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1 Introduction
Fractional calculus is the study of fractional order derivatives and integrals. It has gained
extensive attention of the researchers in the last few decades. It has exceptional applica-
tions in diverse fields of science and engineering. In this context, Riemann—Liouville frac-
tional integrals and fractional derivatives are the basis of fractional calculus [7]. From the
occurrence of the definition of Riemann-Liouville fractional integrals and derivatives, the
authors started to think and defined fractional formulas which are extensions and gener-
alizations of Riemann-Liouville fractional integrals and derivatives. For example, Caputo
gave an improved fractional derivative formula known as Caputo fractional derivative [2].
The aim of this study is to analyze a k-analogue definition of Caputo fractional deriva-
tives given in (1.8) and (1.9), and an extended generalized Mittag-Leftler function (1.18) in
the prospect of Griiss type inequalities and generalized fractional differential equations.
In the following we provide needful definitions of fractional integrals and fractional

derivatives along with some formulae.

Definition 1 ([7]) Let g € Ly[a, b]. Then the Riemann-Liouville fractional integrals of
order o € C(Re(w) > 0) are defined by

1

Ry, g(x) = m

/x(x -0 g(t)dt, x>a, (1.1)
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and

o 1 b a1
Ry g(x) = m / (t—x)"g(t) dt, b > x. (1.2)

These integrals are called the left-sided and the right-sided Riemann—Liouville fractional
integrals respectively. Here I'(-) is the gamma function and R, g(¢) = Rg_g(t) =g(t).

Riemann—Liouville fractional derivatives are defined as follows.

Definition 2 ([7]) Let « € C, Re(w) > 0, n = [Re(«)] + 1, and g € L;[a, b]. Then the left-
sided and right-sided Riemann-Liouville fractional derivatives of order « are defined by

e () [0
(D‘”g)(x)_l"(n—oz)<dx) /a (x_t)a—nndt’ x>d, (1.3)

and

" ~ 1 d\" (b g
(Db,g)(»’C) = m (_d_x> /x m dt, x<b. (1.4)

In particular, if & = n € N, then (D%, g)(x) = (D)_g)(x) = g(x), (D",g)(x) = g"(x), and
(Dy_g)x) = (-1)"g" (x), where g (x) is the usual derivative of order # of the function
gx).

Definition 3 ([10]) Leto € R* andn € Nsuchthatn—1 <« < n,g € Li[a, b]. Then the left-
sided and right-sided k-Riemann-Liouville fractional integrals of function g are defined
by

1 x o
R%,ag(x) = m‘/‘; (x— t)k_lg(t) dt, x>a, (1.5)

and

o 1 b a1
Rk’bg(x):m/ (t-x)k""gt)dt, x<b, (1.6)

where I(-) is the k-gamma function defined as follows (see [3]):

00 _k
Ti(a) = / 1l dt, (1.7)
0

also I'k(a + k) = aly(a). For k =1, (1.5) and (1.6) give the definition of Riemann—Liouville
fractional integrals and (1.7) provides Euler gamma function I'"(-).

Caputo fractional derivatives are defined as follows.

Definition 4 ([2]) Let « >0 and « ¢ {1,2,3,...}, n = [a] + 1, g € AC"[a, D], the space of
functions having nth derivatives absolutely continuous. Then the left-sided and right-
sided Caputo fractional derivatives of order « are defined by

x g(n) (t)

a0 ). G dt, x>a, (1.8)

(Cle)0 = =
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and

o A 0]
(GO0 =100 | oo x<b (1.9)

Ifa =n€{1,2,3,...} and the usual derivative g"(x) of order  exists, then the Caputo
fractional derivative (C%,g)(x) coincides with 2" (x), whereas (C;_g)(x) coincides with

2" (x) with exactness to a constant multiplier (—~1)". In particular, we have

(CL9)) = (C)_g)(x) = g(x),
wheren=1and o =0.

Definition 5 ([5]) Let« >0, k> 1,and @ ¢ {1,2,3,...}, n = [¢] + 1, g € AC"[a, b]. Then
the left-sided and right-sided Caputo k-fractional derivatives of order « are defined by

o “)(z)
(Charg) @) = kF(n— )/ gt e (1.10)
and
-1)" t
( ,‘f’b_g)(x)—kr( )_ )/ ) le dt, x<b. (1.11)

Ifa =n € {1,2,3,...} and the usual derivative g’ (x) of order  exists, then the Caputo k-
fractlonal derivative (CY,,g)(x) coincides with 2" (x), whereas (CY,_8)(x) coincides with
() (x) with exactness to a constant multiplier (—1)".

In particular, we have

(Ciar) @)= (Cia-£) ) =2 (1.12)

where 1,k =1 and « = 0. For k = 1, Caputo k-fractional derivatives give the definition of
Caputo fractional derivatives.

In [4], the following definition of Caputo k-fractional derivatives for a convolution of two
functions is studied and some interesting results have been established. This also behaves
as a generalization of Caputo k-fractional derivatives [12].

Definition 6 The right-sided and the left-sided Caputo k-fractional derivatives of convo-
lution g * & of two functions g and / are defined by

o _ 1 g6 (2)
(CRargxh)(x) = KT = %)/u Y=Y dt, x>a, (1.13)

and

kI(n - (t —x) 5L

(g ) (@) = — L )f DORW Ly (1.14)
I3
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For k = 1, the above expressions give the definition of Caputo fractional derivatives of
convolution g * & of two functions g and /. The following result has been proved in [12].

Lemmal Leta>0,k>1,and o ¢ {1,2,3,...}, n=[o] + 1. If g(x) = (x — a)?, where p > n,
then the left-sided Caputo k-fractional derivative is given by

(x— a)P_%k%_ll“(p + 1) Ii(nk —a)

Te(n = ) Ti(pk — a + k) (1.15)

( k,a+ (x a)p)

From the above lemma one can get some of the derivatives as follows:

1 1
() (Gl (o) = e
kor ) = T e by

L_z 1_L

(i) (Cig () = %
2k

(i) (CU2 (xyr) = L2t

2p2+1)
(V) (C13 () =22,

The following Chebyshev inequality has been proved in [12].

Theorem 1 Letf :[0,00) = Randg: [0,00) — R be the two functions. If nth derivatives of
f and g have the same monotonicity, then for Caputo k-fractional derivatives the following
inequality holds:

KTi(n— + k)

(Garg 1)) 2 (x—a)" %

(CLar@) @) (CL s h) (). (1.16)

For some more recent results for Caputo k-fractional derivatives, see [6, 8, 11].
Next we give the definition of Mittag-Leffler function which is generalization of various

special functions [9]:

o0 Z"
E,(z) = _ : ,R 0. 1.17
(2) gﬂnwl) z,a € C,Re() > (1.17)

This function has been generalized by several mathematicians and utilized in various sub-

jects of science and engineering. In [1] it is extended as follows.

Definition 7 Let u,v,l,y,d € C, Re(u), Re(v), Re(l) > 0, Re(d) > Re(y) > 0 with p > 0,
8 >0and 0 <m <8 + Re(u). Then the extended generalized Mittag-Leffler function

El > v “(t; p) is defined by

prim g, ) Z Bply +imd—y) (d)im ¢ (L18)

pond T (d—y) T(uivy) On’

where B, is the generalized Beta function defined by [1]
1
Bl ) = f w11 =)l di, (1.19)

I (-+im)

where (-);, is the Pochhammer symbol defined by ()i = O
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The aim of this paper is to explore new Caputo k-fractional integral inequalities by using
Griiss type variable bounds of functions having n-time derivatives absolutely continuous.
Also, for Griiss type conditions on two n-time differentiable functions, more fractional
integral inequalities are obtained. Further Chebyshev inequality (1.16) is used to produce
some interesting consequences. Moreover, Caputo k-fractional differential equations in-
volving the extended generalized Mittag-Leffler function are analyzed and their solutions

are proposed via the Laplace transform technique.
2 Caputo k-fractional inequalities

The first result is derived for the function having n-time derivatives absolutely continuous

and bounded by variable functions.

Theorem 2 Let g,hy,hy : [a,b] — R be the functions such that g, hy, hy € AC"[a, b]. Also,
letVx € [a, b]

) = g () < " (). 1)
Then the following inequality for the Caputo k-fractional derivatives holds:

(Cu2) ()(CL 1,8) () + (Cl 1) ) (CE,..8) (%)
> (Cly ha) @) (CL 1 ) (@) + (CF,8) (@) (CL,.8) (). (2.2)

Proof From (2.1), Vu,v € [a, b], one can obtain
(15" () = ")) (¢ (v) = K" (v)) = 0.
This inequality further takes the form
1y (g™ ) + 1 (Vg™ w) = W A5 () + g w)g" (). (2.3)

Multiplying by (x — )%~ on both sides of above inequality and then integrating with

respect to u over [a,x], we get

/ K5 (g (v) e — )" K~ s + / K )¢ () 6 — )"~ d
> / 1 )RS () — )"~ 5 s+ / g wg” (V) - u)"t 7 du.

Using the definition of Caputo k-fractional derivatives, the following inequality is yielded:

o

2P WkIy (n - ;) (CE 1) (%) + B (WK T (n - %)( ¢ 8@

zhﬁ”’(v)krk<n— %)( o o) () +f(">(v>krk<n— %)( ¢ .8) (). (2.4)
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Now multiplying the above inequality by (x — v)”‘g_1 on both sides and then integrating

with respect to v over [a, x], we get

k13 (1= 3 ) G [ 02060 E
o n-7-1
+ k| n— % ka+g x) (v) x—v) £ dv
> ka(n — z) (de+h2 x)/ W) (x - V)V’—*—l dv
o o (n) n-8_1
+ kI n— % (Ck‘mg) (%) g W)(x—v)"" Kk dv.
Again, by using the definition of Caputo k-fractional derivatives, one can obtain (2.2). [

Some special cases of Theorem 2 have been derived in the following results.

Corollary 1 Ifwe take k = 1 in Theorem 2, then the following inequality holds:

(Cih2) @) (CLL&) @) + (Ch, 1) (0)(CEg) )
> (Con) @) (i) () + (C7.8) @)(CZ, ) ). (2.5)

Corollary 2 Ifwe take o = B in Theorem 2, then the following inequality holds:

( ,‘fmg)(x)(( /(:,a+h2)(x)+( /‘:,aJrhl)(x))
> (CF ) (%) (Ci 1 ) @) + ((Coar8) @) (2.6)

Corollary 3 Using (1.16) in (2.6), we obtain the following inequality:

(x—a)"
k[(n— 2 + k) L

z (C/ia+g)(x)((clo<(,a+h2)(x) + ( /l:,aJrhl)(x))
> (g, 1) (0)(CL ) @) + ((CEr8) ) (2.7)

/‘:,u+g * hZ)(x) + ( I(:,a+g * hl)(x)]

Corollary 4 Let g: [a,b] — R be a function such that g € AC"[a,b). If m,M € R satisfy-
ing m < g"(x) < M, then Vx € [a,b) the following inequality for the Caputo k-fractional
derivatives holds:

a 8
Mx—a)" « P m(x —a)"" &
—_— x)+ ———(C¢ x
ka(n——+k)( g)( ) I<Fk(n——+k)( k’“+g)( )
a+f
mM(x — a)*" % P
+(C¢ x2)(C x). 2.8
TR - ¢ + K- £+ k) (Car8) @(Chan ) 9
Proof 1f we take 1 = "2~ and h; = % in Theorem 2 and follow the rest of the proof along

the same lines as the proof of Theorem 2, inequality (2.8) can be obtained. d
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Corollary 5 If we take o = B in Corollary 4, we obtain the following inequality:

(m+M)(x-a)"F )
nz;k(n—x% fk) (Ca8)® - ((Ca8) @)’

mM(x — a)Z”_ZTa

> K=+ R (2.9)
Corollary 6 Ifwe take k =1 in Corollary 4, then the following inequality holds:
%( 7.8)@) + Irf((z__—;lf) (Cag)) - (Cg) @)(CL.g) )
_ \2n-a—B
- F(nrff(fl)?(n -B+1) (210
Corollary 7 If we take o = B in Corollary 6, then the following inequality holds:
o+ M (g ) - ((C.g) )’
I'n-—a+1)
mM(x — a)?~2 (2.11)

T (Tn-a+1)?°

The next result is derived for two functions f and g having nth derivatives absolutely

continuous and bounded by the variable functions.

Theorem 3 Let f,g,h1,hy,t1, L : [a,b] — R be the functions such that f,g,h1,hy, t,t; €
AC"|a, b). Also, let Vx € [a, b]

P (w) < g™ (%) < By (x) 2.12)

and

£ () <) () < £ (). (2.13)

Then the following inequalities for the Caputo k-fractional derivatives hold:

( I(:a+h2)(x (lemf) () + ( ka+*1 ) (Cku+g)(x)

= (Clarh2) @) (1) () + (CEan8) @) (Cla ) () (214)
(Chas ) (Chan@) @ + (G 1) )(CL,8) @)

= (CRash) (0)(Clla 22) @) + (CEas8) () (Gl ) ), (2.15)
(Charh2) () (Cas 22) @) + (Cis8) @) (Cipf ) )

= (Cllash2) @)(Claf ) 0) + (Clog £2) 0) (G 8) (), (2.16)

(Clain) (0 (CLy 1) @) + (CPr ) @) (CL o f) )
> (Cf i) @)(Cl 1, 8) ) + (CL,,101) (@) (CE . 8) ). (217)
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Proof Using (2.12) and (2.13), the following inequality holds:
(hS () - ¢ @) (F ) - 6" () = 0,

This further takes the form
h(zn)(bt)f(n)(V) + tﬁ")(v)g(n)(u) > h(zn)(u)tYl)(V) +g(”)(u)f(”)(v).

Multiplying by (x — )"~ %! on both sides of the above inequality and then integrating with
respect to u over [a,x], we get

/ W) e -y / e

> / WP W) - ) E du f e W) ey

Using the definition of Caputo k-fractional derivatives, we obtain

f(n)(v)k['k (Vl - %)( ,‘jmhz)(x) + tﬁn)(v)k]—'k (l/l - %)( ,‘fmg)(x)

> tYl)(V)ka <Vl - %)( ]it,a+h2)(x) +f(n)(V)ka (l’l - %)( I‘?,a+g)(x)'

Now, multiplying by (x— V)"‘g_1 on both sides of the above inequality and then integrating
with respect to v over [a,x], we get

ka(l’l—%)( lzhhz)(x)fxf(n)(v)(x_v)n—%—ldv
+krk(n_ %)( /l:,a+g)(x) /x th)(V)(X—V)n_%_l dv
> kre(n-2)(con "0 (=B
=K\ n « (k,a+ 2)(x) 85 W) (e -v)"" kT dy

+ kI <n - %)( ¢ 8) () / ’ P W) (x - Wy k 1 dy.

Again using the definition of Caputo k-fractional derivatives, inequality (2.14) can be ob-
tained.
For the proof of (2.15), (2.16), and (2.17), the following inequalities can be used respec-

tively:
(") - 1) (5" () - f " W) = 0, (218)
(1" ) =" @) (F" () - £5° ) <0, (219)
(K () - g" W) (f" v) - £’ (v)) < 0. (2.20)
The rest of the proof follows along the same lines as the proof of (2.14). g

The further consequences of Theorem 3 are stated in the following corollaries.
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Corollary 8 Ifwe take o = B in Theorem 3, then the following results hold:

(Clarh2) 0 (Ciaf ) @) + (Ciis11) () (Ci . 8) ()

2 (CRarh2) @) (CRartr) ®) + (G ) ) (CRar8) (),
(Clart2) @)(Cias) @) + (Cas 1) () (Caf ) (%)

> (Caen) 0)(Cllas 2) ) + (Gl ) ) (G f ) ),
(Canh2) @)(Ci 12) () + (G f ) ) (C 1 8) ()

> (Crash2) @(CLif ) ) + (Caat2) @) (CR 0, 8) ),
(Cashn)(Clast) @) + (Caf ) @) (Gl ) )

= (Cilash) @) (Caf )0) + (i 11) ) (G 18) ).

Corollary 9 Using Theorem 1 in Corollary 8, the following results hold:

(x—a)" % )
#M[( Claha = f) ) + (CF 1.g % 11) ()]

( ka+h2)(x)( ka+f)(x) (Cl(:m )( )(C/?,mrg)(x)
( ka+h2)(x)( ka+t1)(x)+( ka+f)(x)(clil,a+g)(x)’

x-a) % )
#%”G [(Clarg * 22) () + (CFpuf % 1) ()]

—( ka+t2)(x)(cl?a+g)(x)+( ka+h )( )( ka+f)(x)
z (Cka+h1)(x)( ka+t2)(x) + ( ka+f) (x)(cl?,mrg)(x)’

(x—a) 7Fk) [( ka+h2 * tz)(x) + (Cka+f*g)(x)]

() (Clart2) @) + (Ciaf ) 9)(Cil8) )
(x)( ka+ ) (CI?LH )( )(Cli[,a+g)(x)’

% [(Clg,cwhl * tl)(x) + (C;:me *g) (x)]

( ka+h1)(x)( ka+t1)(x)+( ka+f)(x)(cl(?a+g)(x)
( ku+h1)(x)( ka+f)(x)+( ka+t1)( )( ka+f)(x)

)
)

( k,a+

Corollary 10 If we take k = 1 in Theorem 3, then the following inequalities hold:

(Ca ) (L)) + (CE ) () )
= (G2 ) (1) )+ (2, (CE) )
(C1,02) ) (C2,) ) + (CEn ) (CELF) )
=l

> (Con) @)(CL, ) () + (CF,2) (CLLS) @),

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

Page9of 16
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(C2, 1) (%) (CE. 1) (%) + (C2,2) ) (CE f) ()

> (Co, ) @) (CLf) () + (CLL62) (@) (CE L g) (), (2.31)
(Com)@)(CE0) () + (Cog) @) (Ch) )
> (C2, 1) (®)(CE.f) () + (CF.11) ()(C2,0) ). (2.32)

Corollary11 Letf,g: [a,b] — R be the functions such thatf,g € AC"[a,b]. If m,M,n,N €
R satisfy m < g"(x) <M and | < f"(x) < L, then Vx € [a, b the following inequalities for
the Caputo k-fractional derivatives hold:

s B
Mx-a)"F s lx-a)mr
kI(n— % +k) (Cioaaf )x) + kTi(n— % K (CR,.0) )
I(x — 2n—M
e (C . 8) ) (CL . f) ), (2.33)

> +
kIi(n % + k)kIe(n = £ + k)

m(x — a)"™ %

B
Lix-a)"
(x—a)"« (C’?'“*g)(x)+7k1’k(n—g+k)(C£“J)(x)

k

kIi(n— £ + k)

a+f
mL(x —a)” %

o B
= kIi(n— 2 + kkIi(n - £ + k) +(Clar®) ) (Ca )@ (2.34)

ML(x — a)z"_%
+
kIi(n—% + K)kIi(n - £ + k)

(CE8)@(CLof) @)

a B
o Mx—a)"% Lx—a)" %
T k(-7 + k)( af)@) + kI(n— % + /<)( far8) @) (2:39)
ml(x - a) %" . ,
ka(n _ % + k)ka(n _ % +k) + ( k,a+g)(x)(ck,a+f)(x)
m(x——a)”_% (Cﬂ S+ IM( ¥ .8) ). (2.36)
T kL= + k) kIi(n -G +d) "

Proof If we take h; = ’”n—’jn, hy = Mn—’f”, t = %, and ¢y = Lni,n in Theorem 3 and follow the rest
of the proof along the same lines as the proof of Theorem 3, the required inequality can

be obtained. O

Corollary 12 Ifwe take k = 1 in Corollary 11, then the following inequalities hold:

M — a)"

%(ij)(x) +1

Ml(x — a)*—F

T I'n-a+1)Fn-B+1) "

—g)"B _ o

For g O T
- mL(x — a)2-oP

T I'n—-a+1)F(n-B+1)

(x—a)"*

Tw_p+1) (Ceo®

(Ca.2)@)(CEA) ), (2.37)

(CLf) =)

+(CLg) 0(CLS) ), (2.38)

Page 10 of 16
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ML(x — a)>—*F
IFn-a+1)IF'n-p+1)
. M(x —a)"™ (
I'n-a+1)
mil(x — a)>—F
IFn-a+1)Fn-p+1)

+(CLg) @) (Chf) @)

(x—a)"*

A )

(Cg) ), (2.39)

+(CLW(CLS)@)

lx—a)?
B M
(C‘“f)(x) " 'n-pB+1)

m(x —a)™@

= m (C;‘+g) (x). (2.40)

3 Fractional differential equations
In this section, we formulate some generalized fractional differential equations and also
obtain their solutions. First we find the Laplace transform of Caputo k-fractional deriva-

tive.

Lemma2 Leta >0,k >1,and o ¢{1,2,3,...}, n = [a] + 1. Then the Laplace transform of
left-sided Caputo k-fractional derivative is given by

Fk(nka nlnzll)Jr
L{(CEo )W)} = W "L{f (1)) ZS (0 (3.1)

Proof For a =0, the left-sided Caputo k-fractional derivative is given by

()
kli(n—%) Jo (x—g)%1

(Clouf) ) = (3.2)
The Laplace convolution operator of two functions f(¢) and g(¢) given on R* is defined by
the integral

f*g:(f*g)(x):/(; flx—1t)g(t)dt

which has the commutative property, ie., f xg=g*f.
Therefore (3.2) can be written as (f* x g)(x), where f(t) = £ %1 and g(8) =f") ()

O s (2R,

( I(:,O+f) (%) = W—%)

Now, taking Laplace transform and using the property L{f * g} = L{f}L{g} of Laplace
transform, we have

1 o
LU Cad )} = gy UM OO,

Using formulas £{f"(£)}(s) = s" L{f(¢t)} — > ' s1r@(0+) and L£{t*}(s) = Sj‘—fll of the

Laplace transform, we get

LG} = M[”ff{ﬂt)} is”""lf‘”(oﬁ}.

kLi(n = 7)s" an

Using the property of gamma function I"(%) = ’% , (3.1) can be obtained. O

k
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Theorem 4 Let a € R*, u,v,l,y,d € C, Re(u),Re(v),Re(l) > 0, Re(d) > Re(y) > 0 with
p>0,8>0,and0<m <38 +Re(n). Then, for x > a, the following results hold:

¢ L= a) BT (wit - a)"; p) | ()

(¢ — a)"" E ' Te(wik + vk — nk) F(nk — ) 5 ma
= EVom(w(t - a)ts 3.3
Tx(n = ) Ti(pik + vk - a) poni (= @)"5p) (33)

and

o« v—1pv.8,md w, _ (x_a)V7%71 y,8,m,d ",
k,ﬂ[(t —a)’"E); (w(t —a) ,p)](x) = TEM,H%J(W(t —a) ,p). (3.4)

Proof Using the definition of Mittag-Leftler function, we can write the left-hand side of

equation (3.3) as follows:

¢ [ a) BT (wi(t - a)s p) ()

k,a+ vl

[ee]

_ Z Bply +imd—-y) ()i w
Bly,d—y) T'(ui+v) (s

i

Cl [t — )" ™). (3.5)

i=0

Using Lemma 1, we can write (3.5) as follows:

far(E =0y ELLT (we - 0)'sp) )

i

i[ﬁp(yﬂm,d—y) d)im W
Bly,d—y) T'(uni+v)(Dis

i=0

(x — @)= F 1 (i + v) Te(wik + vk — nk) Ti(nk — o)
I (i +v = n)I(n = ) ie(pik + vk — ) ’

Using the definition of Mittag-Leffler function, (3.3) can be obtained.
Now consider the left-hand side of equation (3.4), using the definition of Mittag-Leffler

function, we have

R [( - ) ELo (wit - a)"s p) | (v)

o]

_ ﬂp(y + lm’d - J/) (d)im Wi o itv—1
i Zo B d—y) T v) 0y ral €=

. (-0 % Ii(pksh)
Using R (x — a) = %, we get

@ L= a) T ET (w(t - a); p) ] ()

_ i[ﬁpw vimd—y) (i W (- )" Dk(i + v))}
Bly,d-y) Iui+v)Dis  Tilk(pi+v) +a) '

i=0

Page 12 of 16
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Using () = k%‘ll"(%), we have

¢ [t —a) BT (wit - a); p) | ()

B i By +imd-y)  (im W (x—a)"* 7k
T Bd—y) Tivve D) Os  kE
which gives the required result (3.4). O

Theorem 5 Let a € R*, u,v,l,y,d € C, Re(t),Re(v),Re(l) > 0, Re(d) > Re(y) > 0 with
p>0,8>0and0<m<3§+Re(n). The differential equation

(C0.9) () = Ax"EL07 (s p) + f () (3.6)

with the initial condition y(0*) = ¢, where c is an arbitrary constant, has the solution as

follows:
Ak Dl]"k(l % o pr y +im, d— )/) (d)zm Whphti+a+y
y(x) =cic + ,
Ik —a) = Bly,d-y) T'ui+ta+v+1) (D
KT D e ), (37)
+ MT 0+f X .

Proof Applying the Laplace transform to equation (3.6), we have

C{ (C,‘i‘my)(x)}(s) = AE{ "EZ iﬁ‘;(wx“;p)}(s) + C{f(x)}.
Using Lemma 2 for # = 1 and the definition of Mittag-Leffler function, we have

Tk — o)

W [sﬁ{y}(s) J’(0+)]

i

~ Bply +imd—y)  (d)im w
_AZ Bly,d—y) T'(ui+v+1) D)

E{x“””} + L'{f(x)}.

i=0
After simplification we get

o€, MR-
)=+ S;u'+ot+v+11"k(k_a)

Boly +im,d—y) (@d)pw  F(s)s k' Ti(1-%)
XZ Bhd—y) s Tik-a)

Now, taking the inverse Laplace transform, we get

y(x) = cic+

Akl‘)‘Fk(l—)%)ﬁ_l{ 1 }

Fk(k —a Sui+o¢+u+1

i Boly +imd—y) (d)w K *(1-%)

-1 —a
Bud—y) On | Tik-a) [F(s)s™),

i=0

which gives the required result (3.7). O
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Theorem 6 Let a € R*, u,v,l,y,d € C, Re(u),Re(v),Re(l) > 0, Re(d) > Re(y) > 0 with
p>0,8>0and0<m <3 +Re(n). The differential equation

(Cio) @) = M EL T (wasp) + hox” BT (wa' p) (38)

with the initial condition y(0*) = ¢, where c is an arbitrary constant, has the solution as

follows:
(A + )k TR(1- %)
y(x) = cic + Tk —a)
" 20: B rder T ol Ga 3
Proof Applying the Laplace transform to equation (3.8), we have
L{(CR.7)®) () = (a + M) L{x"E]; iﬁ‘;(wx";p) }(s).
Using Lemma 2 for # = 1 and the definition of Mittag-Leffler function, we have
G i B E0e (0]
T Zo ﬁp(zZ(;,iZ ’—dy_) . r(u(id:i;n +1) (X; b
After simplification we get
¢ Ou+ KT = ) & Byl +im,d — ) ()
Ay Py ZO Brd—y)  (a
Now, taking the inverse Laplace transform, we get
N OES P17, (S SR
> im,d —y) (d)mW'
* 20: ﬂp(;(;l;n ) = &i’ff“ ’
which gives the required result (3.9). O

Theorem 7 Let a € R*, u,v,l,y,d € C, Re(u),Re(v),Re(l) > 0, Re(d) > Re(y) > 0 with
p>0,8>0and0<m<S§+Re(u). The differential equation

(C,‘z’,Oer)(x):)»x”Ey&md (wx"; p) ka y ’ (w;(x)"; p) (3.10)

wv+1,l wjvj+Ll



Farid et al. Advances in Difference Equations (2019) 2019:439

with the initial condition y(0%) = ¢, where c is an arbitrary constant, has the solution as
follows:

AT (1 - ) i[ﬂp(y +im,d—y)
Ik —a) 4= Bly,d-y)

(AD)im Weghi+a+v n )Ll,klfa (1 - %)
N Y [amklit
F(wi+a+v+1) (D Ii(k—a)

y(x) = cic +

Jj=1

S Byt imdy=y) w] G.11)

~  Bpdi-v)  Tyita+vi+1) (i
Proof Applying the Laplace transform to the above equation, we have
L{(CL0,9) @)} s) = AL{xELS T (w(x); p) } 5)

+L Zk,x E}:’ift{, wj(x )“’»P)}()

Using Lemma 2 for # = 1 and the definition of Mittag-Leffler function, we have

Ii(k—a)

W [SE{J/}(S) )’(0+)]

i

:AZﬂp(y +im;d—)’) (d)tm w

L i+
Bly,d—y) T'(pwi+v+1) ) far)

i=0

By(y; + imj, dj — y)) (@))im; w; .
E A E LixH .
' [ Bypdi—vy) (i +vi+1) (), b}

i=0

After simplification we get

A (1 - ©) (v +im,d - y) (d)imw
y(s)=£+ ‘ 1k 3 Zﬁp)’ ) (d)
s suirarvrl [ (k — o) 4 y,d ]/) (Dis

. Z MK (1 - % i By, + imj, d; — ;) (@))im; W
ST Pk ) By, d; - v;) (l,')igi

j=1 i=0

Now, taking the inverse Laplace transform, we get

y(x) = cic+

A (1= %)ﬁ‘l 1
(k- o) { s }

pita+v+1

>\ Bply +im,d —y) (d)imw
X; Bly,d—-y) (0)is

N X": Ak (1 - %)E_l{ 1 } i Bply; + imj, d; — v;) (d/)im/W;
Ti(k — ) ghyirary+l B, d;i—v)) (lj)igj ’

j=1 i=0

which gives the required result (3.11). O
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3.1 Concluding remarks

In this paper, by using Griiss type variable bounds of the functions having nth derivatives
absolutely continuous, Caputo k-fractional integral inequalities have been established.
Integral inequalities have been derived deploying Chebyshev inequality [12] for Caputo
k-fractional derivatives. Laplace transform of Caputo k-fractional derivative is derived
and further applied to solve fractional differential equations involving an extended gen-
eralized Mittag-Leffler function. Caputo k-fractional derivative and Riemann-Liouville
k-fractional integral of the extended generalized Mittag-Leffler function are calculated.
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