when
using the first nonlinear non-adaptive control law; v = 0.01,μ = 0.001,γ1 = 1,γ2 = 0.0005 and u0(x) = sin(πx)

t = 5 seconds are presented by parallel lines with a negative slope less than –ν = –0.01,
and this is in accordance with the analytical results given by inequality (50). Therefore,
one can conclude from Figs. 4–6 that the L2-norm, ‖u(x, t)‖, converges exponentially to
zero as t tends to infinity. However, it should be noted that depending whether α is odd
or even as it increases, the solutions of the MGKdVB equation takes longer time to reach
the steady state solution.

The numerical simulations presented are in good agreement with the analytical work
presented previously in this section. In the next section, another nonlinear control law is
proposed to speed up the convergence of the solution to the steady solution.
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Figure 4 A 3-d landscape of the dynamics of the MGKdVB equation when using the first nonlinear
non-adaptive control law; v = 0.01,μ = 0.001,γ1 = 1,γ2 = 0.0005 and u0(x) = sin(2πx); (a) α = 1; (b) α = 2; (c)
α = 3; (d) α = 4

Figure 5 The L2-norm of u(x, t), ‖u(x, t)‖, versus time for various values of α when using the first nonlinear
non-adaptive control law; v = 0.01,μ = 0.001,γ1,γ2 = 0.0005 and u0(x) = sin(2πx)

4 The second nonlinear boundary control law for the MGKdVB equation
In this section, the second nonlinear non-adaptive controller for the modified generalized
Korteweg–de Vries–Burgers (MGKdVB) equation will be presented. In this control law,
a positive control gain c1 is introduced to speed up the convergence of the solution to
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Figure 6 The natural logarithm of the L2-norm of u(x, t), ln(‖u(x, t)‖), versus time for various values of α when
using the first nonlinear non-adaptive control law; v = 0.01,μ = 0.001,γ1,γ2 = 0.0005 and u0(x) = sin(2πx)

the steady state solution. The following theorem gives the results of our second nonlinear
non-adaptive boundary control law.

4.1 Design of the second controller
Theorem 2 Let α be a positive integer and all the parameters γ1, v,μ and γ2 are nonzero
known positive real constants. The modified generalized Korteweg–de Vries–Burgers
(MGKdVB) equation given by Eq. (1) subject to the boundary conditions given by Eqs. (2)–
(5) and with the initial condition u0(x) ∈ L2(0, 1) is globally exponentially stable in the
L2(0, 1)-sense, by applying the following nonlinear control law:

w1(t) = β1u(1, t), (51)

w2(t) = β2u(1, t) – β3
∂3u
∂x3 (1, t) + β4uα+1(1, t), (52)

where

β1 =
(

–2v
μ

–
c1

v

)
, β2 =

μc2
1 + 4c1v2

4v3γ2
μ

+ 2vγ2c1 + 2v2μ
,

β3 =
vμγ2

(2γ2v2 + c1γ2μ + μ2v)
, β4 =

vμγ1

(α + 2)(–2γ2v2 – c1γ2μ – μ2v)
,

and c1 > 0.

Proof Consider the Lyapunov function candidate:

V (t) =
1
2

∫ 1

0
u2(x, t) dx.

Note that V > 0 when u �= 0, and V = 0 iff u = 0.
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Taking the derivative of V (t) with respect to time and using Eq. (1), we obtain

V̇ (t) =
∫ 1

0
u(x, t)

∂u
∂t

(x, t) dx =
∫ 1

0
u
[

v
∂2u
∂x2 – μ

∂3u
∂x3 – γ1uα ∂u

∂x
– γ2

∂4u
∂x4

]
dx. (53)

That is,

∫ 1

0
u(x, t)

∂u
∂t

(x, t) dx – v
∫ 1

0
u(x, t)

∂2u
∂x2 (x, t) dx + μ

∫ 1

0
u(x, t)

∂3u
∂x3 (x, t) dx

+ γ1

∫ 1

0
u(x, t)uα(x, t)

∂u
∂x

(x, t) dx + γ2

∫ 1

0
u(x, t)

∂4u
∂x4 (x, t) dx = 0. (54)

Integrating by parts, Eq. (54) yields

1
2

d
dt

∥∥u(x, t)
∥∥2

= –v
∥∥∥∥∂u

∂x
(x, t)

∥∥∥∥
2

+ vu(1, t)
∂u
∂x

(1, t) – vu(0, t)
∂u
∂x

(0, t) – μu(1, t)
∂2u
∂x2 (1, t)

+ μu(0, t)
∂2u
∂x2 (0, t) +

μ

2

(
∂u
∂x

)2

(1, t) –
μ

2

(
∂u
∂x

)2

(0, t) –
γ1

α + 2
uα+2(1, t)

+
γ1

α + 2
uα+2(0, t) – γ2u(1, t)

∂3u
∂x3 (1, t) + γ2u(0, t)

∂3u
∂x3 (0, t) + γ2

∂u
∂x

(1, t)
∂2u
∂x2 (1, t)

– γ2
∂u
∂x

(0, t)
∂2u
∂x2 (0, t) – γ2

∥∥∥∥∂2u
∂x2 (x, t)

∥∥∥∥
2

. (55)

Using the boundary conditions (2)–(5), and using the fact that μ and γ2 are positive,
Eq. (55) becomes

1
2

d
dt

∥∥u(x, t)
∥∥2 ≤ – v

∥∥∥∥∂u
∂x

(x, t)
∥∥∥∥

2

+ w1(t)
(

vu(1, t) +
μ

2
w1(t)

)

–
γ1

α + 2
uα+2(1, t) – γ2u(1, t)

∂3u
∂x3 (1, t)

+ w2(t)
(
γ2w1(t) – μu(1, t)

)
. (56)

Applying the second control law given by Eqs. (51)–(52), we obtain the following:

1
2

d
dt

∥∥u(x, t)
∥∥2

≤ –v
∥∥∥∥∂u

∂x
(x, t)

∥∥∥∥
2

+ β1u(1, t)
(

vu(1, t) +
μ

2
β1u(1, t)

)

–
γ1

α + 2
uα+2(1, t) – γ2u(1, t)

∂3u
∂x3 (1, t)

+
(

β2u(1, t) – β3
∂3u
∂x3 (1, t) + β4uα+1(1, t)

)(
γ2β1u(1, t) – μu(1, t)

)
. (57)
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Or,

1
2

d
dt

∥∥u(x, t)
∥∥2

≤ –v
∥∥∥∥∂u

∂x
(x, t)

∥∥∥∥
2

+
(

vβ1 +
μ

2
β2

1 + γ2β1β2 – μβ2

)
u2(1, t)

+
(

–
γ1

α + 2
+ γ2β1β4 – β4μ

)
uα+2(1, t)

+ (–γ2β1β3 – γ2 + β3μ)u(1, t)
∂3u
∂x3 (1, t). (58)

Next, letting β1 = ( –2v
μ

– c1
v ), where c1 is a positive control gain, inequality (58) reduces to

1
2

d
dt

∥∥u(x, t)
∥∥2 ≤ – v

∥∥∥∥∂u
∂x

(x, t)
∥∥∥∥

2

– c1u2(1, t)

+
(

–
2v2

μ
+

μ

2

(
–2v
μ

–
c1

v

)2

+ γ2

(
–2v
μ

–
c1

v

)
β2 – μβ2

)
u2(1, t)

+
(

–
γ1

α + 2
+ γ2

(
–2v
μ

–
c1

v

)
β4 – β4μ

)
uα+2(1, t)

+
(

–γ2

(
–2v
μ

–
c1

v

)
β3 – γ2 + β3μ

)
u(1, t)

∂3u
∂x3 (1, t). (59)

Now, choosing β2 = μc2
1+4c1v2

4v3γ2
μ +2vγ2c1+2v2μ

,β3 = vμγ2
(2γ2v2+c1γ2μ+μ2v) and β4 = vμγ1

(α+2)(–2γ2v2–c1γ2μ–μ2v) ,

inequality (59) reduces to

1
2

d
dt

∥∥u(x, t)
∥∥2 ≤ –v

∥∥∥∥∂u
∂x

(x, t)
∥∥∥∥

2

– c1u2(1, t). (60)

Since c1 > 0, (60) becomes

1
2

d
dt

∥∥u(x, t)
∥∥2 ≤ –v

∥∥∥∥∂u
∂x

(x, t)
∥∥∥∥

2

. (61)

Utilizing the Poincaré inequality leads to

d
dt

∥∥u(x, t)
∥∥2 ≤ –2v

∥∥u(x, t)
∥∥2. (62)

Integrating inequality (62) with respect to time, we obtain

∥∥u(x, t)
∥∥ ≤ e–vt∥∥u0(x)

∥∥. (63)

Since u0(x) ∈ L2(0, 1), ‖u(x, t)‖ converges to zero exponentially as t −→ ∞. This proves
that the equation is exponentially stable when utilizing the second nonlinear controller. �

In the next subsection, the dynamical behavior of the MGKdVB equation when applying
the second nonlinear control law presented by Eqs. (52)–(53) will be shown numerically.
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Figure 7 A 3-d landscape of the dynamics of the MGKdVB equation when using the second nonlinear
non-adaptive control law; v = 0.01,μ = 0.001,γ1 = 1,γ2 = 0.0005 and u0(x) = sin(πx); (a) α = 1; (b) α = 2; (c)
α = 3; (d) α = 4

4.2 Numerical solutions of the MGKdVB equation using the second nonlinear
control law

Numerical solutions for the modified generalized Korteweg–de Vries–Burgers (MGKdVB)
equation (i.e. Eq. (1)–(6)) with the controllers w1(t) and w2(t) as presented by Eqs. (51)–
(52) were simulated using COMSOL Multiphysics software. The solutions are carried out
for several values for α. These values are 1, 2, 3 and 4.

In the numerical simulations reported in this section, we set the kinematic viscosity v to
be 0.01, while the dynamic viscosity μ is chosen to be 0.001, and the parameters γ1 and γ2

are set to be 1 and 0.0005, respectively. Figures 7(a)–(d) present a 3-d landscape of the nu-
merical results obtained when u0(x) = sin(πx). Moreover, the L2-norm of u(x, t), ‖u(x, t)‖,
versus time and the natural logarithm of the L2-norm of u(x, t), ln(‖u(x, t)‖) versus time
are presented in Fig. 8 and Fig. 9, respectively. A careful look at Fig. 9 shows that after ap-
proximately t = 4 seconds the curves of ln(‖u(x, t)‖) for different values of α are presented
by parallel lines with a negative slope less than –ν = –0.01, and this is in accordance with
the analytical results given by inequality (50). Therefore, one can conclude from Figs. 7–9
that the L2-norm, ‖u(x, t)‖, converges exponentially to zero as t tends to infinity. In ad-
dition, Figs. 7–9 indicate that, as α increases from 1 to 4, the solutions of the MGKdVB
equation converge slowly to the steady state solution.

Figures 10(a)–(d) depict the solution of the MGKdVB equation when the initial con-
dition u0(x) = sin(2πx). Figures 11 and 12 present the L2-norm of u(x, t), ‖u(x, t)‖, ver-
sus time and the natural logarithm of the L2-norm of u(x, t), ln(‖u(x, t)‖) versus time, re-
spectively. Again, a careful look at Fig. 12 shows that after approximately t = 4 seconds
the curves of ln(‖u(x, t)‖) are presented by parallel lines with a negative slope less than
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Figure 8 The L2-norm of u(x, t), ‖u(x, t)‖, versus time for various values of α when using the second nonlinear
non-adaptive control law; v = 0.01,μ = 0.001,γ1 = 1,γ2 = 0.0005 and u0(x) = sin(πx)

Figure 9 The natural logarithm of the L2-norm of u(x, t), ln(‖u(x, t)‖), versus time for various values of α when
using the second nonlinear non-adaptive control law; v = 0.01,μ = 0.001,γ1 = 1,γ2 = 0.0005 and
u0(x) = sin(πx)

–ν = –0.01, and this is in accordance with the analytical results given by inequality (50).
Therefore, one can conclude from Figs. 4–6 that the L2-norm, ‖u(x, t)‖, converges expo-
nentially to zero as t tends to infinity.

In Sect. 5, numerical solutions of the MGKdVB equation without control are presented,
and a comparison between the performances of the two proposed nonlinear controllers
will be discussed in Sect. 6 for each value of α. Moreover, the performances of these control
laws will be compared to the behavior of the solutions without applying any control.
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Figure 10 A 3-d landscape of the dynamics of the MGKdVB equation when using the second nonlinear
non-adaptive control law; v = 0.01,μ = 0.001,γ1 = 1,γ2 = 0.0005 and u0(x) = sin(2πx); (a) α = 1; (b) α = 2; (c)
α = 3; (d) α = 4

Figure 11 The L2-norm of u(x, t), ‖u(x, t)‖, versus time for various values of α when using the second
nonlinear non-adaptive control law; v = 0.01,μ = 0.001,γ1,γ2 = 0.0005 and u0(x) = sin(2πx)

5 Numerical solutions of the MGKdVB equation without control
The COMSOL Multiphysics software is used to simulate the numerical solution of the
MGKdVB equation Eqs. (1)–(6) subject to the homogeneous boundary condition (i.e.,
w1(t) and w2(t) are set to be zero in Eqs. (4)–(5)). The simulations were tackled for α

having the values: 1, 2, 3 and 4.
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Figure 12 The natural logarithm of the L2-norm of u(x, t), ln(‖u(x, t)‖), versus time for various values of α
when using the second nonlinear non-adaptive control law; v = 0.01,μ = 0.001,γ1,γ2 = 0.0005 and
u0(x) = sin(2πx)

Figure 13 A 3-d landscape of the dynamics of the MGKdVB equation without control;
v = 0.01,μ = 0.001,γ1 = 1,γ2 = 0.0005 and u0(x) = sin(πx); (a) α = 1; (b) α = 2; (c) α = 3; (d) α = 4

Different initial conditions u0(x) were considered in our study. In the simulations, we set
the parameters v,μ,γ1 and γ2 to be 0.01, 0.001, 1, and 0.0005, respectively. Figures 13(a)–
(d) depict a 3-d landscape of the behavior of the solution u(x, t) as it evolves in time when
u0(x) = sin(πx). The L2-norm of u(x, t), ‖u(x, t)‖, versus time and the natural logarithm
of the L2-norm of u(x, t), ln(‖u(x, t)‖), versus time are presented in Fig. 14, and Fig. 15,
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Figure 14 The L2-norm of u(x, t), ‖u(x, t)‖, versus time for various values of α without control;
v = 0.01,μ = 0.001,γ1 = 1,γ2 = 0.0005 and u0(x) = sin(πx)

Figure 15 The natural logarithm of the L2-norm of u(x, t), ln(‖u(x, t)‖), versus time for various values of α
without control; v = 0.01,μ = 0.001,γ1 = 1,γ2 = 0.0005 and u0(x) = sin(πx)

respectively. This figures show that ‖u(x, t)‖ takes a longer time to approach the steady
state solution. It can also be seen from Figs. 13–15 that the time taken to approach the
steady state solution increases as α increases.

Figures 16(a)–(d) present the solution of the MGKdVB equation when the initial condi-
tion u0(x) = sin(2πx). In the simulations, we set the parameters v,μ,γ1 and γ2 to be 0.01,
0.001, 1, and 0.0005, respectively. The L2-norm of u(x, t), ‖u(x, t)‖, versus time and the nat-
ural logarithm of the L2-norm of u(x, t), ln(‖u(x, t)‖), versus time are presented in Fig. 17
and Fig. 18, respectively. Looking carefully at Figs. 17 and 18 one can see that when α = 1;
3, the solution u(x, t) does not converge to the steady state solution; whereas, when α = 2;
4, the solution converges very slowly to the steady solution.
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Figure 16 A 3-d landscape of the dynamics of the MGKdVB equation without control;
v = 0.01,μ = 0.001,γ1 = 1,γ2 = 0.0005 and u0(x) = sin(2πx); (a) α = 1; (b) α = 2; (c) α = 3; (d) α = 4

Figure 17 The L2-norm of u(x, t), ‖u(x, t)‖, versus time for various values of α without control;
v = 0.01,μ = 0.001,γ1 = 1,γ2 = 0.0005 and u0(x) = sin(2πx)

6 Comparison of the performances of the nonlinear controllers proposed in
Theorems 1–2 with the one without control

In this section, a comparison between the performances of the nonlinear non-adaptive
designed controllers presented in Theorems 1 and 2 is given numerically for different val-
ues of α. Moreover, a comparison between the behavior of the uncontrolled system and
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Figure 18 The natural logarithm of the L2-norm of u(x, t), ln(‖u(x, t)‖), versus time for various values of α
without control; v = 0.01,μ = 0.001,γ1 = 1,γ2 = 0.0005 and u0(x) = sin(2πx)

Figure 19 The L2-norm of u(x, t), ‖u(x, t)‖, versus time for different values of α ; comparison between the
behavior of the equation with and without control when v = 0.01,μ = 0.001,γ1 = 1,γ2 = 0.0005 and
u0(x) = sin(πx); (a) α = 1; (b) α = 2; (c) α = 3; (d) α = 4

the system after applying the two nonlinear controllers proposed previously will be also
presented.

The L2-norm of the solutions u(x, t) of the MGKdVB equation is used for comparison.
Figures 19(a)–(d) show the L2-norm of u(x, t) versus time for different values of α when
u0(x) = sin(πx). These figures show that the solution of the MGKdVB equation obtained
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Figure 20 The L2-norm of u(x, t), ‖u(x, t)‖, versus time for various values of α ; comparison between the
behavior of the equation with and without control when v = 0.01,μ = 0.001,γ1 = 1,γ2 = 0.0005 and
u0(x) = sin(2πx); (a) α = 1; (b) α = 2; (c) α = 3; (d) α = 4

using the second controller outperforms the solution obtained using the first controller
for α = 1, 2, 3 and 4. A careful look at the figures also demonstrates that, for α = 2, 3 and
4, the two controllers give better results than the solutions obtained without applying any
control. On the other hand, for α = 1, one can notice that solutions of the MGKdVB equa-
tion obtained using the two control laws seem to have a similar decay rate to the case when
no control is applied.

Figures 20(a)–(d) show the L2-norm of u(x, t) versus time when u0(x) = sin(2πx) for
α = 1, 2, 3, 4. A thorough observation of the figures demonstrates that the first and the
second nonlinear controllers force the solutions to converge to the trivial solution faster
than the case when having no control. One can also notice from Figs. 20(a) and 20(c) the
significant effect of the first and the second controllers in speeding up the convergence to
the steady state solution when α is odd. Also, it can be clearly seen that the solution of
the MGKdVB equation obtained using the second controller outperforms the solutions
obtained when applying the first controller, for all values of α.

7 Concluding remarks
The boundary stabilization of the MGKdVB equation was considered in this paper. First,
the derivation of the MGKdVB equation for the case when α = 3 is obtained. Then, two
different control laws were designed for this equation when the physical parameters of
the MGKdVB equation are known and positive. The global exponential stability of the
solution in L2(0, 1) was presented analytically as well as numerically. Also, a comparison
between the convergence rates of the two presented control laws was shown.
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The adaptive control of the MGKdVB equation will be the subject of future research
studies.
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