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Abstract
In this paper, we investigate distributed robust adaptive synchronization for complex
networked systems with bounded disturbances. We propose both average
synchronization protocol and leader-following synchronization protocol based on
adaptive control and variable structure control strategies. The synchronization
conditions do not require any global information except a connection assumption
under the adaptive control method. Furthermore, the external disturbances are
attenuated effectively. Finally, we present numerical simulations to illustrate the
theoretical findings.
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1 Introduction
Recently, distributed cooperative control for complex networked systems has absorbed a
mount of attention due to its widely applications in biological, physical, social, and many
engineering sciences. Researches including synchronization [1–4], consensus [5, 6], con-
tainment [7, 8], and flocking [9] are intensively investigated.

Among the distributed cooperative control for complex networked systems, synchro-
nization is one of the most fundamental problems, which means that the states of the
agents reach an agreement on a common physical quantity of interest by implement-
ing an appropriate consensus protocol based on the information from local neighbors
[10]. In the past decades, many different control protocols have been reported for driv-
ing the complex network to synchronize, such as adaptive control [11, 12], impulsive con-
trol [13, 14], intermittent control [15], and event-triggered control [16, 17]. Furthermore,
synchronization behavior is mainly influenced by the dynamics of each node. Synchro-
nization (or consensus) of networked systems with nonlinear dynamics or disturbances
is intensively investigated [18]. Synchronization was studied for heterogenous networks
with piecewise smooth nonlinear coupling topology [19]. On one hand, external distur-
bance is a main source of instability and poor performance, which widely exists in real
processes. Thereby it is of great significance to investigate distributed coordination for
nonlinear multiagent systems with bounded disturbances. A robust consensus algorithm
was studied for double integrator multiagent systems with exogenous disturbances by uti-
lizing a nonsmooth back-stepping control technique [20]. The work in [21] investigated
the consensus of the multiagent systems with a nonlinear coupling function and external
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disturbances based on disturbance observer and H∞ control method. Robust consensus
tracking was investigated for a class of second-order multiagent systems with disturbances
and unmodeled dynamics [22]. Using sliding-mode control method, the work in [23] in-
vestigated the finite consensus and containment of first-order nonlinear multiagent sys-
tems with disturbances under directed topology. In [24] a distributed leader-following
consensus problem was studied for second-order multiagent systems with bounded dis-
turbances. Leader-following consensus conditions were derived for nonlinear multiagent
systems with communication delay and communication noise under switching topology
[25]. Adaptive consensus was investigated for uncertain parabolic PDE agents [26]. On the
other hand, for reducing the number of controlled nodes, a pinning control is proposed
for synchronization control of complex network [27, 28], in which the authors drive the
agents to realize synchronization via controlling a part of the nodes. For adjusting the cou-
pling gains, adaptive pinning control protocols were proposed for networked systems [29].
Adaptive pinning impulsive synchronization was investigated for time-delayed complex
networks [30]. An adaptive pinning synchronization criterion was obtained for linearly
coupled reaction–diffusion neural networks with mixed delays [31].

Motivated by the works mentioned, in this paper, we focus on nonlinear multiagent
systems with external disturbances. With the hybrid aid of adaptive control, pinning con-
trol, and variable structure control strategy, we propose a fully distributed synchronization
protocol, which can guarantee that the consensus condition requires no any global infor-
mation. The main contribution of this paper is twofold: (a) The disturbances are modeled
as a nonlinear function dependent on the relative information between the neighboring
agents. This leads to that the subsystems are coupled by an unknown nonlinear func-
tion, which exactly improves the complexity of the stability analysis; (b) adaptive control
is involved for adjusting the coupling gains for the average synchronization, and adaptive
pinning control protocol is designed for the leader-following case; (c) variable structure
control strategy is used for attenuating the bounded channel disturbances.

The rest of the paper is organized as follows. In Sect. 2, we state the model considered
in the paper and give some basic definitions, lemmas, and assumptions. In Sect. 3, we
propose an adaptive average synchronization protocol and give the convergency analysis
for the nonlinear complex network with bounded disturbances. In Sect. 4, we investigate
adaptive leader-following synchronization. Numerical examples are included to demon-
strate the proposed protocol in Sect. 5. Finally, Sect. 6 concludes the paper.

2 Preliminaries and model description
In this section, we introduce some notations and preliminaries. By In we denote the n × n
identity matrix. For a matrix A (or a vector x), AT (or xT ) represents the transpose of A
(or x); ‖x‖1, ‖x‖2, and ‖x‖∞ denote the 1-, 2-, and ∞-norms of a vector x, respectively;
A ⊗ B denotes the Kronecker product of matrices A and B.

Let G = (V ,E ,A) be a undirected graph with a nonempty set of nodesV = (υ1,υ2, . . . ,υN ),
a set of edges E ⊆ V × V , and a weighted adjacent matrix A = [aij]. In a undirected graph,
we denote an edge by (υi,υj), which means that vertices i and j can obtain information from
each other; aij = aji represents the weight of the edge (υj,υi), and aij > 0 ⇐⇒ (υj,υi) ∈ E ;
the neighbor sets are defined as Ni = {υj|(υj,υi) ∈ E}; and the Laplacian matrix L = [lij] ∈
RN×N is defined as lii =

∑N
j=1,j 	=i aij and lij = –aij, i 	= j [32].
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In this paper, we investigate distributed robust adaptive synchronization for complex
networked systems with bounded disturbances. The dynamics of the ith subsystem are
described as

ẋi(t) = f (t, xi) + ci(t)
∑

j∈Ni

aij(xj – xi)

+
∑

j∈Ni

aijg(xj – xi) + ui, i = 1, 2, . . . , N , (1)

where xi, ui ∈ Rn are the state and input vectors of the ith subsystem, respectively, f : R ×
Rn → Rn, i = 1, 2, . . . , k, are continuous vector-value functions, and g : Rn → Rn denotes
the disturbances dependent on the relative information between nodes i and j.

Remark 1 System (1) can be considered as a class of nonlinear coupled complex networks.
Also, it can be used to describe the network with channel disturbances.

The following assumptions and lemmas are necessary for the main results.

Assumption 1 The function f (t, x) satisfies the global Lipschitz condition, that is, there
exist a constant η > 0 such that

∥
∥f (t, x1) – f (t, x2)

∥
∥

2 ≤ η‖x1 – x2‖2, ∀x1, x2 ∈ RN .

Assumption 2 There exists a constant γ > 0 such that

∥
∥g(xj – xi)

∥
∥∞ ≤ γ

N
, i, j = 1, 2, . . . , N .

Assumption 3 The topology graph is fixed and connected.

Lemma 1 ([32]) The Laplacian matrix L has a simple eigenvalue 0, and the remaining
eigenvalues are positive if and only if the undirected graph is connected.

Lemma 2 ([10]) For an undirected connected graph G with Laplacian matrix L and a
vector x satisfying 1T x = 0, we have

min
x 	=0

{
xT Lx
xT x

}

= λ2(L).

Lemma 3 ([33]) If L = (lij) ∈ RN×N is a symmetric irreducible matrix with lii = –
∑N

j=1,j 	=i lij,
lij = lji ≤ 0 (i 	= j), then L is semipositive definite, and for any matrix E = diag(e, 0, . . . , 0) with
e > 0, all eigenvalues of the matrix (L + E) are positive.

Lemma 4 ([34]) Suppose that a scalar function V (x, t) satisfies the following conditions:
(a) V (x, t) is lower bounded;
(b) V̇ (x, t) is negative semidefinite;
(c) V̇ (x, t) is uniformly continuous in t.

Then V̇ (x, t) → 0 as t → ∞.
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3 Average synchronization of complex network with bounded disturbances
In this section, we investigate distributed robust adaptive average synchronization for
complex networked systems with bounded disturbances. The main purpose of this section
is to design a distributed consensus protocol for system (1) such that xi(t) → xj(t) → x̄(t)

as t → ∞, where x̄(t) =
∑N

i=1 xi(t)
N . The proposed consensus protocol is

ui(t) = ci(t) sgn

(∑

j∈Ni

aij(xj – xi)
)

, i = 1, 2, . . . , N , (2)

where the initial values of adaptive parameters ci(0) > 0, i = 1, 2, . . . , N , ci(t) are decided by

ċi(t) = τi

(∑

j∈Ni

aij(xj – xi)
)T(∑

j∈Ni

aij(xj – xi)
)

+ τi

∥
∥
∥
∥

∑

j∈Ni

aij(xj – xi)
∥
∥
∥
∥

1

= τi

(∑

j∈Ni

lijxj

)T(∑

j∈Ni

lijxj

)

+ τi

∥
∥
∥
∥

∑

j∈Ni

lijxj

∥
∥
∥
∥

1
, (3)

τi > 0 is the weight of ci(t), and sgn(·) is defined as sgn(x) = 1 for x > 0, sgn(x) = –1 for x < 0,
and sgn(x) = 0 for x = 0.

Remark 2 Adaptive synchronization protocol (2)–(3) is called a node-based adaptive con-
trol [11, 12], in which the adaptive parameters are decided by the addition of relative in-
formation between the ith node and its neighbor nodes, whereas the adaptive parameter
of the edge-based adaptive control is adjusted by any two adjacent nodes. Both adaptive
methods can guarantee that the synchronization conditions do not depend on the infor-
mation of the Laplacian matrix. The disadvantage is that the computing complexity in-
creases. The cost-guaranteed adaptive control will be given in the future work.

Remark 3 According to (3), ċi(t) > 0. Then we can conclude that ci(t) > 0 for all t ≥ 0
because ci(0) > 0.

Under the proposed protocol, system (1) can be rewritten as

ẋi(t) = f (t, xi) + ci(t)
∑

j∈Ni

aij(xj – xi) +
∑

j∈Ni

aijg(xj – xi)

+ ci(t) sgn

(∑

j∈Ni

aij(xj – xi)
)

, i = 1, 2, . . . , N . (4)

Let ei(t) = xi(t) – x̄(t). Then

ėi(t) = f (t, xi) + ci

N∑

j=1

aij(xj – xi) +
N∑

j=1

aijg(xj – xi)

+ ci sgn

( N∑

j=1

aij(xj – xi)

)

–
∑N

j=1 f (t, xj)
N
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–
∑N

k=1 ck
∑N

j=1 akj(xj – xk)
N

–
∑N

k=1
∑N

j=1 akjg(xj – xk)
N

–
∑N

k=1 ck sgn(
∑N

j=1 akj(xj – xk))
N

= f (t, xi) –
∑N

j=1 f (t, xj)
N

– ci

N∑

j=1

lijej +
N∑

j=1

aijg(xj – xi)

– ci sgn

( N∑

j=1

lijej

)

+
∑N

k=1 ck
∑N

j=1 lkjej

N
–

∑N
k=1

∑N
j=1 akjg(xj – xk)

N

+
∑N

k=1 ck sgn(
∑N

j=1 lkjej)
N

. (5)

Denote e(t) = (eT
1 (t), . . . , eT

n (t))T , F(t, x) = (f T (t, x1), . . . , f T (t, xN ))T , f̄ (t) =
∑N

j=1 f (t,xj)
N ,

H = –
∑N

k=1
∑N

j=1 akjg(xj–xk )
N +

∑N
k=1 ck sgn(

∑N
j=1 lkjej)

N , and ḡ(t) = (gT
1 (t), . . . , gT

n (t))T , where gi(t) =
∑N

j=1 aijg(xj – xi), then

ė(t) = F(t, x) – 1N ⊗ f̄ (t, x) – (CL ⊗ In)e – (C ⊗ In) sgn
(
(L ⊗ In)e

)
+ ḡ(t)

–
(

1
N

1N 1T
N CL ⊗ In

)

e + 1N ⊗ H , (6)

where C = diag(c1, . . . , cn).

Theorem 1 Consider a networked multiagent system with N following nodes, where each
following node has dynamics as in (1). Suppose that Assumptions 1, 2, and 3 hold. Using
the consensus protocol (4) with adaptive strategy (5) for (1), average synchronization of
system (1) can be achieved. Furthermore, all the following nodes will asymptotically track
the average state.

Proof According to Lemma 1, L̃ is positive definite. We choose the Lyapunov candidate
function

V =
1
2

eT (L ⊗ In)e +
N∑

i=1

(ci – c)2

2τi
, (7)

where c > max{1,γ } is a positive constant.
Differentiating V respect to t along (10), we obtain

V̇ = eT (L ⊗ In)ė + 2
N∑

i=1

(ci – c)2

2τi
ċi

= eT (L ⊗ In)
[

F(t, x) – 1N ⊗ f̄ (t, x) – (CL ⊗ In)e

– (C ⊗ In) sgn
(
(L ⊗ In)e

)
+ ḡ(t) –

(
1
N

1N 1T
N CL ⊗ In

)

e + 1N ⊗ H
]

+
N∑

i=1

(ci – c)
((∑

j∈Ni

lijej

)T(∑

j∈Ni

lijej

)

+
∥
∥
∥
∥

∑

j∈Ni

lijej

∥
∥
∥
∥

1

)

. (8)
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Noting that L1N = 0, we have

V̇ = –eT (LCL ⊗ In)e – eT (LC ⊗ In) sgn
(
(L ⊗ In)e

)

+ eT (L ⊗ In)
(
F(t, x) – 1N ⊗ f (t, x̄) + ḡ(t)

)

+
N∑

i=1

(ci – c)
((∑

j∈Ni

lijej

)T(∑

j∈Ni

lijej

)

+
∥
∥
∥
∥

∑

j∈Ni

lijej

∥
∥
∥
∥

1

)

. (9)

We have

N∑

i=1

ci

(∑

j∈Ni

lijej

)T(∑

j∈Ni

lijej

)

=
N∑

i=1

(∑

j∈Ni

cilijej

)T(∑

j∈Ni

lijej

)

= eT (LCL ⊗ In)e (10)

and

eT (LC ⊗ In) sgn
(
(L ⊗ In)e

)
=

N∑

i=1

ci

(∑

j∈Ni

lijej

)T

sgn

(∑

j∈Ni

lijej

)

=
N∑

i=1

(

ci

∥
∥
∥
∥

∑

j∈Ni

lijej

∥
∥
∥
∥

1

)

. (11)

Substituting (10) and (11) into (9), we get

V̇ = –ceT(
L2 ⊗ In

)
e –

N∑

i=1

(

cIn

∥
∥
∥
∥

∑

j∈Ni

lijej

∥
∥
∥
∥

1

)

+ eT (L ⊗ In)
(
F(t, x) – 1N ⊗ f (t, x̄) + ḡ(t)

)
. (12)

According to Assumption 1, we have

eT (L ⊗ In)
(
F(t, x) – 1N ⊗ f (t, x̄)

)

=
(
(L ⊗ In)e

)T(
F(t, x) – 1N ⊗ f (t, x̄)

)

≤ (
(L ⊗ In)e

)T (L ⊗ In)e +
(
F(t, x) – 1N ⊗ f (t, x̄)

)T(
F(t, x) – 1N ⊗ f (t, x̄)

)

= eT(
L2 ⊗ In

)
e +

N∑

i=1

(
f (t, xi) – f (t, x̄)

)T(
f (t, xi) – f (t, x̄)

)

≤ eT(
L2 ⊗ In

)
e + η2eT e (13)

and

eT (L ⊗ In)ḡ(t) ≤
N∑

i=1

∣
∣
∣
∣

(∑

j∈Ni

lijej

)T

gi(t)
∣
∣
∣
∣ ≤

N∑

i=1

(

γ

∥
∥
∥
∥

∑

j∈Ni

lijej

∥
∥
∥
∥

1

)

. (14)
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Substituting (13) and (14) into (12), we can conclude

V̇ ≤ –(c – 1)eT(
L2 ⊗ In

)
e + η2eT e – (c – γ )

∥
∥
∥
∥

∑

j∈Ni

lijej

∥
∥
∥
∥

1
. (15)

Since L is real and symmetric, there is an orthogonal matrix Q such that L = QTΛQ.
Denoting L 1

2 = QTΛ
1
2 Q, we have 1T L1 = 1T L 1

2 L 1
2 1 = 0. Therefore 1T L 1

2 = 0, and thus
1T L 1

2 e = 0. According to Lemma 2, eT (L2 ⊗ In)e = ((L 1
2 ⊗ In)e)T (L ⊗ In)((L 1

2 ⊗ In)e) ≤
λ2((L 1

2 ⊗ In)e)T ((L 1
2 ⊗ In)e) = λ2eT (L ⊗ In) ≤ λ2

2eT e. Then we have

V̇ ≤ –(c – 1)λ2
2eT e + η2eT e – (c – γ )

∥
∥
∥
∥

∑

j∈Ni

lijej

∥
∥
∥
∥

1
. (16)

Since c > max{1 + η

λ2
2

,γ }, V̇ ≤ 0, and thus V is not increasing and is bounded. Then ei, ci

are bounded, which means that f̄ (t, x) is also bounded. From (12), V̇ is bounded. So V
is uniformly continuous. By Lemma 4 we conclude that V̇ (e, t) → 0 as t → ∞. Denoting
W (e(t)) = ((c – 1)λ2

2 – η2)eT e, we have 0 ≤ W (e(t)) ≤ –V̇ . We know that W (e(t)) → 0 as
t → ∞, and thus ei(t) → 0, that is, limt→∞(xi – x̄) = 0 for all i = 1, 2, . . . , N . Theorem 1 is
proved. �

Remark 4 In Theorem 1, we see that the synchronization condition does not depend on
the eigenvalue of the Laplacian matrix. This is different from the nonadaptive control case,
in which the control gain is no less than a threshold value depending on the eigenvalue.

4 Leader-following synchronization of complex network with bounded
disturbances

In this section, we investigate distributed robust adaptive leader-following synchroniza-
tion for complex networked systems with bounded disturbances. Suppose that there exists
a leader (or virtual leader) in the network, which is described as

ẋ0(t) = f
(
t, x0(t)

)
. (17)

The main purpose of this section is designing a distributed consensus protocol for system
(1) such that

lim
t→∞‖xi – x0‖ = 0.

We propose the consensus protocol

ui(t) = ci(t)hi(x0 – xi) + ci(t)
(∑

j∈Ni

aij(xj – xi) + hi(x0 – xi)
)

, i = 1, 2, . . . , N . (18)

In (4) the adaptive parameters ci is decided by

ċi(t) = τi

(∑

j∈Ni

aij(xj – xi) + hi(x0 – xi)
)T(∑

j∈Ni

aij(xj – xi) + hi(x0 – xi)
)

+ τi

∥
∥
∥
∥

(∑

j∈Ni

l̃ijej

)∥
∥
∥
∥

1
, i = 1, 2, . . . , N , (19)
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where τi > 0 is the weight of ci(t) and ci(0) > 0, sgn(·) is defined as sgn(x) = 1 for x > 0,
sgn(x) = –1 for x < 0, and sgn(x) = 0 for x = 0. If the ith node is pinned by the virtual leader,
then hi = 1; otherwise, hi = 0.

Under the proposed protocol, system (1) can be rewritten as

ẋi(t) = f (t, xi) + ci(t)
(∑

j∈Ni

aij(xj – xi) + hi(x0 – xi)
)

+
∑

j∈Ni

aijgij(xj – xi)

+ ci(t) sgn

(∑

j∈Ni

aij(xj – xi) + hi(x0 – xi)
)

, i = 1, 2, . . . , N . (20)

Let ei(t) = xi(t) – x̄(t). Then we have

ėi(t) = f (t, xi) – f (t, x0) + ci

(∑

j∈Ni

aij(xj – xi) + hi(x0 – xi)
)

+ ci sgn

(∑

j∈Ni

aij(xj – xi) + hi(x0 – xi)
)

+
∑

j∈Ni

aijgij(ej – ei)

= f (t, xi) – f (t, x0) + ci

(∑

j∈Ni

aij(ej – ei) – hiei

)

+ ci sgn

(∑

j∈Ni

aij(ej – ei) – hiei

)

+
∑

j∈Ni

aijgij(ej – ei)

= f (t, xi) – f (t, x0) – ci

(∑

j∈Ni

lijej + hiei

)

– ci sgn

(∑

j∈Ni

lijej + hiei

)

+
∑

j∈Ni

aijgij(ej – ei). (21)

Let L̃ = (l̃ij), l̃ii = lii + hi, l̃ij = lij, i 	= j. Then

ėi(t) = f (t, xi) – f (t, x0) – ci
∑

j∈Ni

l̃ijej – ci sgn

(∑

j∈Ni

lijej

)

+
∑

j∈Ni

aijgij(ej – ei), (22)

and (19) can be rewritten as

ċi = τi

(∑

j∈Ni

l̃ijej

)T(∑

j∈Ni

l̃ijej

)

+ τi

∥
∥
∥
∥

∑

j∈Ni

(l̃ijej)
∥
∥
∥
∥

1
. (23)

Denote the error vector e(t) = (eT
1 (t), . . . , eT

n (t))T , f̄ (t, x) = ((f (t, x1) – f (t, x0))T , . . . ,
(f (t, xN ) – f (t, x0))T )T , and ḡ(t) = (gT

1 (t), . . . , gT
n (t))T , where gi(t) =

∑N
j=1 aijg(ej – ei). Then

ė(t) = –(CL̃ ⊗ In)e – (C ⊗ In) sgn
(
(L̃ ⊗ In)e

)
+ f̄ (t, x) + ḡ(t), (24)

where C = diag(c1, . . . , cn).
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Theorem 2 Consider a networked multiagent system with N following nodes and a virtual
leader, where each following node has dynamics as in (1), and the virtual leader is described
as in (17). Suppose that Assumptions 1, 2, and 3 hold. Using the consensus protocol (18)
with adaptive strategy (19) for (1), leader-following synchronization of system (1) can be
achieved if there exists at least one pinned node. Furthermore, all the following nodes will
asymptotically track the virtual leader.

Proof According to Lemma 1, L̃ is positive definite. We choose the Lyapunov candidate
function

V =
1
2

eT (L̃ ⊗ In)e +
N∑

i=1

(ci – c)2

2τi
, (25)

where c > max{1,γ } is a constant.
Differentiating V with respect to t along (10), we obtain

V̇ = eT (L̃ ⊗ In)ė + 2
N∑

i=1

(ci – c)2

2τi
ċi

= eT (L̃ ⊗ In)
[
–(CL̃ ⊗ In)e – (C ⊗ In) sgn

(
(L̃ ⊗ In)e

)
+ f̄ (t, x) + ḡ(t)

]

+
N∑

i=1

(ci – c)
((∑

j∈Ni

l̃ijej

)T(∑

j∈Ni

l̃ijej

)

+
∥
∥
∥
∥

∑

j∈Ni

l̃ijej

∥
∥
∥
∥

1

)

= –eT (L̃CL̃ ⊗ In)e – eT (L̃C ⊗ In) sgn
(
(L̃ ⊗ In)e

)

+ eT (L̃ ⊗ In)
(
f̄ (t, x) + ḡ(t)

)

+
N∑

i=1

(ci – c)
((∑

j∈Ni

l̃ijej

)T(∑

j∈Ni

l̃ijej

)

+
∥
∥
∥
∥

∑

j∈Ni

l̃ijej

∥
∥
∥
∥

1

)

. (26)

Note that

N∑

i=1

ci

(∑

j∈Ni

l̃ijej

)T(∑

j∈Ni

l̃ijej

)

=
N∑

i=1

(∑

j∈Ni

cil̃ijej

)T(∑

j∈Ni

l̃ijej

)

= eT (L̃CL̃ ⊗ In)e (27)

and

eT (L̃C ⊗ In) sgn
(
(L̃ ⊗ In)e

)

=
N∑

i=1

ci

(∑

j∈Ni

l̃ijej

)T

sgn

(∑

j∈Ni

l̃ijej

)

=
N∑

i=1

(

ci

∥
∥
∥
∥

∑

j∈Ni

l̃ijej

∥
∥
∥
∥

1

)

. (28)
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Substituting (27) and (28) into (26), we have

V̇ = –ceT(
L̃2 ⊗ In

)
e –

N∑

i=1

(

cIn

∥
∥
∥
∥

∑

j∈Ni

l̃ijej

∥
∥
∥
∥

1

)

+ eT (L̃ ⊗ In)
(
f̄ (t, x) + d(t)

)
. (29)

According to Assumption 1, we have

eT (L̃ ⊗ In)f̄ (t, x)

=
(
(L̃ ⊗ In)e

)T f̄ (t, x) ≤ (
(L̃ ⊗ In)e

)T (L̃ ⊗ In)e +
(
f̄ (t, x)

)T f̄ (t, x)

= eT(
L̃2 ⊗ In

)
e +

N∑

i=1

(
f (t, xi) – f (t, x0)

)T(
f (t, xi) – f (t, x0)

)

≤ eT(
L̃2 ⊗ In

)
e + η2eT e (30)

and

eT (L̃ ⊗ In)d(t) ≤
N∑

i=1

∣
∣
∣
∣

(∑

j∈Ni

)T

di(t)
∣
∣
∣
∣

≤ γ
∣
∣eT (L̃ ⊗ In)

∣
∣

≤
N∑

i=1

(

γ

∥
∥
∥
∥

∑

j∈Ni

l̃ijej

∥
∥
∥
∥

1

)

. (31)

Substituting (30) and (31) into (29), we get

V̇ ≤ –(c – 1)eT(
L̃2 ⊗ In

)
e – (c – γ )

∥
∥
∥
∥

∑

j∈Ni

l̃ijej

∥
∥
∥
∥

1
. (32)

Since c > max{1,γ }, V̇ ≤ 0, and thus V is not increasing, and limt→∞ V (t) exists. Denote
V (∞) = limt→∞ V (t). Furthermore, ei, ci are bounded, which means that f̄ (t, x) is also
bounded. According to (8), ėi is bounded.

Let

W
(
e(t)

)
= (c – 1)eT(

L̃2 ⊗ In
)
e. (33)

Note that W (e(t)) ≤ –V̇ (e(t), ci(t)),
∫ ∞

0 W (t) dt ≤ –
∫ ∞

0 V̇ (t) dt = V (0) – V (∞), and
∫ ∞

0 W (t) dt exists and is bounded. Since ei(t) and ėi are bounded, Ẇ (e(t)) = –2eT (L̃2 ⊗ In)ė
is also bounded. Then W (e(t)) is uniformly continuous with respect to t. According to
Lemma 4, W (e(t)) → 0 as t → ∞. Then ei(t) → 0, that is, limt→∞(xi – x0) = 0 for all
i = 1, 2, . . . , N . Theorem 2 is proved. �

5 Simulations
In this section, we give a numerical simulation to illustrate the effectiveness of the obtained
results. For convenience, choose a network with eight nodes. The topology of the network
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Figure 1 Topology graph with 8 nodes

Figure 2 Trajectories of xi1 under average
synchronization protocol (2)

Figure 3 Trajectories of xi2 under average
synchronization protocol (2)

is described as the graph in Fig. 1. According to the definition of the topology graph, we
conclude that the Laplacian matrix is

L̃ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

4 –1 0 0 0 0 –1 –1
–1 2 –1 0 0 0 0 0
0 –1 3 –1 0 0 –1 0
0 0 –1 2 0 0 –1 0
0 0 0 0 2 –1 0 –1
0 0 0 0 –1 2 –1 0

–1 0 –1 –1 0 –1 4 0
–1 0 0 0 –1 0 0 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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The ith node is described as

ẋi(t) = f (t, xi) + ci(t)
∑

j∈Ni

aij(xj – xi) +
∑

j∈Ni

aijg(xj – xi) + ui,

where f (t, xi) = 3xi1 + 2 sin2 xi + cos xi2 satisfies the global Lipschitz condition. The non-
linear disturbance function is chosen as g(xj – xi) = sin 3(xj – xi) + cos(xj – xi). It is easy to
verify that Assumptions 1 and 2 hold.

According to Theorem 1, the average synchronization should be realized under pro-
tocol (2) with adaptive strategy (3). The simulation results are shown in Figs. 2–3. The
state of each node synchronizes to the average state. We have chosen the initial values as
c1(0) = 0.4, c2(0) = 0.7, c3(0) = 0.6, c4(0) = 1.2, c5(0) = 0.2, c6(0) = 0.5, c7(0) = 0.9, c8(0) = 0.8.
According to Fig. 4, the trajectories of the adaptive parameters ci, i = 1, 2, . . . , 8, asymptot-
ically converge to constants.

According to Theorem 2, the leader-following synchronization should be realized un-
der protocol (18) with adaptive strategy (19). The initial values of the leaders are chosen
as (1.2, –1)T . Choose the first node as a pinned node. From Figs. 5–6, all the followers can
track the leader asymptotically; ci(0), i = 1, . . . , 8, are chosen as 0.3, 1.2, 0.7, 0.8, 1.6, 0.5, 2.0,
0.4. According to Fig. 7, the trajectories of the adaptive parameters ci, i = 1, 2, . . . , 8, asymp-
totically converge to constants.

Figure 4 Trajectories of the adaptive parameters ci
in (3)

Figure 5 Trajectories of xi1 under leader-following
synchronization protocol (18)
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Figure 6 Trajectories of xi2 under leader-following
synchronization protocol (18)

Figure 7 Trajectories of the adaptive parameters
in (19)

6 Conclusions
In this paper, we investigated distributed robust adaptive synchronization problem for
nonlinear complex networked systems with bounded disturbances. Based on adaptive
control and variable control strategies, we proposed both the average synchronization and
leader-following synchronization protocols and obtained the synchronization, which can
guarantee that the synchronization conditions require no any global information except a
connection assumption under the adaptive control method. Finally, we presented numer-
ical simulations to illustrate the theoretical results.
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