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Abstract
In this paper, we consider the (3 + 1)-dimensional time-fractional
Schamel–Zakharov–Kuznetsov–Burgers (SZKB) equation. With the help of the
Riemann–Liouville derivatives, the Lie point symmetries of the (3 + 1)-dimensional
time-fractional SZKB equation are derived. By applying the Lie point symmetry
method as well as Erdélyi–Kober fractional operator, we get the similarity reductions
of the time-fractional SZKB equation. Conservation laws of the time-fractional SZKB
are constructed. Moreover, we obtain its power series solutions with the convergence
analysis. In addition, the analytical solution is obtained by modified trial equation
method. Finally, stability is analyzed graphically in different planes.
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1 Introduction
Partial differential equations (PDEs) are frequently used to describe most of the phe-
nomena that arise in engineering fields, mathematical physics, plasma physics, solid state
physics, quantum mechanics, fluid mechanics, ecology, optical fibers, biology, chemical
kinematics, geochemistry, meteorology, electricity and so on. Therefore, investigating an-
alytical solutions (traveling wave solutions or soliton solutions) is very interesting. As a
result, many new techniques have been successfully proposed, developed and extended
by groups of researchers to find exact or analytical solutions for PDEs, such as the (G′/G)-
expansion method [1–3], the Kudryashov method [4, 5], the functional variable method
[5, 6], the first integral method [7], the exp(–φ(ξ ))-expansion method [8], the sine–cosine
function method and Bernoulli’s equation approach [5, 9], the trial solution method [5,
10], Hirota’s bilinear method [3] etc.

Fractional calculus was developed as one of the best tools for studying various models
in each discipline [11, 12]. Using fractional models to describe the special characteristic
phenomenon of fractional order, it can well reveal the essence of the nature of phenom-
ena and their behavior. Fractional calculus is a generalization of integer calculus, integer
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calculus is a special case of fractional calculus. It has universal significance to study the
fractional calculus system. Compared with the integer order model in describing the ac-
tual physical process, the physical meaning of the fractional order model is clearer and the
expression is more concise.

On the other hand, in recent years, fractional ordinary differential equations (FODEs)
and fractional partial differential equations (FPDEs) have been widely used to describe
many various physical effects and many complex nonlinear phenomena. This is due to
their accurate description of nonlinear phenomena in fluid mechanics, viscoelasticity,
electrical chemistry, quantum biology, physics, engineering mechanics [13–19] and other
scientific fields. So the study of FODEs and FPDEs has attracted much attention. In other
words, by using the theory of derivatives and integrals of fractional order, many physical
phenomena can be accurately modeled.

The exact solutions of most of the FPDEs cannot be found easily, so analytical and nu-
merical methods [20, 21] must be used. The solutions of the FPDEs are investigated by
many authors using powerful analytical methods. Several numerical methods such as the
homotopy perturbation method [22, 23], the Adomian decomposition method [24], the
variational iteration method [25], the differential transform method [26], the fractional
Riccati expansion method [27], the fractional sub-equation method [28–34] have been
suggested for solving FDEs. However, solutions obtained through all these methods are
of a local nature and it is important to explore other techniques in order to find exact
analytical solutions of FDEs.

Lie point symmetry plays a very important role in various fields of science, especially
in integrable systems where infinitely many symmetries exist. So Lie symmetry analy-
sis is considered to be one of the efficient approaches for obtaining analytical solutions
of nonlinear partial differential equations (NLPDEs). A large number of studies are de-
voted to the theory of Lie point symmetry and their applications to DEs. The symmetry
analysis of FDEs and the fractional derivatives are proposed by Gazizov and his collab-
orators [35]. They proposed a prolongation formula for two basic fractional derivatives:
Riemann–Liouville and Caputo. This method has been used to study many of the FDEs
[36–38]. Furthermore Lie point symmetry is used to construct conservation laws which
play an important role in the study of nonlinear physical phenomena [12]. Conservation
laws are a mathematical formulation which statement that the total amount of a certain
physical quantity stays the same during the evolution of a physical system [12]. Conserva-
tion laws are also used in the development of numerical methods to establish the existence
and uniqueness of solution. There are many methods of constructing conservation laws for
differential equations (DEs) [39–45]. The well-known Noether theorem [46] establishes a
connection between Lie point symmetries and conservation laws of DEs, provided that the
equations are Euler–Lagrange equations. Ibragimov [47] suggested a new conservation
law theorem. In [39], conservation laws for time-fractional sub-diffusion and diffusion-
wave equations were obtained based on the new conservation laws theorem [47]. Also
there are researches that discussed conservation laws for time FPDEs [12, 48, 49].

In this work, we focus on the time-fractional SZKB equation of the form

∂αu
∂tα

+ a
√

uux + buxxx + c(uxyy + uxzz) + duxx = 0, (1.1)

where ∂α
t is the fractional derivative of order α, with 0 < α < 1 and u(x, y, z, t) is the poten-

tial function of space x, y, z and time t. If α = 1, Eq. (1.1) is reduced to the classical SZKB
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equation, which describes the nonlinear plasma-dust ion acoustic waves DIAWs in a mag-
netized dusty plasma and it is derived using the standard reductive perturbation technique
in small amplitude. The coefficients of dispersion b, non-linearity a, mixed derivative c and
dissipation d are given in [50, 51]. Note that Sahoo and Ray [52] have studied the (3 + 1)-
dimensional time-fractional mKdV-ZK equation without the Schamel and Burgers terms.
The main purpose of this paper is to obtain the Lie point symmetries, conservation laws
and analytical solutions of the time-fractional SZKB equation.

The paper is organized as follows: The introduction is presented in Sect. 1. In Sect. 2,
some definitions and description of Lie symmetry analysis for fractional partial differential
equations (FPDEs) are briefly presented. Lie point symmetries and similarity reduction of
the Eq. (1.1) are obtained In Sect. 3. In Sect. 4, the conservation laws of the Eq. (1.1) are
obtained. In Sect. 5, which is based on the power series, the analytical solution of the
Eq. (1.1) is constructed with convergence analysis. We construct the analytical solution of
Eq. (1.1) by using a modified trial equation method In Sect. 6. Finally, the discussions and
conclusions of this paper are presented in Sect. 7.

2 Preliminaries
Here in this section, we focus on some of the concepts that revolve around the subject of
our article

Definition 1 Let α > 0. The operator Iα defined by

Iαf (t) =
1

Γ (α)

∫ t

0
(t – s)α–1f (s) ds, (2.1)

is called the Riemann–Liouville (R-L) fractional integral operator of order α, and Γ (·)
denotes the gamma function.

Definition 2 Let α > 0. The operator Dα
t defined by

Dα
t f (t) =

⎧⎨
⎩

1
Γ (n–α)

dn

dtn
∫ t

0 (t – s)n–α–1f (s) ds if n – 1 < α < n, n ∈ N ,
dnf (t)

dtn if α = n, n ∈ N ,
(2.2)

is called the R-L fractional partial derivative [16, 53–56].

2.1 Description of Lie point symmetries
Let us consider the symmetry analysis for a FPDE of the form

Dα
t u(x, y, z, t) = G(x, y, z, t, u, ux, ut , uy, uz, uxx, uxy, . . .), 0 < α < 1. (2.3)

Now, let Eq. (2.3) be invariant under the following one-parameter Lie group of point trans-
formations acting on both the dependent and the independent variables:

x̄ = x + εξ (x, y, z, t) + O
(
ε2),

ȳ = y + εζ (x, y, z, t) + O
(
ε2),

z̄ = z + εν(x, y, z, t) + O
(
ε2),
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t̄ = t + ετ (x, y, z, t) + O
(
ε2),

ū = u + εη(x, y, z, t) + O
(
ε2),

Dα
t̄ ū = Dα

t u + εη0
α(x, y, z, t) + O

(
ε2), (2.4)

∂ū
∂ x̄

=
∂u
∂x

+ εηx(x, y, z, t) + O
(
ε2),

∂2ū
∂ x̄2 =

∂2u
∂x2 + εηxx(x, y, z, t) + O

(
ε2),

∂3ū
∂ x̄3 =

∂3u
∂x3 + εηxxx(x, y, z, t) + O

(
ε2),

∂3ū
∂ x̄ ∂ ȳ2 =

∂3u
∂x ∂y2 + εηxyy(x, y, z, t) + O

(
ε2),

∂3ū
∂ x̄ ∂ z̄2 =

∂3u
∂x ∂z2 + εηxzz(x, y, z, t) + O

(
ε2),

where ε � 1 is the Lie group parameter and ξ , ζ , ν , τ , η are the infinitesimals of the trans-
formations for dependent and independent variables, respectively. The explicit expres-
sions of ηx, ηxx, ηxxx, ηxyy, ηxzz are given by

ηx = Dx(η) – uxDx(ξ ) – uyDx(ζ ) – uzDx(ν) – utDx(τ ),

ηxx = Dx
(
ηx) – uxxDx(ξ ) – uxyDx(ζ ) – uxzDx(ν) – uxtDx(τ ),

ηxxx = Dx
(
ηxx) – uxxxDx(ξ ) – uxxyDx(ζ ) – uxxzDx(ν) – uxxtDx(τ ),

ηxyy = Dx
(
ηyy) – uxxyDx(ξ ) – uxyyDx(ζ ) – uxyzDx(ν) – uxytDx(τ ),

ηxzz = Dx
(
ηzz) – uxxzDx(ξ ) – uxyzDx(ζ ) – uxzzDx(ν) – uxztDx(τ ),

(2.5)

where Dx, Dy, Dz , and Dt are the total derivatives with respect to x, y, z, and t, respectively,
that are defined for x1 = x, x2 = y, x3 = z as

Dxj =
∂

∂xj + uj
∂

∂u
+ ujk

∂

∂uk
+ · · · , j, k = 1, 2, 3, . . . ,

where uj = ∂u
∂xj , ujk = ∂2u

∂xj∂xk and so on.
The corresponding Lie algebra of symmetries consists of a set of vector fields of the form

V = ξ
∂

∂x
+ ζ

∂

∂y
+ ν

∂

∂z
+ τ

∂

∂t
+ η

∂

∂u
.

The invariance condition of Eq. (2.3) under the infinitesimal transformations is given as

Pr(n) V (�)
∣∣
�=0 = 0, n = 1, 2, 3, . . . ,

where

� := Dα
t u(x, y, z, t) – G(x, y, z, t, u, ux, ut , uy, uz, uxx, uxy, . . .).
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Also, the invariance condition gives

τ (x, y, z, t, u)|t=0 = 0. (2.6)

The αth extended infinitesimal related to RL fractional time derivative with Eq. (2.6) can
be represented as follows:

η0
α = Dα

t (η) + ξDα
t (ux) – Dα

t (ξux) + ζDα
t (uy) – Dα

t (ζuy) + νDα
t (uz)

– Dα
t (νuz) + Dα

t
(
Dt(τ )u

)
– Dα+1

t (τu) + τDα+1
t (u), (2.7)

where Dα
t is the total fractional derivative operator and by using the generalized Leibnitz

rule

Dα
t
(
f (t)g(t)

)
=

∞∑
n=0

(
α

n

)
Dα–n

t f (t)Dn
t g(t),

(
α

n

)
=

(–1)n–1αΓ (n – α)
Γ (1 – α)Γ (n + 1)

.

By applying the Leibnitz rule, Eq. (2.7) becomes

η0
α = Dα

t (η) – αDα
t (τ )

∂αu
∂tα

–
∞∑

n=1

(
α

n

)
Dn

t (ξ )Dα–n
t ux –

∞∑
n=1

(
α

n

)
Dn

t (ζ )Dα–n
t uy

–
∞∑

n=1

(
α

n

)
Dn

t (ν)Dα–n
t uz –

∞∑
n=1

(
α

n + 1

)
Dn+1

t (ξ )Dα–n
t u. (2.8)

Now the chain rule for the compound function is defined as follows:

dnφ(h(t))
dtn =

n∑
k=0

k∑
r=0

(
k
r

)
1
k!

[
–h(t)

]r dn

dtn

[
–h(t)k–r] × dkφ(h)

dhk .

By applying this rule and the generalized Leibnitz rule with f (t) = 1, we have

Dα
t (η) =

∂αη

∂tα
+ ηu

∂αu
∂tα

– u
∂αηu

∂tα
+

∞∑
n=1

(
α

n

)
∂nηu

∂tn Dα–n
t (u) + μ,

where

μ =
∞∑

n=2

n∑
m=2

m∑
k=2

k–1∑
r=0

(
α

n

)(
n
m

)(
k
r

)
1
k!

× tn–α

Γ (n + 1 – α)
[–u]r ∂m

∂tm

[
uk–r] ∂n–m+kη

∂tn–m∂uk .

Therefore, Eq. (2.8) yields

η0
α =

∂αη

∂tα
+

(
ηu – αDα

t (τ )
)∂αu
∂tα

– u
∂αηu

∂tα
+ μ

+
∞∑

n=1

[(
α

n

)
∂αηu

∂tα
–

(
α

n + 1

)
Dn+1

t (τ )
]

Dα–n
t (u) +

∞∑
n=1

(α)Dn
t (ξ )Dα–n

t ux

–
∞∑

n=1

(
α

n

)
Dn

t (ζ )Dα–n
t uy –

∞∑
n=1

(
α

n

)
Dn

t (ν)Dα–n
t uz. (2.9)
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Definition 3 The function u = θ (x, y, z, t) is an invariant solution of Eq. (2.3) associated
with the vector field W , such that

1. u = θ (x, y, z, t) is an invariant surface of Eq. (2.3), this means

Vθ = 0 ⇔
(

ξ
∂

∂x
+ ζ

∂

∂y
+ ν

∂

∂z
+ τ

∂

∂t
+ η

∂

∂u

)
θ = 0,

2. u = θ (x, y, z, t) satisfies Eq. (2.3).

3 Lie point symmetries and similarity reduction for Eq. (1.1)
In this section, we implemented Lie group method for Eq. (1.1) and then, used these sym-
metries to reduce Eq. (1.1) to be a FODE as shown in the next two subsections

3.1 Lie point symmetries for Eq. (1.1)
Let us consider Eq. (1.1) as an invariant under Eq. (2.4), we get

∂αū
∂ t̄α

+ a
√

ūūx + būxxx + c(ūxyy + ūxzz) + dūxx = 0, (3.1)

such that u = u(x, y, z, t) satisfies Eq. (1.1), then using the point transformations Eq. (2.4)
in Eq. (3.1), we get the invariant equation

η0
α + a

√
uηx +

a
2
√

u
ηux + bηxxx + c

(
ηxyy + ηxzz) + dηxx = 0, (3.2)

By substituting Eq. (2.5) and Eq. (2.9) into Eq. (3.2), we acquire

∂αη

∂tα
+

(
ηu – αDα

t (τ )
)∂αu
∂tα

– u
∂αηu

∂tα
+ μ

+
∞∑

n=1

[(
α

n

)
∂αηu

∂tα
–

(
α

n + 1

)
Dn+1

t (τ )
]

Dα–n
t (u) +

∞∑
n=1

(α)Dn
t (ξ )Dα–n

t ux

–
∞∑

n=1

(
α

n

)
Dn

t (ζ )Dα–n
t uy –

∞∑
n=1

(
α

n

)
Dn

t (ν)Dα–n
t uz

+ a
√

u
(
ηx + (ηu – ξx)ux – ξuu2

x – (ζx + ζuux)uy – (νx + νxux)uz – (τx + τuux)ut
)

+
a

2
√

u
ηux + b

(
ηxxx + (ηxxu – ξxxx)ux + (3ηxu – 3ξxx)uxx + (ηu – 3ξx)uxxx

+ (3ηxuu – 3ξxxu)u2
x + (ηuuu – ξxuu)u3

x – ξuuuu4
x + (3ηuu – 9ξxu)uxuxx

– 3ξuuu2
xuxx – 3ξuu2

xx – 4ξuuxuxxx – 3(ζx + ζuux)uxxy – 3(νx + νxux)uxxz

– 3(τx + τuux)uxxt – 3
(
ζxx + 2ζxuux + ζuuu2

x + ζuuxx
)
uxy

– 3
(
νxx + 2νxuux + νuuu2

x + νuuxx
)
uxz – 3

(
τxx + 2τxuux + τuuu2

x + τuuxx
)
uxt

–
(
ζxxx + 3ζxxuux + 3ζxuuu2

x + ζuuuu3
x + 3ζuuuxuxx + 3ζxuuxx + ζuuxxx

)
uy

–
(
νxxx + 3νxxuux + 3νxuuu2

x + νuuuu3
x + 3νuuuxuxx + 3νxuuxx + νuuxxx

)
uz

–
(
τxxx + 3τxxuux + 3τxuuu2

x + τuuuu3
x + 3τuuuxuxx + 3τxuuxx + τuuxxx

)
ut

)

+ c(ηxyy + (ηuyy – ξxyy)ux + (2ηuy – ζyy – 2ξxy)uxy
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+ (2ηxuy + 2ηuuyux – ζxyy – ζuyyux)uy + (ηu – 2ζy – ξx – ζuux)uxyy

+ 2(ηuu – 2ζuy)uyuxy + (ηxu + ηuuux – 2ζxy – 2ζuyux)uyy – 3ζuuu2
yuxy

+ (3ηuux + ηuuuux – 2ζxuy – 2ζuuyux)u2
y – 3ζuuxyuyy – (ζuux + ζuuuux)u3

y

– 3ζuuyuxyy – 3(ζxu + ζuuux)uyuyy – (2ξy + 2ξuuy + ξx + ξuux)uxxy

– 2(ξuyux + ξxuuy + ξuuuxuy + ξuuxy)uxy – (2νy + 2νuuy + νx + νuux)uxyz

– 2(νuyux + νxuuy + νuuuxuy + νuuxy)uzy(2τy + 2τuuy + τx + τuux)uxyt

– 2(τuyux + τxuuy + τuuuxuy + τuuxy)uyt –
(
ξyyux + 2ξuyuy + ξuuu2

y + ξuuyy
)
uxx

–
(
νyy + 2νuyuy + νuuu2

y + νuuyy
)
uxz –

(
τyy + 2τuyuy + τuuu2

y + τuuyy
)
uxt

–
(
ξxyy + ξuyyux + 2ξxyuuy + 2ξuuyuxuy + 2ξuyuxy + ξxuuu2

y + ξuuuuxu2
y + 2ξuuuxuxy

+ ξxuuyy + ξxuuxuyy + ξuuxyy
)
ux –

(
νxyy + νuyyux + 2νxyuuy + 2νuuyuxuy + 2νuyuxy

+ νxuuu2
y + νuuuuxu2

y + 2νuuuxuxy + νxuuyy + νxuuxuyy + νuuxyy
)
uz

–
(
τxyy + τuyyux + 2τxyuuy + 2τuuyuxuy + 2τuyuxy + τxuuu2

y + τuuuuxu2
y + 2τuuuxuxy

+ τxuuyy + τxuuxuyy + τuuxyy
)
ut + ηxzz + (ηuzz – ξxzz)ux + (2ηuy – ζyy – 2ξxy)uxz

+ (2ηxuz + 2ηuuzux – νxzz – νuzzux)uz + (ηu – 2νz – ξx – νuux)uxzz

+ 2(ηuu – 2νuz)uzuxz + (ηxu + ηuuux – 2νxz – 2νuzux)uzz – 3νuuu2
z uxz

+ (3ηuux + ηuuuux – 2νxuz – 2νuuzux)u2
z – 3νuuxzuzz – (νuux + νuuuux)u3

z – 3νuuzuxzz

– 3(νxu + νuuux)uzuzz – (2ξz + 2ξuuz + ξx + ξuux)uxxz

– 2(ξuzux + ξxuuz + ξuuuxuz + ξuuxz)uxz – (2ζz + 2ζuuz + ζx + ζuux)uxyz

– 2(ζuzux + ζxuuz + ζuuuxuz + ζuuxz)uzy – (2τz + 2τuuz + τx + τuux)uxzt

– 2(τuzux + τxuuz + τuuuxuz + τuuxz)uzt –
(
ξzzux + 2ξuzuz + ξuuu2

z + ξuuzz
)
uxx

–
(
ζzz + 2ζuzuy + ζuuu2

z + ζuuzz
)
uxy –

(
τzz + 2τuzuy + τuuu2

z + τuuzz
)
uxt

–
(
ξxzz + ξuzzux + 2ξxzuuz + 2ξuuzuxuz + 2ξuzuxz + ξxuuu2

z + ξuuuuxu2
z + 2ξuuuxuxz

+ ξxuuzz + ξxuuxuzz + ξuuxzz
)
ux –

(
ζxzz + ζuzzux + 2ζxzuuz + 2ζuuzuxuz + 2ζuzuxz

+ ζxuuu2
z + ζuuuuxu2

z + 2ζuuuxuxz + ζxuuzz + ζxuuxuzz + ζuuxzz
)
uy

–
(
τxzz + τuzzux + 2τxzuuz + 2τuuzuxuz + 2τuzuxz + τxuuu2

z

+ τuuuuxu2
z + 2τuuuxuxz + τxuuzz + τxuuxuzz + τuuxzz

)
ut)

+ d
(
ηxx + (2ηxu – ξxx)ux + (ηu – 2ξx)uxx + (ηuu – 2ξxu)u2

x – ξuuu3
x – 3ξuuxuxx

– 2(ζx + ζuux)uxy – 2(νx + νuux)uxz – 2(τx + τuux)uxt

–
(
ζxx + 2ζxuux + ζuuu2

x + ζuuxx
)
uy –

(
νxx + 2νxuux + νuuu2

x + νuuxx
)
uz

–
(
τxx + 2τxuux + τuuu2

x + τuuxx
)
ut

)
= 0, (3.3)
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now, for Eq. (3.3) by making the whole powers of derivatives of u to zero, we get the fol-
lowing system of equations:

(
α

n

)
∂αηu

∂tα
–

(
α

n + 1

)
Dn+1

t (τ ) = 0, n = 1, 2, 3, . . . ,

a
2
√

u
η + a

√
u(ηu – ξx) + b(3ηxxu – ξxxx) + c(ηyyu – ξxyy + ηzzu – ξxzz) + d(2ξxu – ξxx) = 0,

a
√

uηx + bηxxx + c(ηxyy + ηxzz) + dηxx + μ = 0,

τu = ξu = νu = τx = ζu = νu = 0,

τuu = ξuu = νuu = ζuu = νuu = 0,

Dn
t (ξ ) = 0, n = 1, 2, 3, . . . ,

ηu – αDt(τ ) = 0,

ηu – 2ζy – ξx = 0,

ηu – 3ξx = 0,

ηu – 2νz – ξx = 0.

On solving the previous system of equations, we get the following infinitesimals:

ξ = c1x + c2, τ =
3
α

c1t + c3, ζ = c1y + c4, ν = c1z + c5, η = –4c1u, (3.4)

where ci, i = 1, 2, 3, 4, 5 are arbitrary constants. So, the associated vector fields are given by

V1 =
∂

∂x
, V2 =

∂

∂t
, V3 =

∂

∂y
, V4 =

∂

∂z
,

V5 = x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z
+

3
α

t
∂

∂t
– 4u

∂

∂u
,

(3.5)

and then, all of the infinitesimal generators of Eq. (1.1) can be expressed as follows:

V = c1V1 + c2V2 + c3V3 + c4V4 + c5V5.

3.2 The similarity reduction for Eq. (1.1)
In order to reduce Eq. (1.1) to become a FODE, we used the infinitesimal generator V5

defined in Eq. (3.5) to form the following characteristic equation:

dx
x

=
dy
y

=
dz
z

=
dt
3
α

t
=

du
–4u

.

Solving the above equation yields the following similarity function:

u = t– 4α
3 f (ξ ), ξ = (x + y + z)t– α

3 . (3.6)

By means of the similarity transformation u = t– 4α
3 f (ξ ), the time-fractional SZKB Eq. (1.1)

can be reduced to a nonlinear FODE with a new independent variable ξ = (x + y + z)t– α
3 .

Consequently, one can get the following theorem.
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Theorem 1 The transformation equation (3.6) reduces the time-fractional SZKB Eq. (1.1)
to the following nonlinear FODE:

(
P1– 7α

3 ,α
3
α

f
)
(ξ ) + a

√
f fξ + (b + 2c)fξξξ + dt

α
3 fξξ = 0, (3.7)

with Erdélyi–Kober (EK) fractional differential operator (Pτ ,α
β f )(ξ ), which is defined as

(
Pτ ,α

β f
)
(ξ ) =

n–1∏
j=0

(
τ + j –

1
β

d
dτ

)(
K τ+α,n–α

β f
)
(ξ ), n =

⎧⎨
⎩

|α| + 1, n /∈ N ,

α, n ∈ N ,
(3.8)

where

(
K τ+α,n–α

β f
)
(ξ ) =

⎧⎨
⎩

1
Γ (α)

∫ ∞
1 (u – 1)α–1u–(τ+α)f (ξu

1
β ) du, α > 0,

f (ξ ), α = 0,
(3.9)

is the EK fractional integral operator.

Proof Let n – 1 < α < 1, n = 1, 2, 3, . . . , we obtain the similarity transformation based on
Riemann–Liouville fractional derivatives as follows:

∂αu
∂tα

=
∂n

∂tn

[
1

Γ (n – α)

∫ t

1
(t – s)n–α–1s

–4
3 αf

(
(x + y + z)s– α

3
)

ds
]

. (3.10)

Let v = t
s , one can get ds = – t

v2 , thus Eq. (3.10) can be written as

∂αu
∂tα

=
∂n

∂tn

[
tn– 7

3 α

Γ (n – α)

∫ ∞

1
(v – 1)n–α–1v–(n+1– 7

3 α)f
(
ξv

α
3
)

dv
]

, (3.11)

by using the definition of EK fractional differential operator, then Eq. (3.11) becomes

∂αu
∂tα

=
∂n

∂tn

[
tn– 7

3 α
(
K1– α

3 ,n–α

3
α

f
)
(ξ )

]
, (3.12)

and now it is appropriate to simplify the right hand side of Eq. (3.11). Consider ξ = χ t– α
3 ,

ϕ ∈ (0,∞) we get

t
∂

∂t
ϕ(ξ ) = tχ

(
–

α

3

)
t– α

3 –1ϕ′(ξ ) = –
α

3
ξ

d
dξ

ϕ(ξ ).

From this,

∂n

∂tn

[
tn– 7

3 α
(
K1– α

3 ,n–α

3
α

f
)
(ξ )

]
=

∂n–1

∂tn–1

[
∂

∂t
(
tn– 7

3 α
(
K1– α

3 ,n–α

3
α

f
)
(ξ )

)]

=
∂n–1

∂tn–1

[
tn– 7

3 α–1
(

n –
7
3
α –

α

3
ξ

∂

∂ξ

)(
K1– α

3 ,n–α

3
α

f
)
(ξ )

]
,



EL-Kalaawy et al. Advances in Difference Equations        (2019) 2019:445 Page 10 of 23

and thus repeating we have

∂n

∂tn

[
tn– 7

3 α
(
K1– α

3 ,n–α

3
α

f
)
(ξ )

]
=

∂n–1

∂tn–1

[
∂

∂t
(
tn– 7

3 α
(
K1– α

3 ,n–α

3
α

f
)
(ξ )

)]

=
∂n–1

∂tn–1

[
tn– 7

3 α–1
(

n –
7
3
α –

α

3
ξ

d
dξ

)(
K1– α

3 ,n–α

3
α

f
)
(ξ )

]

...

= t– 7
3 α

n–1∏
j=0

[(
1 –

7
3
α + j –

α

3
ξ

d
dς

)(
K1– α

3 ,n–α

3
α

f
)
(ξ )

]
.

On using the definition of the EK fractional differential operator Eq. (3.9), we get

∂n

∂tn

[
tn– 7

3 α
(
K1– α

3 ,n–α

3
α

f
)
(ξ )

]
= t– 7

3 α
(
P1– 7

3 α,α
3
α

f
)
(ξ ). (3.13)

By substituting Eq. (3.13) into Eq. (3.12), we have

∂αu
∂tα

= t– 7
3 α

(
P1– 7

3 α,α
3
α

f
)
(ξ ). (3.14)

Thus, Eq. (3.13) can be reduced into a fractional ordinary differential equation

(
P1– 7

3 α,α
3
α

f
)
(ξ ) + a

√
f fξ + (b + 2c)fξξξ + dt

α
3 fξξ = 0. (3.15)

The proof of the theorem is completed. �

4 Conservation laws for Eq. (1.1)
In this section, the conservation laws of the time-fractional SZKB equation (1.1) are de-
rived, based on the formal lagrangian and Lie point symmetries as described in the fol-
lowing explanation:

Consider a vector C = (Ct , Cx, Cy, Cz) admitting the following conservation equation:

[
Dt

(
Ct) + Dx

(
Cx) + Dy

(
Cy) + Dz

(
Cz)]

Eq. (1.1) = 0, (4.1)

where Ct = Ct(x, y, z, t, u, . . .), Cx = Cx(x, y, z, t, u, . . .), Cy = Cy(x, y, z, t, u, . . .), and Cz =
Cz(x, y, z, t, u, . . .) are called the conserved vectors for Eq. (1.1). According to the new con-
servation theorem due to Ibragimov [47], the formal Lagrangian for Eq. (1.1) can be given
by

L = ω(x, y, z, t)
[

∂αu
∂tα

+ a
√

uux + buxxx + c(uxyy + uxzz) + duxx

]
= 0, (4.2)

here ω(x, y, z, t) is a new dependent variable. Depending on the definition of the La-
grangian, we get an action integral as follows:

∫ t

0

∫
Ω1

∫
Ω2

∫
Ω3

L
(
x, y, z, t, u,ω, Dα

t , ux, uxxx, uxyy, uxzz, uxx
)

dx dy dz dt.
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The Euler–Lagrange operator is defined as

δ

δu
=

∂

∂u
+

(
Dα

t
)∗ ∂

∂Dα
t u

– Dx
∂

∂ux
+ D2

x
∂

∂uxx
– D3

x
∂

∂uxxx
– DxD2

y
∂

∂uxyy
– DxD2

z
∂

∂uxzz
,

where (Dα
t )∗ denotes to the adjoint operator of Dα

t , and the adjoint equation to the non-
linear by means of the Euler–Lagrange equation given by

δL
δu

= 0.

The adjoint operator (Dα
t )∗ for R-L is defined by

(
Dα

t
)∗ = (–1)nIn–α

T
(
Dn

t
) ≡ C

t Dα
T ,

where In–α
T is the right-sided operator of fractional integration of order n–α that is defined

by

In–α
T f (t, x) =

1
Γ (n – α)

∫ T

t
(τ – t)n–α–1f (τ , x) dτ .

Considering the case of one dependent variable u(x, y, z, t) with four independent variables
x, y, z, t, we get

X̄ + Dt(τ )I + Dx(ξ )I + Dy(ζ )I + Dz(ν)I = W
δ

δu
+ Dt

(
Ct) + Dx

(
Cx) + Dy

(
Cy) + Dz

(
Cz),

where X̄ is defined by

X̄ = τ
∂

∂t
+ ξ

∂

∂x
+ ζ

∂

∂y
+ ν

∂

∂z
+ η

∂

∂u
+ η0

α

∂

∂Dα
t u

+ ηx ∂

∂ux
+ ηxx ∂

∂uxx
+ ηxxx ∂

∂uxxx
+ ηxyy ∂

∂uxyy
+ ηxzz ∂

∂uxzz
,

and the Lie characteristic function is defined by

W = η – τut – ξux – ζuy – νuz, and then

W1 = –ux, W2 = –ut , W3 = –uy, Wt = –uz.
(4.3)

For the R-L time-fractional derivative, the density component Ct of conservation law is
defined by

Ct = τL +
n–1∑
k=0

(–1)k
0Dα–1–k

t (Wm)Dk
t

∂L
∂0Dα

t u
– (–1)nJ

(
Wm, Dn

t
∂L

∂0Dα
t u

)
, (4.4)

where the operator J(·) is defined by

J(f , g) =
1

Γ (n – α)

∫ t

0

∫ T

t

f (τ , x, y, z)g(μ, x, y, z)
(μ – τ )α+1–n dμdτ ,
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and the other (flux) components are defined as

Ci = ξ iL + Wm

[
∂L
∂um

i
– Dj

(
∂L
∂um

ij

)
+ DjDk

(
∂L

∂um
ijk

– · · ·
)]

+ Dj(Wm)
[

∂L
∂um

ij
– Dk

(
∂L

∂um
ijk

)
+ · · ·

]
+ DjDk(Wm)

(
∂L

∂um
ijk

– · · ·
)

+ · · · , (4.5)

where ξ 1 = ξ , ξ 2 = ζ , ξ 3 = ν and m = 1, 2, . . . , 5.
Now by using Eq. (4.3) with the help of Eqs. (4.4) and (4.5), we obtain the components

of the conservation laws for the time-fractional SZKB equation as follows.
Case 1: W1 = –ux where ξ x = 1, ξ t = 0, ξ y = 0, ξ z = 0 and η = 0 we get the following

conserved vectors:

Ct
1 = ω0Dα–1

t (–ux)
∂L

∂0Dα
t u

– J
(

–ux, Dn
t

∂L
∂0Dα

t u

)
= –ωDα

t (ux) – uxDα
t (ω),

Cx
1 = ω

[
Dα

t u + a
√

uux +
c
3

(uyxy + uyyx + uzxz + uzzx)
]

– ux

[
–dωx + bωxx +

c
3

(ωyy + ωzz)
]

+ bωxxωx +
c
3

(uxyωy + uxzωz),

Cy
1 = –

c
3

ux[ωxy + ωyx] +
c
3

(uxxωy + uxyωx) –
c
3
ω(uxyx + uyxx),

Cz
1 = –

c
3

ux[ωxz + ωzx] +
c
3

(uxxωz + uxzωx) –
c
3
ω(uxzx + uzxx).

Case 2: W2 = –ut where ξ x = 0, ξ t = 1, ξ y = 0, ξ z = 0 and η = 0 we acquire the following
conserved vectors:

Ct
2 = ωLω0Dα–1

t (–ut)
∂L

∂0Dα
t u

– J
(

–ut , Dn
t

∂L
∂0Dα

t u

)

= ω

[
Dα

t u + a
√

uux +
c
3

(uyxy + uyyx + uzxz + uzzx) + duxx

]
– ωDα

t (ut) – utDα
t (ω),

Cx
2 = –ut

[
aω

√
u – dωx + bωxx +

c
3

(ωyy + ωzz)
]

– uxt[dωx – bωx] +
c
3

(uytωy + uztωz) – bωuxxt –
c
3
ω(uyyt + uzzt),

Cy
2 = –

c
3

ut[ωxy + ωyx] +
c
3

(uxtωy + uytωx) –
c
3
ω(uxyt + uyxt),

Cz
2 = –

c
3

ut[ωxz + ωzx] +
c
3

(uxtωz + uztωx) –
c
3
ω(uxzt + uzxt).

Case 3: W3 = –uy where ξ x = 0, ξ t = 0, ξ y = 1, ξ z = 0 and η = 0 we obtain the following
conserved vectors:

Ct
3 = ω0Dα–1

t (–uy)
∂L

∂0Dα
t u

– J
(

–uy, Dn
t

∂L
∂0Dα

t u

)
= –ωDα

t (uy) – uyDα
t (ω),

Cx
3 = –uy

[
aω

√
u – dωx + bωxx +

c
3

(ωyy + ωzz)
]

– uxy[dωx – bωx] +
c
3

(uyyωy + uyzωz) – bωuxxy –
c
3
ω(uyyy + uzzy),
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Cy
3 = ω

[
Dα

t u + a
√

uux +
c
3

(uyxy + uyyx + uzxz + uzzx) + duxx

]

–
c
3

uy[ωxy + ωyx] +
c
3

(uxyωy + uyyωx) –
c
3
ω(uxyy + uyxy),

Cz
3 = –

c
3

uy[ωxz + ωzx] +
c
3

(uxyωz + uyzωx) –
c
3
ω(uxzy + uzxy).

Case 4: W4 = –uz where ξ x = 0, ξ t = 0, ξ y = 0, ξ z = 0 and η = 0 we obtain the following
conserved vectors:

Ct
4 = ω0Dα–1

t (–uz)
∂L

∂0Dα
t u

– J
(

–uz, Dn
t

∂L
∂0Dα

t u

)
= –ωDα

t (uz) – uzDα
t (ω),

Cx
4 = –uz

[
aω

√
u – dωx + bωxx +

c
3

(ωyy + ωzz)
]

– uxy[dωx – bωx]

+
c
3

(uyyωy + uyzωz) – bωuxxy –
c
3
ω(uyyy + uzzy),

Cy
4 = ω

[
Dα

t u + a
√

uux +
c
3

(uyxy + uyyx + uzxz + uzzx) + duxx

]

–
c
3

uy[ωxy + ωyx] +
c
3

(uxyωy + uyyωx) –
c
3
ω(uxyy + uyxy),

Cz
4 = –

c
3

uy[ωxz + ωzx] +
c
3

(uxyωz + uyzωx) –
c
3
ω(uxzy + uzxy).

Remark We have verified that all the solutions satisfy the original equation.

5 Explicit power series and convergence analysis for Eq. (1.1)
In this section, we derived the analytic solution for Eq. (1.1) via the power series method
[57, 58] and proved the convergence of the power series solution as demonstrated in the
next two subsections.

5.1 Power series and analytical solutions for Eq. (1.1)
Considering Eq. (1.1) and by using u(x, y, z, t) = ψ2(x, y, z, t), Eq. (1.1) becomes

∂αψ2

∂tα
+ aψ

(
ψ2)

x + b
(
ψ2)

xxx + c
((

ψ2)
xyy +

(
ψ2)

xzz

)
+ d

(
ψ2)

xx = 0. (5.1)

Let us introduce the important transformation

ψ(x, y, z, t) = ψ(ξ ), ξ = px + qy + rz –
ktα

Γ (1 + α)
, (5.2)

where p, q, r and k are constants to be determined later. The substitution of (5.2) into (5.1)
leads to the following nonlinear ODE:

–
k
2
(
ψ2)′ +

a
3
(
ψ3)′ +

1
2

p
(
bp2 + c

(
q2 + r2))(ψ2)′′′ + dp2(ψ2)′′ = 0. (5.3)

By integrating Eq. (5.3) with respect to ξ , we get

–
k
2
(
ψ2) +

a
3
(
ψ3) +

1
2

p
(
bp2 + c

(
q2 + r2))(ψ2)′′ + dp2(ψ2)′ + λ = 0, (5.4)
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where λ is the constant of integration. Let us assume that the solution of Eq. (5.4) has the
following form:

ψ(ξ ) =
∞∑

n=0

anξ
n, (5.5)

where an are constants to be determined later. On substituting (5.5) into (5.4), we have the
following relation:

–
k
2

∞∑
n=0

n∑
m=0

(aman–m)ξn +
a
3

∞∑
n=0

n∑
m=0

n–m∑
l=0

(alam–lan–m)ξn + p
(
bp2 + c

(
q2 + r2))

×
( ∞∑

n=0

n∑
m=0

(n – m + 1)(n – m + 2)aman–m+2

+
∞∑

n=0

n∑
m=0

(n – m + 1)(m + 1)am+1an–m+1

)
ξn

+ 2dp2
∞∑

n=0

n∑
m=0

(
(n – m + 1)aman–m+1

)
ξn + λ = 0. (5.6)

From Eq. (5.6), by comparing the coefficients for n = 0 one can get

a2 = –
2aa3

0 – 3ka2
0 + 12dp2a0a1 + 6(λ + bp2 + c(q2 + r2))a2

1
12p(bp2 + c(q2 + r2))a0

, (5.7)

where a0 and a1 are arbitrary constants where p and a0 
= 0. Generally, for n ≥ 1 we can
get

an+2 =
1

6ρ(n + 1)(n + 2)a0

(
3k

n∑
m=0

(aman–m) – 2a
n∑

m=0

n–m∑
l=0

(alam–lan–m) – 6ρ

×
( n∑

m=0

(n – m + 1)(n – m + 2)aman–m+2 +
n∑

m=0

(n + 1)(n – m + 1)am+1an–m+1

)

– 12dp2
n∑

m=0

(
(n – m + 1)aman–m+1

)
– 6λ

)
, (5.8)

where ρ = p(bp2 + c(q2 + r2)). Now, from (5.8) and (5.7) we can get all the coefficients an+2,
n ≥ 1 of the power series (5.5) in which a0, p, q, r, and k are the arbitrary constants. Thus,
the power series solution of Eq. (5.4) could be written as follows:

u(ξ ) =
(

a0 + a1ξ + a2ξ
2 +

∑∞
n=1

an+2ξ
n+2

)2

= (a0 + a1ξ +
(

–
6λ – 3ka2

0 + 2aa3
0 + 6p(2dp + bp2 + c(q2 + r2))a0a1

12p(bp2 + c(q2 + r2))a0

)
ξ 2

+
∞∑

n=1

(
1

6ρ(n + 1)(n + 2)a0

(
3k

n∑
m=0

(anan–m) – 2a
n∑

m=0

n–m∑
l=0

(alam–lan–m) – 6ρ
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×
( n∑

m=0

(n – m + 1)(n – m + 2)aman–m+2 +
n∑

m=0

(n + 1)(n – m + 1)am+1an–m+1

)

– 12dp2
n∑

m=0

(
(n – m + 1)aman–m+1

)
– 6λ

)
ξn+2

)2

. (5.9)

Thus, we obtain the exact power series solution for Eq. (3.15) as follows:

u(x, y, z, t) =

(
a0 + a1

(
px + qy + rz –

ktα

Γ (1 + α

)

+
(

–
6λ – 3ka2

0 + 2aa3
0 + 6p(2dp + bp2 + c(q2 + r2))a0a1

12p(bp2 + c(q2 + r2))a0

)

×
(

px + qy + rz –
ktα

Γ (1 + α

)2

+
∞∑

n=1

(
1

6ρ(n + 1)(n + 2)a0

(
3k

n∑
m=0

(aman–m) – 2a
n∑

m=0

n–m∑
l=0

(alam–lan–m)

– 6ρ

( n∑
m=0

(n – m + 1)(n – m + 2)aman–m+2

+
n∑

m=0

(n + 1)(n – m + 1)am+1an–m+1

)

– 12dp2
n∑

m=0

(
(n – m + 1)aman–m+1

)
– 6λ

))

×
(

px + qy + rz –
ktα

Γ (1 + α

)n+2
)2

. (5.10)

We represented the solution defined by Eq. (5.10) using the 2D plot, see Fig. 1b, and the
3D plots, see Fig. 1a and Fig. 2. The result in Eq. (5.10) shows that there is an analytical
power series solution for Eq. (5.4). It is important to find new solutions, because either new
exact solutions or numerical approximate solutions and analytical solutions may deepen
our understanding of the physical phenomena.

5.2 Convergence analysis
In this subsection, to complete the analysis of Eq. (1.1), we study the convergence of the
power series solution Eq. (5.5) with the coefficients denoted by Eq. (5.7) and (5.8), where
Eq. (5.8) can be enlarged to the following form:

|an+2| ≤ M

[ n∑
m=0

|am||an–m| –
n∑

m=0

n–m∑
l=0

|al||am–l||an–m| –
n∑

m=0

|am||an–m+2|

–
n∑

m=0

|am+1||an–m+1| –
n∑

m=0

|am||an–m+1|
]

, (5.11)
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Figure 1 (a) The effect of α on the 3D solitary wave solution of equation (5.10) with a fixed time t and the
parameters k = 0.3, p = 0.2, q = 0.7, r = 0.3, a0 = 6, a1 = 1.7. (b) The corresponding 2D plot of (a), which shows
that the envelope of the wave decays far away from the peak quickly when the value of α increases meaning
that the solitary wave solution behaves as a dynamical system

Figure 2 The effect of α on the 3D solitary wave solution of equation (5.10) at different values of α = 0.1, 0.3
with the suitable parameters k = 0.3, p = 0.2, q = 0.7, r = 0.3, a0 = 6, a1 = 1.7

where M = max{ 3k
ρ

, 2a
ρ

, 12dp2}, ρ = bp2 + c(q2 + r2). Now, consider another power series,

S(ξ ) =
∞∑

n=0

snξ
n, (5.12)

with si = |ai|, i = 0, 1. Then we can get

sn+2 = M

[ n∑
m=0

|sm||sn–m|

–
n∑

m=0

n–m∑
l=0

|sl||sm–l||sn–m| – |sm||sn–m+2| – |sm+1||sn–m+1| – |sm||sn–m+1|
]

, (5.13)

where n = 0, 1, 2, . . . thus, it is easily noted that

|an+2| ≤ sn+2 this leads to |an| ≤ sn,

depending on this result, we could say that the series defined by Eq. (5.12) is a majorant
series of Eq. (5.5). Next, we have shown that the series S = S(ξ ) has positive radius of con-
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vergence. Then, we write this series in the following form:

S(ξ ) = s0 + s1ξ +
∞∑

n=2

snξ
n

= s0 + s1ξ + M

[ n∑
m=0

|sm||sn–m|

–
n∑

m=0

n–m∑
l=0

|sl||sm–l||sn–m| – |sm||sn–m+2| – |sm+1||sn–m+1| – |sm||sn–m+1|
]
ξn+2

= s0 + s1ξ + M
[
S2(ξ )ξ 2 – S3(ξ )ξ 2 – 2(S – s0)(S – s0)

]
.

Consider an implicit functional system with respect to the independent variable ξ as fol-
lows:

ϑ(ξ , S) = S – s0 – s1ξ – M
[
S2(ξ )ξ 2 – S3(ξ )ξ 2 – 2(S – s0)(S – s0)

]
, (5.14)

since ϑ is an analytic in a neighborhood of (o, s0), where ϑ(o, s0) = 0 and, ∂ϑ
∂S (o, s0) 
= 0.

Theorem ([59]) Let f be a ℘ ′-mapping of an open set E ⊂ sn+m into Sn, such that f (a, b) = 0
for some point (a, b) ∈ E. Assume that A = f ′(a, b) and Ax is invertible. Then the following
properties hold in the open sets U ⊂ sn+m and W ⊂ Sm with (a, b) ∈ U and b ∈ W .

(i) For each y ∈ W , there exists a unique x such that (x, y) ∈ U and f (x, y) = 0.
(ii) If x is defined to be g(y), then

g(b) = a,

f
(
g(y), y

)
= 0 (y ∈ W ),

g ′(b) = –(Ax)–1Ay,

where g is a ℘ ′-mapping of W into Sn.
(iii) The function g is implicitly defined by (ii).

One can see that S = S(ξ ) is analytical in a neighborhood of the point (o, s0) and has positive
radius. It shows that the power series Eq. (5.5) is convergent in a neighborhood of the point
(o, s0).

6 The modified trial equation method for Eq. (1.1)
In this section, we gave a brief description of the modified trial method that was proposed
by Liu [60, 61]; some authors [62–64] improved this method. Now, let us consider the time
FPDEs, say in the four variables x, y, z and t. In the following we give the main steps of the
modified trial method and we obtain some traveling wave solutions of Eq. (1.1):

Step 1: Consider the time FPDE defined by Eq. (2.3) and take the wave transformation
as Eq. (5.2). Under this transformation, we were permitted to reduce Eq. (2.3) to ODE.
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Step 2: Take the trial equation as follows:

ψ ′ =
F(ψ)
G(ψ)

=
∑n

i=0 Aiψ
i

∑l
j=0 Bjψ j

=
A0 + a1ψ + A2ψ

2 + · · · + Anψ
n

B0 + B1ψ + B2ψ2 + · · · + Blψ l ,

ψ ′′ =
F(ψ)(F ′(ψ)G(ψ) – F(ψ)G′(ψ))

G3(ψ)
,

(6.1)

where F and G are polynomials in ψ . On substituting (6.1) into (5.4) yields an equation of
Ω(ψ) of polynomial in ψ

Ω(ψ) = psψ
s + · · · + p1ψ + p0,

we found a relation between n and l according to the balance principle and determined
some values of them.

Step 3: Setting the coefficients of Ω(ψ) to zero yields a system of algebraic equations:

pi = 0, i = 0, 1, . . . , s.

By solving the obtained system of algebraic equations, we can determine the values of
A0, . . . , An and B0, . . . , Bl .

Step 4: Rewrite Eq. (5.11) by the following integral form:

ξ – ξ0 =
∫ F(ψ)

G(ψ)
dψ , (6.2)

where ξ0 is the constant of integration. When we classify the roots of F(ψ) using the com-
plete discrimination system, we obtain the analytical solutions of Eq. (1.1).

Now, applying the modified trial equation method for the (3 + 1)-dimensional time-
fractional SZKB equation with the wave transformation defined by Eq. (5.2), by employing
(6.1), (6.2), and using the balance principle yields n = l + 2. This resolution procedure was
applied and we obtained results as follows.

Case 1: If we take l = 0, then n = 2, and

ψ ′ =
A0 + A1ψ + A2ψ

2

B0
,

ψ ′′ =
(A1 + 2A2ψ)(A0 + A1ψ + A2ψ

2)
B2

0
,

(6.3)

thus, we have a system of algebraic equations from the coefficients of polynomial of u.
Solving this system, we get

A0 = 0, A2 = –
aB0

6dp
, r = ±

√
–

bp2 + cq2

c
, k = –

4dp2A1

B0
.

Substituting from the above coefficients into (6.2) and integrating, we get the solutions to
(5.4), as follows:

ξ – ξ0 =
∫ B0

A2ψ2 + a1ψ
dψ , (6.4)
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this implies

ψ(ξ ) =
3kB0

2p(6dP exp(± k
4dp2B0

(ξ – ξ0)) – aB0)
, (6.5)

thus,

u(x, y, z, t) =
(

3kB0

2p(6dP exp(± k
4dp2B0

(px + qy + rz – ktα
Γ (1+α) – ξ0)) – aB0)

)2

. (6.6)

For simplicity, take ξ0 = 0, A1 = A2 = 1 then the solution Eq. (6.6) is reduced to the following
solution:

u(x, y, z, t) =
(

1
exp(γ (px + qy + rz – ktα

Γ (α+1) )) – 1

)2

, (6.7)

where γ = ±A1
B0

. We represent the solution defined by Eq. (6.7) using the 2D plot, see
Fig. 3b, and the 3D plots, see Fig. 3a and Fig. 4.

Figure 3 (a) The effect of α on the 3D double-layer solution of equation (6.7) with a fixed time t and the
parameters k = 0.3, p = 0.2, q = 0.2. (b) The corresponding 2D plot of (a) with the same parameters

Figure 4 The 3D double-layer solution of equation (6.7) at different values of α = 0.5, 0.9 with the suitable
parameters k = 0.3, p = 0.2, q = 0.2 which shows that when the value of α decreases the singularity becomes
clearer
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Case 2: If we take l = 1, then n = 3, and

ψ ′ =
A0 + A1ψ + A2ψ

2 + A3ψ
3

B0 + B1ψ
,

ψ ′′ =
((

A0 + A1ψ + A2ψ
2 + A3ψ

3)((B0 + B1ψ
)(

A1 + 2A2ψ + 3A3ψ
2))

– B1
(
A0 + A1ψ + A2ψ

2 + A3ψ
3))

/(B0 + B1ψ)3,

(6.8)

thus, we have a system of algebraic equations from the coefficients of polynomial of u.
Solving this system, we get

A0 = 0, A2 =
6dpA1B1 – aB2

0
6dpB0

, A3 = –
aB1

6dp
,

k =
4dp2A1

B0
, r = ±

√
–

bp2 + cq2

c
.

Substituting from the above coefficients into Eq. (6.8) and integrating, we get the solutions
to Eq. (5.4), as follows:

ξ – ξ0 =
∫ B0 + B1u

A3ψ3 + A2ψ2 + a1ψ
dψ , (6.9)

this implies

ξ – ξ0 = –
1

2A1

(
B0 ln

(
A1 + ψ(A2 + A3ψ)

)
– 2B0 ln(ψ)

+
1
σ

(
2(A2B0 – 2A1B1)tan–1

(
A2 + 2A3ψ

σ

)))
, (6.10)

where σ =
√

4A1A3 – 2A2
2. Substituting the values of Ai, i = 1, 2, 3, thus

ψ(ξ ) =
(

3k
2ap + exp( k(ξ0–ξ )

4dp2 )

)
, (6.11)

where ξ = px + qy + rz – ktα
Γ (α+1) .

For simplicity, take ξ0 = 0 then the solution Eq. (6.11) is reduced to the following solu-
tion:

u(x, y, z, t) =
(

3k

2ap + exp(
–k(px+qy+rz– ktα

Γ (α+1) )
4dp2 )

)2

. (6.12)

We represent the solution defined by Eq. (6.12) using the 2D plot, see Fig. 5b, and the 3D
plots, see Fig. 5a and Fig. 6.

7 Conclusion
In this paper, we considered a (3 + 1)-dimensional time-fraction Schamel–Zakharov–
Kuznetsov–Burgers equation, which described the nonlinear plasma-dust ion acoustic
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Figure 5 (a) The effect of α on the 3D double-layer solution of equation (6.12) with a fixed time t and the
parameters k = 0.3, p = 0.2, q = 0.2. (b) The corresponding 2D plot of (a) which shows that when the value of
α increases the interval of the stability of the solution also increases

Figure 6 The 3D double-layer solution of equation (6.12) at different values of α = 0.5, 0.9 with the suitable
parameters k = 0.3, p = 0.2, q = 0.2

waves (DIAWs) in a magnetized dusty plasma. The Lie point symmetries were applied
successfully to the study of the (3 + 1)-dimensional time-fraction Schamel–Zakharov–
Kuznetsov–Burgers equation. Based on the Riemann–Liouville derivatives, we deduced
the corresponding vector fields, which helped us to construct the symmetry reductions
of the time-fractional SZKB equation. Furthermore, we obtained four kinds of conserva-
tion laws with independent variables laying the foundation of Lie point symmetries. Also,
we constructed a new set of analytical solutions via two powerful methods, which are the
explicit power series method and the modified trial equation method. Moreover, to intro-
duce a better understanding of the dynamics of these solutions, we provided their graphic
analysis of Eq. (1.1). As shown in Fig. 3, It was noticed that the solution u(x, y, z, t) defined
by Eq. (6.7) remained stable for –4.35 < x < 2.75 and has a singularity outside this interval.
It can easily be observed in Figs. 4 and 6 that the solutions are in line with the values of
α, it means that the singularity becomes clearer when the value of α decreases. Thus, we
expect that the obtained results might serve as the explanation of the physical meaning
of the time-fractional SZKB equation with more accuracy. However, we can extend the
symmetry analysis to the time-space fractional (3 + 1)-dimensional Schamel–Zakharov–
Kuznetsov–Burgers equation where that work may be presented later elsewhere.
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