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Abstract
This paper is concerned with the stability of a discrete-time multi-patch
Beddington–DeAngelis type predator-prey model with time-varying delay, where the
dispersal of both predators and prey is considered. A nonstandard finite difference
scheme is used to discretize this model. Then, combining the Lyapunov–Krasovskii
method with the graph-theoretical technique, a stability criterion is derived, which is
closely related to the dispersal topology. And an example with numerical simulation
is given to demonstrate the effectiveness of the obtained results.
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1 Introduction
A famous predator-prey system with Beddington–DeAngelis type response in the follow-
ing form

dx(t)
dt

= x(t)
(

r – bx(t) –
py(t)

1 + ux(t) + vy(t)

)
,

dy(t)
dt

= y(t)
(

–γ – δy(t) +
qx(t)

1 + ux(t) + vy(t)

)
,

(1)

has been widely studied recently (see, e.g., [1–5]). In system (1), x(t) and y(t) represent
the densities of prey and predators at time t, respectively, For biological significance of
parameters r, γ , b, δ, p, q, u, v, we refer the reader to [6, 7].

In practice, due to competition or foraging, species dispersal among multiple patches
(groups) is an inevitable phenomenon. Most existing results that are concerned with
predator-prey models only considered the prey disperse among n (n > 2) patches (see,
e.g., [8, 9]). In reality, not only prey but predators can disperse among n patches. So con-
sidering the multiple dispersal situation is more practical. In [10, 11], continuous-time and
discrete-time multi-patch predator-prey models with the dispersal of both predators and
prey were considered, respectively. However, since time delay frequently occurs in almost
every situation, it is essential to take time delay into account. And until now, few results
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concern multi-patch predator-prey model with time delay, especially the situation that
both predators and prey disperse among multiple patch. And to our best knowledge, the
method in [10, 11] cannot be used directly to cope with time delay.

Based on the above discussion, it is greatly meaningful to study the following
Beddington–DeAngelis type predator-prey model with time-varying delay and multiple
dispersal among l patches:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dxi(t)
dt = xi(t)(ri – bixi(t) – eiyi(t – τ̃1(t)) – piyi(t)

1+uixi(t)+viyi(t) )

+
∑l

j=1 aij(xj(t) – αijxi(t)),
dyi(t)

dt = yi(t)(–γi – δiyi(t) + εixi(t – τ̃2(t)) + qixi(t)
1+uixi(t)+viyi(t) )

+
∑l

j=1 bij(yj(t) – βijyi(t)), t ≥ 0, i ∈ L,

(2)

where L = {1, 2, . . . , l}, ri, bi, ei, . . . denote the corresponding parameters in patch i and are
all nonnegative constants, τ̃1, τ̃2 denote the time delays, aij(xj(t) – αijxi(t)) and bij(yj(t) –
βijyi(t)) stand for the dispersal of prey and predators from patch j to patch i respectively.
Constants aij, bij are the dispersal rate, and the meaning of αij, βij can be seen in [12]. It is
worth noting that few results have been reported on the stability of system (2).

Moreover, it is important and interesting to investigate discrete-time predator-prey
model, especially when the size of population is rarely small or the population has no over-
lapping generation. In this paper, we construct a nonstandard finite difference scheme and
apply it to system (2). Then, by simple calculation, one can have the explicit expression as
follows:

⎧⎪⎪⎨
⎪⎪⎩

xi(n + 1) =
xi(n)+h(rixi(n)+

∑l
j=1 aijxj(n))

1+h(bixi(n)+eiyi(n–τ1(n))+ piyi(n)
1+uixi(n)+viyi(n) +

∑l
j=1 aijαij)

,

yi(n + 1) =
yi(n)+h(εiyi(n)xi(n–τ2(n))+ qixi(n)yi(n)

1+uixi(n)+viyi(n) +
∑l

j=1 bijyj(n))

1+h(γi+δiyi(n)+
∑l

j=1 bijβij)
,

(3)

where i ∈ L, h > 0 is the time step size, and τ1(n) = [ τ̃1(nh)
h ], τ2(n) = [ τ̃2(nh)

h ], where [a] repre-
sents the integer part of a ∈ R

1
+, xi(n) and yi(n) are the numerical approximations of xi and

yi at tn = nh, respectively. Clearly, the solutions of system (3) are positive unconditionally
if the initial conditions are positive.

In this paper, a systematic method is provided to construct a global Lyapunov–
Krasovskii function for system (3), that is the combination of Lyapunov–Krasovskii func-
tion of each patch and the graph-theoretical technique on multiple digraphs. Then a crite-
rion is derived to ensure the stability of system (3), which is closely related to the topolog-
ical structure of the dispersal networks and the bound of the time-varying delay. Finally,
an example showing the effectiveness of the provided results is given.

2 Main results
Let N = {0, 1, 2, . . .}, R+ = [0, +∞), and L = {1, 2, . . . , l}. Write R

m for an m-dimensional
Euclidean space and denote by R

m
+ = {(y1, y2, . . . , ym)T ∈ R

m : yi > 0, i = 1, 2, . . . , m}. Define
S

m
δ (x∗) = {x ∈ R

m : |x – x∗| < δ}. The nonnegative function τ (n) denotes the time delay,
satisfying τm ≤ τ (n) ≤ τM , n ∈N, where τm and τM are positive integers.

A digraph G can be represented by G = (U ,V), where U = L is a vertices set and V is an
arcs set. Arc (i, j) ∈ V stands for an arc leading from vertex i to vertex j and (i, i) /∈ V for
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all i ∈ U . A digraph G is weighted if each arc (j, i) has a positive weight aij and aij > 0 if
and only if there exists an arc (i, j) in G . Denote by A = (aij)l×l the weight matrix of G . We
mean (G, A) as a digraph G with weight matrix A. Define the Laplacian matrix of G to be
L(G) = (ϕij)l×l , where

ϕij =

⎧⎨
⎩

∑
r �=i air , i = j,

–aij, i �= j.

For other details on graph theory, the reader can be referred to [13].
Without loss of generality, assume system (3) has a unique positive equilibrium

X∗ =
((

X∗
1
)T,

(
X∗

2
)T, . . . ,

(
X∗

l
)T)T,

where X∗
i = (x∗

i , y∗
i )T. Furthermore, we introduce X(n)

i = (xi(n), yi(n))T and Xn = ((X(n)
1 )T,

(X(n)
2 )T, . . . , (X(n)

l )T)T. Let ãij = aijqi(1 + viy∗)x∗
j , b̃ij = bijpi(1 + uix∗)y∗

j , Ã = (ãij)l×l , and B̃ =
(b̃ij)l×l . Moreover, denote by c(i)

1 and c(i)
2 the cofactor of the ith diagonal element of the

Laplacian matrix of (G1, Ã) and (G2, B̃), respectively. In this paper, we establish system (3)
on diagraphs (G1, Ã) and (G2, B̃). In (G1, Ã), the vertices represent prey and arcs denote the
dispersal of prey. In (G2, B̃), the vertices represent predators and arcs denote the dispersal
of predators. In order to better illustrate our model, we present an illustrative diagram for
the dispersal of both prey and predators as shown in Fig. 1.

From Fig. 1, we can see that there are two dispersal networks for our model, which,
respectively, illustrate the dispersal of prey and predators. While in many previous re-
sults, see [8, 9] for example, the authors only considered the dispersal of prey. In this case,
the illustrative diagram becomes the form of Fig. 2. While in reality, the dispersal of prey
and predators among patches should be consistent. Hence, considering the dispersal of
prey and predators simultaneously is more realistic. Another illustrative example is the
epidemic model in a patchy environment [14], in which both susceptible individuals and
infectious individuals disperse among patches.

Then a stability criterion for system (3) is given as follows.

Figure 1 A structure for system (3) on four patches with two weighted digraphs: digraph (G , Ã) represents the
dispersal of prey and digraph (G , B̃) represents the dispersal of predators
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Figure 2 A structure for system (3) on four patches with the dispersal of prey denoted by digraph (G , Ã)

Theorem 1 Suppose that digraphs (G1, Ã) and (G2, B̃) are strongly connected and there
exists θ > 0 such that c(i)

1 = θc(i)
2 for any i ∈ L. Suppose that there exist positive constants σ

(i)
1

and σ
(i)
2 satisfying the following inequality:

ε2
i h

2σ
(i)
1

< θ <
2σ

(i)
2

e2
i h

, (4)

and

λ
(i)
1 h

(
piuiy∗

i
1 + uix∗

i + viy∗
i

+
λ

(i)
1
2

– bi

)
+ σ

(i)
1

(
1 + τ

(2)
M – τ (2)

m
)

< 0,

λ
(i)
2 h

(
λ

(i)
2
2

– δi

)
+ σ

(i)
2

(
1 + τ

(1)
M – τ (1)

m
)

< 0, i ∈ L,

(5)

where λ
(i)
1 = qi(1 + viy∗) and λ

(i)
2 = θpi(1 + uix∗). Then, for any ε and M satisfying 0 < ε < M,

there exist h̃(ε, M) > 0 and S
2l
M(X∗) ∈R

2l
+ such that, for any h ∈ (0, h̃),

lim sup
n→∞

∣∣Xn – X∗∣∣ < ε, X0 ∈ S
2l
M

(
X∗).

Proof Define a Lyapunov function for system (3) as follows:

V (Xn) =
l∑

i=1

(
c(i)

1

3∑
r=1

V (i)
1,r

(
xi(n)

)
+ c(i)

2

3∑
r=1

V (i)
2,r

(
yi(n)

))
, (6)

where

V (i)
1,1

(
xi(n)

)
= λ

(i)
1

(
xi(n) – x∗

i ln xi(n)
)
,

V (i)
2,1

(
yi(n)

)
= λ

(i)
2

(
yi(n) – y∗

i ln yi(n)
)
,
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V (i)
1,2

(
xi(n)

)
= σ

(i)
1

n–1∑
r=n–τ2(n)

(
xi(r) – x∗

i
)2,

V (i)
2,2

(
yi(n)

)
= σ

(i)
2

n–1∑
r=n–τ1(n)

(
yi(r) – y∗

i
)2,

V (i)
1,3

(
xi(n)

)
= σ

(i)
1

n–τ
(2)
m∑

q=n–τ
(2)
M +1

n–1∑
r=q

(
xi(r) – x∗

i
)2,

V (i)
2,3

(
yi(n)

)
= σ

(i)
2

n–τ
(1)
m∑

q=n–τ
(1)
M +1

n–1∑
r=q

(
yi(r) – y∗

i
)2.

It is easy to show that V (Xn) ∈ C1(Rml;R+) and V (X∗) = 0.
Firstly, calculating �V (i)

1,1(xi(n)) along (3), one can arrive at

�V (i)
1,1

(
xi(n)

)
= V (i)

1,1
(
xi(n + 1)

)
– V (i)

1,1
(
xi(n)

)

= λ
(i)
1

(
xi(n + 1) – xi(n) – x∗

i ln

(
xi(n + 1)

xi(n)

))

= λ
(i)
1 h

(
xi(n) – x∗

i
)(

ri – bixi(n) – eiyi
(
n – τ1(n)

)

–
piyi(n)

1 + uixi(n) + viyi(n)

+
l∑

j=1

aij

(
xj(n)
xi(n)

– αij

))
+ o(h)

= λ
(i)
1 h

(
xi(n) – x∗

i
)(

–bi
(
xi(n) – x∗

i
)

– ei
(
yi

(
n – τ1(n)

)
– y∗

i
)

+
l∑

j=1

aij

(
xj(n)
xi(n)

–
x∗

j

x∗
i

))
– λ

(i)
1 h

(
xi(n) – x∗

i
)( piyi(n)

1 + uixi(n) + viyi(n)

–
piy∗

i
1 + uix∗

i + viy∗
i

)
+ o(h)

= –λ
(i)
1 bih

(
xi(n) – x∗

i
)2 – λ

(i)
1 eih

(
xi(n) – x∗

i
)(

yi
(
n – τ1(n)

)
– y∗

i
)

+
l∑

j=1

aijλ
(i)
1 hx∗

j

(
xj(n)

x∗
j

–
xi(n)

x∗
i

–
xj(n)x∗

i
xi(n)x∗

j
+ 1

)

–
λ

(i)
1 pih(1 + uix∗

i )(xi(n) – x∗
i )(yi(n) – y∗

i )
(1 + uixi(n) + viyi(n))(1 + uix∗

i + viy∗
i )

+
λ

(i)
1 pihuiy∗

i (xi(n) – x∗
i )2

(1 + uixi(n) + viyi(n))(1 + uix∗
i + viy∗

i )
+ o(h)

≤ λ
(i)
1 h

(
–bi +

piuiy∗
i

(1 + uixi(n) + viyi(n))(1 + uix∗
i + viy∗

i )
+

λ
(i)
1
2

)
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× (
xi(n) – x∗

i
)2 +

e2
i h
2

(
yi

(
n – τ1(n)

)
– y∗

i
)2

–
λ

(i)
1 pih(1 + uix∗

i )(xi(n) – x∗
i )(yi(n) – y∗

i )
(1 + uixi(n) + viyi(n))(1 + uix∗

i + viy∗
i )

+
l∑

j=1

ãijFij
(
xi(n), xj(n)

)
+ o(h), (7)

where Fij(xi(n), xj(n)) = h( xj(n)
x∗

j
– xi(n)

x∗
i

– xj(n)x∗
i

xi(n)x∗
j

+ 1). Similarly, �V (i)
2,1(yi(n)) can be estimated

as follows:

�V (i)
2,1

(
yi(n)

)
= V (i)

2,1
(
yi(n + 1)

)
– V (i)

2,1
(
yi(n)

)

= λ
(i)
2

(
yi(n + 1) – yi(n) – y∗

i ln

(
yi(n + 1)

yi(n)

))

= λ
(i)
2 h

(
yi(n) – y∗

i
)(

εixi
(
n – τ2(n)

)
+

qixi(n)
1 + uixi(n) + viyi(n)

– γi – δiyi(n) +
l∑

j=1

bij

(
yj(n)
yi(n)

– βij

))
+ o(h)

= λ
(i)
2 h

(
yi(n) – y∗

i
)(

εi
(
xi

(
n – τ2(n)

)
– x∗

i
)

– δi
(
yi(n) – y∗

i
)

+
l∑

j=1

bij

(
yj(n)
yi(n)

–
y∗

j

y∗
i

))
+ λ

(i)
2 h

(
yi(n) – y∗

i
)

×
(

qixi(n)
1 + uixi(n) + viyi(n)

–
qix∗

i
1 + uix∗

i + viy∗
i

)
+ o(h)

= –λ
(i)
2 δih

(
yi(n) – y∗

i
)2 + λ

(i)
2 εih

(
yi(n) – y∗

i
)(

xi
(
n – τ2(n)

)
– x∗

i
)

+
l∑

j=1

bijλ
(i)
2 hy∗

j

(
yj(n)

y∗
j

–
yi(n)

y∗
i

–
yj(n)y∗

i
yi(n)y∗

j
+ 1

)

+
λ

(i)
2 qih(1 + viy∗

i )(xi(n) – x∗
i )(yi(n) – y∗

i )
(1 + uixi(n) + viyi(n))(1 + uix∗

i + viy∗
i )

–
λ

(i)
2 qihvix∗

i (yi(n) – y∗
i )2

(1 + uixi(n) + viyi(n))(1 + uix∗
i + viy∗

i )
+ o(h)

≤ λ
(i)
2 h

(
–δi +

λ
(i)
2
2

)(
yi(n) – y∗

i
)2 +

ε2
i h
2

(
xi

(
n – τ2(n)

)
– x∗

i
)2

+
λ

(i)
2 qih(1 + viy∗

i )(xi(n) – x∗
i )(yi(n) – y∗

i )
(1 + uixi(n) + viyi(n))(1 + uix∗

i + viy∗
i )

+
l∑

j=1

b̃ijGij
(
yi(n), yj(n)

)
+ o(h), (8)
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where Gij(yi(n), yj(n)) = hθ ( yj(n)
y∗

j
– yi(n)

y∗
i

– yj(n)y∗
i

yi(n)y∗
j

+ 1). Then we estimate �V (i)
1,2(xi(n)),

�V (i)
1,3(xi(n)), �V (i)

2,2(yi(n)), and �V (i)
2,3(yi(n)) as follows:

�V (i)
1,2

(
xi(n)

)

= σ
(i)
1

n∑
r=n+1–τ2(n+1)

(
xi(r) – x∗

i
)2 – σ

(i)
1

n–1∑
r=n–τ2(n)

(
xi(r) – x∗

i
)2

= σ
(i)
1

((
xi(n) – x∗

i
)2 –

(
xi

(
n – τ2(n)

)
– x∗

i
)2

+
n–1∑

r=n+1–τ2(n+1)

(
xi(r) – x∗

i
)2 –

n–1∑
r=n+1–τ2(n)

(
xi(r) – x∗

i
)2

)

≤ σ
(i)
1

((
xi(n) – x∗

i
)2 –

(
xi

(
n – τ2(n)

)
– x∗

i
)2

+
n–1∑

r=n+1–τ
(2)
M

(
xi(r) – x∗

i
)2 –

n–1∑
r=n+1–τ

(2)
m

(
xi(r) – x∗

i
)2

)

= σ
(i)
1

((
xi(n) – x∗

i
)2 –

(
xi

(
n – τ2(n)

)
– x∗

i
)2 +

n–τ
(2)
m∑

r=n+1–τ
(2)
M

(
xi(r) – x∗

i
)2

)
, (9)

�V (i)
1,3

(
xi(n)

)

= σ
(i)
1

n–τ
(2)
m +1∑

q=n–τ
(2)
M +2

n∑
r=q

(
xi(r) – x∗

i
)2 – σ

(i)
1

n–τ
(2)
m∑

q=n–τ
(2)
M +1

n–1∑
r=q

(
xi(r) – x∗

i
)2

= σ
(i)
1

((
xi(n) – x∗

i
)2 +

n–1∑
r=n–τ

(2)
m +1

(
x(k)

i (r) – x(k∗)
i

)2

–
n–1∑

r=n–τ
(2)
M +1

(
xi(r) – x∗

i
)2 +

(
τ

(2)
M – τ (2)

m – 1
)(

xi(n) – x∗
i
)2

)

= σ
(i)
1

((
τ

(2)
M – τ (2)

m
)(

xi(n) – x∗
i
)2 –

n–τ
(2)
m∑

r=n+1–τ
(2)
M

(
xi(r) – x∗

i
)2

)
, (10)

�V (i)
2,2

(
yi(n)

)

≤ σ
(i)
2

((
yi(n) – y∗

i
)2 –

(
yi

(
n – τ1(n)

)
– y∗

i
)2 +

n–τ
(1)
m∑

r=n+1–τ
(1)
M

(
yi(r) – y∗

i
)2

)
, (11)

�V (i)
2,3

(
yi(n)

)

= σ
(i)
2

((
τ

(1)
M – τ (1)

m
)(

yi(n) – y∗
i
)2 –

n–τ
(1)
m∑

r=n+1–τ
(1)
M

(
yi(r) – y∗

i
)2

)
. (12)
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By (7), (8), (9), (10), (11), and (12), it follows that

c(i)
1

3∑
r=1

�V (i)
1,r

(
xi(n)

)
+ c(i)

2

3∑
r=1

�V (i)
2,r

(
yi(n)

)

≤ λ
(i)
1 c(i)

1 h
(

–bi +
piuiy∗

i
(1 + uix∗

i + viy∗
i )

+
λ

(i)
1
2

+
σ

(i)
1 (1 + τ

(2)
M – τ

(2)
m )

λ
(i)
1 h

)

× (
xi(n) – x∗

i
)2 + λ

(i)
2 c(i)

2 h
(

–δi +
λ

(i)
2
2

+
σ

(i)
2 (1 + τ

(1)
M – τ

(1)
m )

λ
(i)
2 h

)

× (
yi(n) – y∗

i
)2 +

(
c(i)

2 ε2
i h

2
– c(i)

1 σ
(i)
1

)(
xi

(
n – τ2(n)

)
– x∗

i
)2

+
(

c(i)
1 e2

i h
2

– c(i)
2 σ

(i)
2

)(
yi

(
n – τ1(n)

)
– y∗

i
)2

+
l∑

j=1

c(i)
1 ãijFij

(
xi(n), xj(n)

)
+

l∑
j=1

c(i)
2 b̃ijGij

(
yi(n), yj(n)

)
+ o(h). (13)

Because (G1, Ã) and (G2, B̃) are both strongly connected, by Theorem 2.2 in [9], we have
c(i)

1 > 0 and c(i)
2 > 0 for i ∈ L. Assume that there is i ∈ L such that X(n)

i �= X∗
i . For any ε and

M satisfying 0 < ε < M, we can derive from (13) that, for any X0 ∈ S
2l
M and X0 �= X∗, there

are h̃(ε, M) > 0 and S
2l
M(X∗) ∈R

2l
+ such that, for any h ∈ (0, h̃), the following two cases hold.

(i) If Xn ∈ S
2l
M and |X(n)

i | > ε/2, according to (4) and (5), we have that

c(i)
1

3∑
r=1

�V (i)
1,r

(
xi(n)

)
+ c(i)

2

3∑
r=1

�V (i)
2,r

(
yi(n)

)

<
l∑

j=1

c(i)
1 ãijFij

(
xi(n), xj(n)

)
+

l∑
j=1

c(i)
2 b̃ijGij

(
yi(n), yj(n)

)
. (14)

Combining (6), (14) with Theorem 2.2 in [9], we obtain that

�V (Xn) =
l∑

i=1

(
c(i)

1

3∑
r=1

�V (i)
1,r

(
xi(n)

)
+ c(i)

2

3∑
r=1

�V (i)
2,r

(
yi(n)

))

≤
l∑

i=1

l∑
j=1

c(i)
1 ãijFij

(
xi(n), xj(n)

)
+

l∑
i=1

l∑
j=1

c(i)
2 b̃ijGij

(
yi(n), yj(n)

)

≤
∑

Q1∈Q1

W (Q1)
∑

(ρ,r)∈V(CQ1 )

Frρ
(
xr(n), xρ(n)

)

+
∑

Q2∈Q2

W (Q2)
∑

(ρ,r)∈V(CQ2 )

Grρ
(
yr(n), yρ(n)

)
,

where n ∈N, Q1 and Q2 are the sets of all spanning unicyclic graphs of (G1, A) and (G2, B),
W (Q1) and W (Q2) stand for the weight of Q1 and Q2, CQ1 and CQ2 represent the directed
cycle of Q1 and Q2, respectively.
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Furthermore, for each directed cycle C of (G1, Ã) and (G2, B̃), for all xi, xj, yi, yj ∈ R
1
+, it

holds that

∑
(j,i)∈V(C)

Fij
(
xi(n), xj(n)

)
= h

∑
(j,i)∈V(C)

(
xj(n)

x∗
j

–
xi(n)

x∗
i

–
xj(n)x∗

i
xi(n)x∗

j
+ 1

)

≤ h
∑

(j,i)∈V(C)

(
–

xi(n)
x∗

i
+ ln

xi(n)
x(∗)

i

+
xj(n)
x(∗)

j

– ln
xj(n)
x(∗)

j

)

= 0.

By the same way, we can get
∑

(j,i)∈V(C) Gij(yi(n), yj(n)) ≤ 0.
Because W (Q1) > 0 and W (Q2) > 0, it is easy to see that �V (Xn) < 0. That is to say

|Xn+1| < |Xn|.
(ii) If Xn ∈ S

2l
M and for all k ∈ L, |X(n)

k | < ε/2, by (3), we have |Xn+1| < ε holds.
Thus, the results of Theorem 1 could be obtained. �

Remark 1 Compared with previous references, some differences and novelties of our re-
sults should be mentioned here. In [3, 4], the stability of predator-prey systems with
Beddington–DeAngelis functional response was studied, but the impact of dispersal
among prey and predators was not considered. In [8, 9], predator-prey systems were in-
vestigated where only prey dispersal was considered. Because both prey and predators
can disperse among multiple groups, in [10, 11], multiple disperse was taken into consid-
eration by employing multi-digraph-based approach. However, time-varying delay should
not be ignored since a predator can capture prey if and only if it reaches capturing age. In
this paper, we study the stability of a predator-prey system with Beddington–DeAngelis
functional response which contains both time-varying delay and multiple dispersal, which
is more close to the realistic situation.

Remark 2 Recently, the graph-theoretic technique has been used to analyze a single patch
population model and a coupled oscillators model; see [15, 16] and [17] for example.
In [18–26], the stability of coupled systems on networks was analyzed effectively by the
graph-theoretic technique. These works all considered a single coupling situation where
the dispersal or coupling of only one component was studied. Hence the model in the
above literature was built on a single digraph. Considering the practical meaning of mul-
tiple dispersal, the authors studied multi-patch model with multiple dispersal by multi-
digraph theory [10, 11]. And in [27], Guo et al. extended this method to study the input-
to-state stability for stochastic multi-group models with multi-dispersal. However, own-
ing to time-varying delay, the analysis method proposed in [10, 11] is ineffective since
the time-varying delay cannot be dealt with. To overcome this obstacle, we consider the
Lyapunov–Krasovskii method, i.e., four more functions V (i)

1,2, V (i)
1,3, V (i)

2,2, and V (i)
2,3 are con-

structed to deal with time-varying delay.

Remark 3 In Theorem 1, two points should be stressed for the dispersal topologies of
predators and prey: (I) The dispersal topologies should be strongly connected, which is
helpful to cope with the dispersal among patches; (II) The dispersal topologies of preda-
tors and prey are proportional, i.e., c(i)

1 = θc(i)
2 , which is helpful to deal with the cross term

between predators and prey. In fact, for point (I), it could be well solved by layering the
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large-scale dispersal networks into several strongly connected parts; for more details, one
can refer to [18]. For point (II), it is still difficult for multiple dispersal model if the dispersal
topologies are not proportional.

Remark 4 In this paper, we require that the dispersal networks of prey and predators
among patches are strongly connected. Biologically, this means that prey or a predator
from patch i can always arrive at patch j. If the dispersal networks are not strongly con-
nected, there exists at least one patch (set as patch i∗) such that prey or predators from
other patches cannot reach patch i∗, but the prey or predators in patch i∗ can always leave
patch i∗ to other patches. Hence, the prey or predators in patch i∗ may die out. Therefore,
it is meaningful to require the strong connectedness of dispersal networks from biological
viewpoint.

3 Numerical example
In this section, we consider a predator-prey model with dispersal among four patches and
the parameters are selected as follows:

ri = 4.2, bi = 2.0, ei = 0.1, γi = 0.05, δi = 0.95, εi = 0.475,

ui = 1, vi = 1, pi = 0.4, qi = 0.1, i = 1, 2, 3, 4.

The dispersal coefficients for prey and predators are chosen as a12 = 0.2549, a13 = 0.1755,
a21 = 0.2879, a23 = 0.2085, a31 = 0.2085, a34 = 0.2879, a43 = 0.3749, b12 = 0.05353, b13 =
0.03686, b21 = 0.06046, b23 = 0.0438, b31 = 0.0438, b34 = 0.06046, b43 = 0.07873. Except
these, other dispersal coefficients aij = bij = 0. See the dispersal networks in Fig. 1.

Let h = 0.001, σ1 = σ1 = 0.001, τ1(n) = τ2(n) = [1.5 + 0.5 sin(n)]. To begin with, when αij =
1, βij = 1, i, j = 1, 2, 3, 4, we have

⎧⎨
⎩

ri – bix∗
i – eiy∗

i – piy∗
i

1+uix∗
i +viyi∗ = 0,

–γi – δiy∗
i + εix∗

i + qix∗
i

1+uix∗
i +viy∗

i
= 0,

i = 1, 2, 3, 4.

By simple calculation, we obtain that x∗
i = 2, y∗

i = 1, i = 1, 2, 3, 4, which implies that
the fixed point is X∗ = (2, 1, 2, 1, . . . , 2, 1)T

8×1. By definitions ãij = aijqi(1 + viy∗)x∗
j and

b̃ij = bijpi(1 + uix∗)y∗
j , we have that ã12 = 0.1019, ã13 = 0.0702, ã21 = 0.115, ã23 = 0.0834,

ã31 = 0.0834, ã34 = 0.1151, ã43 = 0.1499, b̃12 = 0.06424, b̃13 = 0.0442, b̃21 = 0.0725, b̃23 =
0.0525, b̃31 = 0.05256, b̃34 = 0.0725, b̃43 = 0.0944. By calculation, we have θ = c(i)

1 /c(i)
2 = 4,

i = 1, 2, 3, 4.
From the above dispersal coefficients, it is clear that digraphs (G1, A) and (G2, B) are

strongly connected. All the conditions of Theorem 1 have been verified. Hence, we can
conclude that the fixed point X∗ remains stable in the positive cone R

8
+. The initial val-

ues are given as (x1(n), y1(n), . . . , x4(n), y4(n))T = (0.8 + 0.1n, 0.53 + 0.2n, 1.7 + 0.2n, 0.71 +
0.1n, 2.1 + 0.1n, 1.24 + 0.2n, 2.4 + 0.1n, 1.5 + 0.1n)T, where n = –2, –1, 0. Then the corre-
sponding simulation results are shown in Fig. 3. Figure 3 illustrates that the fixed point X∗

of system (3) is stable, which shows the effectiveness of our theoretical results.

4 Conclusion
This paper studied the stability of a discrete-time multi-patch Beddington–DeAngelis
type predator-prey model with time-varying delay, where the dispersal of both predators
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Figure 3 The solution of system (3) on four patches with time step size h = 0.001 and the dispersal networks
as in Figure 1

and prey was considered. By employing the Lyapunov–Krasovskii method and the graph-
theoretical technique, a stability criterion was derived. Finally, an example with numeri-
cal simulation was given to demonstrate the effectiveness of the obtained results. Because
noise disturbance in our real life is ubiquitous [28–30], in the future, we will try to take
the effect of noise disturbance into our model.
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