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Abstract
This research explores Caputo k-fractional integral inequalities for functions whose
nth order derivatives are absolutely continuous and possess Grüss type variable
bounds. Using Chebyshev inequality (Waheed et al. in IEEE Access 7:32137–32145,
2019) for Caputo k-fractional derivatives, several integral inequalities are derived.
Further, Laplace transform of Caputo k-fractional derivative is presented and Caputo
k-fractional derivative and Riemann–Liouville k-fractional integral of an extended
generalized Mittag-Leffler function are calculated. Moreover, using the extended
generalized Mittag-Leffler function, Caputo k-fractional differential equations are
presented and their solutions are proposed by applying the Laplace transform
technique.
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1 Introduction
Fractional calculus is the study of fractional order derivatives and integrals. It has gained
extensive attention of the researchers in the last few decades. It has exceptional applica-
tions in diverse fields of science and engineering. In this context, Riemann–Liouville frac-
tional integrals and fractional derivatives are the basis of fractional calculus [7]. From the
occurrence of the definition of Riemann–Liouville fractional integrals and derivatives, the
authors started to think and defined fractional formulas which are extensions and gener-
alizations of Riemann–Liouville fractional integrals and derivatives. For example, Caputo
gave an improved fractional derivative formula known as Caputo fractional derivative [2].

The aim of this study is to analyze a k-analogue definition of Caputo fractional deriva-
tives given in (1.8) and (1.9), and an extended generalized Mittag-Leffler function (1.18) in
the prospect of Grüss type inequalities and generalized fractional differential equations.

In the following we provide needful definitions of fractional integrals and fractional
derivatives along with some formulae.

Definition 1 ([7]) Let g ∈ L1[a, b]. Then the Riemann–Liouville fractional integrals of
order α ∈C(Re(α) > 0) are defined by

Rα
a+g(x) =

1
Γ (α)

∫ x

a
(x – t)α–1g(t) dt, x > a, (1.1)
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and

Rα
b–g(x) =

1
Γ (α)

∫ b

x
(t – x)α–1g(t) dt, b > x. (1.2)

These integrals are called the left-sided and the right-sided Riemann–Liouville fractional
integrals respectively. Here Γ (·) is the gamma function and R0

a+g(t) = R0
b–g(t) = g(t).

Riemann–Liouville fractional derivatives are defined as follows.

Definition 2 ([7]) Let α ∈ C, Re(α) ≥ 0, n = [Re(α)] + 1, and g ∈ L1[a, b]. Then the left-
sided and right-sided Riemann–Liouville fractional derivatives of order α are defined by

(
Dα

a+g
)
(x) =

1
Γ (n – α)

(
d

dx

)n ∫ x

a

g(t)
(x – t)α–n+1 dt, x > a, (1.3)

and

(
Dα

b–g
)
(x) =

1
Γ (n – α)

(
–

d
dx

)n ∫ b

x

g(t)
(t – x)α–n+1 dt, x < b. (1.4)

In particular, if α = n ∈ N, then (D0
a+g)(x) = (D0

b–g)(x) = g(x), (Dn
a+g)(x) = g(n)(x), and

(Dn
b–g)(x) = (–1)ng(n)(x), where g(n)(x) is the usual derivative of order n of the function

g(x).

Definition 3 ([10]) Let α ∈R
+ and n ∈ N such that n–1 < α < n, g ∈ L1[a, b]. Then the left-

sided and right-sided k-Riemann–Liouville fractional integrals of function g are defined
by

Rα
k,ag(x) =

1
kΓk(α)

∫ x

a
(x – t)

α
k –1g(t) dt, x > a, (1.5)

and

Rα
k,bg(x) =

1
kΓk(α)

∫ b

x
(t – x)

α
k –1g(t) dt, x < b, (1.6)

where Γk(·) is the k-gamma function defined as follows (see [3]):

Γk(α) =
∫ ∞

0
tα–1e

–tk
k dt, (1.7)

also Γk(α + k) = αΓk(α). For k = 1, (1.5) and (1.6) give the definition of Riemann–Liouville
fractional integrals and (1.7) provides Euler gamma function Γ (·).

Caputo fractional derivatives are defined as follows.

Definition 4 ([2]) Let α > 0 and α /∈ {1, 2, 3, . . .}, n = [α] + 1, g ∈ ACn[a, b], the space of
functions having nth derivatives absolutely continuous. Then the left-sided and right-
sided Caputo fractional derivatives of order α are defined by

(
Cα

a+g
)
(x) =

1
Γ (n – α)

∫ x

a

g(n)(t)
(x – t)α–n+1 dt, x > a, (1.8)
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and

(
Cα

b–g
)
(x) =

(–1)n

Γ (n – α)

∫ b

x

g(n)(t)
(t – x)α–n+1 dt, x < b. (1.9)

If α = n ∈ {1, 2, 3, . . .} and the usual derivative g(n)(x) of order n exists, then the Caputo
fractional derivative (Cα

a+g)(x) coincides with g(n)(x), whereas (Cα
b–g)(x) coincides with

g(n)(x) with exactness to a constant multiplier (–1)n. In particular, we have

(
C0

a+g
)
(x) =

(
C0

b–g
)
(x) = g(x),

where n = 1 and α = 0.

Definition 5 ([5]) Let α > 0, k ≥ 1, and α /∈ {1, 2, 3, . . .}, n = [α] + 1, g ∈ ACn[a, b]. Then
the left-sided and right-sided Caputo k-fractional derivatives of order α are defined by

(
Cα

k,a+g
)
(x) =

1
kΓk(n – α

k )

∫ x

a

g(n)(t)
(x – t)

α
k –n+1 dt, x > a, (1.10)

and

(
Cα

k,b–g
)
(x) =

(–1)n

kΓk(n – α
k )

∫ b

x

g(n)(t)
(t – x)

α
k –n+1 dt, x < b. (1.11)

If α = n ∈ {1, 2, 3, . . .} and the usual derivative g(n)(x) of order n exists, then the Caputo k-
fractional derivative (Cn

1,a+g)(x) coincides with g(n)(x), whereas (Cn
1,b–g)(x) coincides with

g(n)(x) with exactness to a constant multiplier (–1)n.

In particular, we have

(
C0

1,a+g
)
(x) =

(
C0

1,b–g
)
(x) = g(x), (1.12)

where n, k = 1 and α = 0. For k = 1, Caputo k-fractional derivatives give the definition of
Caputo fractional derivatives.

In [4], the following definition of Caputo k-fractional derivatives for a convolution of two
functions is studied and some interesting results have been established. This also behaves
as a generalization of Caputo k-fractional derivatives [12].

Definition 6 The right-sided and the left-sided Caputo k-fractional derivatives of convo-
lution g ∗ h of two functions g and h are defined by

(
Cα

k,a+g ∗ h
)
(x) =

1
kΓk(n – α

k )

∫ x

a

g(n)(t)h(n)(t)
(x – t)

α
k –n+1 dt, x > a, (1.13)

and

(
Cα

k,b–g ∗ h
)
(x) =

(–1)n

kΓk(n – α
k )

∫ b

x

g(n)(t)h(n)(t)
(t – x)

α
k –n+1 dt, x < b. (1.14)
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For k = 1, the above expressions give the definition of Caputo fractional derivatives of
convolution g ∗ h of two functions g and h. The following result has been proved in [12].

Lemma 1 Let α > 0, k ≥ 1, and α /∈ {1, 2, 3, . . .}, n = [α] + 1. If g(x) = (x – a)p, where p ≥ n,
then the left-sided Caputo k-fractional derivative is given by

(
Cα

k,a+(x – a)p) =
(x – a)p– α

k k
α
k –1Γ (p + 1)Γk(nk – α)

Γk(n – α
k )Γk(pk – α + k)

. (1.15)

From the above lemma one can get some of the derivatives as follows:

(i) (C1/2
k,0+ (x)p) = k

1
2k –p–1

Γ (p+1)xp– 1
2k

Γ ( 2k(p+1)–1
2k )

.

(ii) (C1/2
k,0+ (x)) = k

1
2k –2×x1– 1

2k

Γ ( 4k–1
2k )

.

(iii) (C1/2
1,0+ (x)p) = Γ (p+1)xp– 1

2

Γ ( 2p+1
2 )

.

(iv) (C1/2
1,0+ (x)) = 2

√
x√

π
.

The following Chebyshev inequality has been proved in [12].

Theorem 1 Let f : [0,∞) →R and g : [0,∞) →R be the two functions. If nth derivatives of
f and g have the same monotonicity, then for Caputo k-fractional derivatives the following
inequality holds:

(
Cα

k,a+g ∗ h
)
(x) ≥ kΓk(n – α

k + k)
(x – a)n– α

k

(
Cα

k,a+g
)
(x)

(
Cα

k,a+h
)
(x). (1.16)

For some more recent results for Caputo k-fractional derivatives, see [6, 8, 11].
Next we give the definition of Mittag-Leffler function which is generalization of various

special functions [9]:

Eα(z) =
∞∑

k=0

zn

Γ (nα + 1)
, z,α ∈C, Re(α) > 0. (1.17)

This function has been generalized by several mathematicians and utilized in various sub-
jects of science and engineering. In [1] it is extended as follows.

Definition 7 Let μ,ν, l,γ , d ∈ C, Re(μ), Re(ν), Re(l) > 0, Re(d) > Re(γ ) > 0 with p ≥ 0,
δ > 0 and 0 < m ≤ δ + Re(μ). Then the extended generalized Mittag-Leffler function
Eγ ,δ,m,d

μ,ν,l (t; p) is defined by

Eγ ,δ,m,d
μ,ν,l (t; p) =

∞∑
i=0

βp(γ + im, d – γ )
β(γ , d – γ )

(d)im

Γ (μi + ν)
ti

(l)iδ
, (1.18)

where βp is the generalized Beta function defined by [1]

βp(u, v) =
∫ 1

0
xu–1(1 – x)v–1e

–p
x(1–x) dx, (1.19)

where (·)im is the Pochhammer symbol defined by (·)im = Γ (·+im)
Γ (·) .
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The aim of this paper is to explore new Caputo k-fractional integral inequalities by using
Grüss type variable bounds of functions having n-time derivatives absolutely continuous.
Also, for Grüss type conditions on two n-time differentiable functions, more fractional
integral inequalities are obtained. Further Chebyshev inequality (1.16) is used to produce
some interesting consequences. Moreover, Caputo k-fractional differential equations in-
volving the extended generalized Mittag-Leffler function are analyzed and their solutions
are proposed via the Laplace transform technique.

2 Caputo k-fractional inequalities
The first result is derived for the function having n-time derivatives absolutely continuous
and bounded by variable functions.

Theorem 2 Let g, h1, h2 : [a, b] → R be the functions such that g, h1, h2 ∈ ACn[a, b]. Also,
let ∀x ∈ [a, b]

h(n)
1 (x) ≤ g(n)(x) ≤ h(n)

2 (x). (2.1)

Then the following inequality for the Caputo k-fractional derivatives holds:

(
Cα

k,a+h2
)
(x)

(
Cβ

k,a+g
)
(x) +

(
Cβ

k,a+h1
)
(x)

(
Cα

k,a+g
)
(x)

≥ (
Cα

k,a+h2
)
(x)

(
Cβ

k,a+h1
)
(x) +

(
Cα

k,a+g
)
(x)

(
Cβ

k,a+g
)
(x). (2.2)

Proof From (2.1), ∀u, v ∈ [a, b], one can obtain

(
h(n)

2 (u) – g(n)(u)
)(

g(n)(v) – h(n)
1 (v)

) ≥ 0.

This inequality further takes the form

h(n)
2 (u)g(n)(v) + h(n)

1 (v)g(n)(u) ≥ h(n)
1 (v)h(n)

2 (u) + g(n)(u)g(n)(v). (2.3)

Multiplying by (x – u)n– α
k –1 on both sides of above inequality and then integrating with

respect to u over [a, x], we get

∫ x

a
h(n)

2 (u)g(n)(v)(x – u)n– α
k –1 du +

∫ x

a
h(n)

1 (v)g(n)(u)(x – u)n– α
k –1 du

≥
∫ x

a
h(n)

1 (v)h(n)
2 (u)(x – u)n– α

k –1 du +
∫ x

a
g(n)(u)g(n)(v)(x – u)n– α

k –1 du.

Using the definition of Caputo k-fractional derivatives, the following inequality is yielded:

g(n)(v)kΓk

(
n –

α

k

)(
Cα

k,a+h2
)
(x) + h(n)

1 (v)kΓk

(
n –

α

k

)(
Cα

k,a+g
)
(x)

≥ h(n)
1 (v)kΓk

(
n –

α

k

)(
Cα

k,a+h2
)
(x) + f (n)(v)kΓk

(
n –

α

k

)(
Cα

k,a+g
)
(x). (2.4)
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Now multiplying the above inequality by (x – v)n– β
k –1 on both sides and then integrating

with respect to v over [a, x], we get

kΓk

(
n –

α

k

)(
Cα

k,a+h2
)
(x)

∫ x

a
g(n)(v)(x – v)n– β

k –1 dv

+ kΓk

(
n –

α

k

)(
Cα

k,a+g
)
(x)

∫ x

a
h(n)

1 (v)(x – v)n– β
k –1 dv

≥ kΓk

(
n –

α

k

)(
Cα

k,a+h2
)
(x)

∫ x

a
h(n)

1 (v)(x – v)n– β
k –1 dv

+ kΓk

(
n –

α

k

)(
Cα

k,a+g
)
(x)

∫ x

a
g(n)(v)(x – v)n– β

k –1 dv.

Again, by using the definition of Caputo k-fractional derivatives, one can obtain (2.2). �

Some special cases of Theorem 2 have been derived in the following results.

Corollary 1 If we take k = 1 in Theorem 2, then the following inequality holds:

(
Cα

a+h2
)
(x)

(
Cβ

a+g
)
(x) +

(
Cβ

a+h1
)
(x)

(
Cα

a+g
)
(x)

≥ (
Cα

a+h2
)
(x)

(
Cβ

a+h1
)
(x) +

(
Cα

a+g
)
(x)

(
Cβ

a+g
)
(x). (2.5)

Corollary 2 If we take α = β in Theorem 2, then the following inequality holds:

(
Cα

k,a+g
)
(x)

((
Cα

k,a+h2
)
(x) +

(
Cα

k,a+h1
)
(x)

)

≥ (
Cα

k,a+h2
)
(x)

(
Cα

k,a+h1
)
(x) +

((
Cα

k,a+g
)
(x)

)2. (2.6)

Corollary 3 Using (1.16) in (2.6), we obtain the following inequality:

(x – a)n– α
k

kΓk(n – α
k + k)

[(
Cα

k,a+g ∗ h2
)
(x) +

(
Cα

k,a+g ∗ h1
)
(x)

]

≥ (
Cα

k,a+g
)
(x)

((
Cα

k,a+h2
)
(x) +

(
Cα

k,a+h1
)
(x)

)

≥ (
Cα

k,a+h2
)
(x)

(
Cα

k,a+h1
)
(x) +

((
Cα

k,a+g
)
(x)

)2. (2.7)

Corollary 4 Let g : [a, b] → R be a function such that g ∈ ACn[a, b]. If m, M ∈ R satisfy-
ing m ≤ g(n)(x) ≤ M, then ∀x ∈ [a, b] the following inequality for the Caputo k-fractional
derivatives holds:

M(x – a)n– α
k

kΓk(n – α
k + k)

(
Cβ

k,a+g
)
(x) +

m(x – a)n– β
k

kΓk(n – β

k + k)
(
Cα

k,a+g
)
(x)

≥ mM(x – a)2n– α+β
k

k2Γk(n – α
k + k)Γk(n – β

k + k)
+

(
Cα

k,a+g
)
(x)

(
Cβ

k,a+g
)
(x). (2.8)

Proof If we take h1 = mxn

n! and h2 = Mxn

n! in Theorem 2 and follow the rest of the proof along
the same lines as the proof of Theorem 2, inequality (2.8) can be obtained. �
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Corollary 5 If we take α = β in Corollary 4, we obtain the following inequality:

(m + M)(x – a)n– α
k

kΓk(n – α
k + k)

(
Cα

k,a+g
)
(x) –

((
Cα

k,a+g
)
(x)

)2

≥ mM(x – a)2n– 2α
k

(kΓk(n – α
k + k))2 . (2.9)

Corollary 6 If we take k = 1 in Corollary 4, then the following inequality holds:

M(x – a)n–α

Γ (n – α + 1)
(
Cβ

a+g
)
(x) +

m(x – a)n–β

Γ (n – β + 1)
(
Cα

a+g
)
(x) –

(
Cα

a+g
)
(x)

(
Cβ

a+g
)
(x)

≥ mM(x – a)2n–α–β

Γ (n – α + 1)Γ (n – β + 1)
. (2.10)

Corollary 7 If we take α = β in Corollary 6, then the following inequality holds:

(m + M)
(x – a)n–α

Γ (n – α + 1)
(
Cα

a+g
)
(x) –

((
Cα

a+g
)
(x)

)2

≥ mM(x – a)2n–2α

(Γ (n – α + 1))2 . (2.11)

The next result is derived for two functions f and g having nth derivatives absolutely
continuous and bounded by the variable functions.

Theorem 3 Let f , g, h1, h2, t1, t2 : [a, b] → R be the functions such that f , g, h1, h2, t1, t2 ∈
ACn[a, b]. Also, let ∀x ∈ [a, b]

h(n)
1 (x) ≤ g(n)(x) ≤ h(n)

2 (x) (2.12)

and

t(n)
1 (x) ≤ f (n)(x) ≤ t(n)

2 (x). (2.13)

Then the following inequalities for the Caputo k-fractional derivatives hold:

(
Cα

k,a+h2
)
(x)

(
Cβ

k,a+f
)
(x) +

(
Cβ

k,a+t1
)
(x)

(
Cα

k,a+g
)
(x)

≥ (
Cα

k,a+h2
)
(x)

(
Cβ

k,a+t1
)
(x) +

(
Cα

k,a+g
)
(x)

(
Cβ

k,a+f
)
(x), (2.14)

(
Cβ

k,a+t2
)
(x)

(
Cα

k,a+g
)
(x) +

(
Cα

k,a+h1
)
(x)

(
Cβ

k,a+g
)
(x)

≥ (
Cα

k,a+h1
)
(x)

(
Cβ

k,a+t2
)
(x) +

(
Cα

k,a+g
)
(x)

(
Cβ

k,a+f
)
(x), (2.15)

(
Cα

k,a+h2
)
(x)

(
Cβ

k,a+t2
)
(x) +

(
Cα

k,a+g
)
(x)

(
Cβ

k,a+f
)
(x)

≥ (
Cα

k,a+h2
)
(x)

(
Cβ

k,a+f
)
(x) +

(
Cβ

k,a+t2
)
(x)

(
Cα

k,a+g
)
(x), (2.16)

(
Cα

k,a+h1
)
(x)

(
Cβ

k,a+t1
)
(x) +

(
Cα

k,a+g
)
(x)

(
Cβ

k,a+f
)
(x)

≥ (
Cα

k,a+h1
)
(x)

(
Cβ

k,a+g
)
(x) +

(
Cβ

k,a+t1
)
(x)

(
Cα

k,a+g
)
(x). (2.17)
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Proof Using (2.12) and (2.13), the following inequality holds:

(
h(n)

2 (u) – g(n)(u)
)(

f (n)(v) – t(n)
1 (v)

) ≥ 0.

This further takes the form

h(n)
2 (u)f (n)(v) + t(n)

1 (v)g(n)(u) ≥ h(n)
2 (u)t(n)

1 (v) + g(n)(u)f (n)(v).

Multiplying by (x – u)n– α
k –1 on both sides of the above inequality and then integrating with

respect to u over [a, x], we get

∫ x

a
h(n)

2 (u)f (n)(v)(x – u)n– α
k –1 du +

∫ x

a
t(n)
1 (v)g(n)(u)(x – u)n– α

k –1 du

≥
∫ x

a
h(n)

2 (u)t(n)
1 (v)(x – u)n– α

k –1 du +
∫ x

a
g(n)(u)f (n)(v)(x – u)n– α

k –1 du.

Using the definition of Caputo k-fractional derivatives, we obtain

f (n)(v)kΓk

(
n –

α

k

)(
Cα

k,a+h2
)
(x) + t(n)

1 (v)kΓk

(
n –

α

k

)(
Cα

k,a+g
)
(x)

≥ t(n)
1 (v)kΓk

(
n –

α

k

)(
Cα

k,a+h2
)
(x) + f (n)(v)kΓk

(
n –

α

k

)(
Cα

k,a+g
)
(x).

Now, multiplying by (x – v)n– β
k –1 on both sides of the above inequality and then integrating

with respect to v over [a, x], we get

kΓk

(
n –

α

k

)(
Cα

k,a+h2
)
(x)

∫ x

a
f (n)(v)(x – v)n– β

k –1 dv

+ kΓk

(
n –

α

k

)(
Cα

k,a+g
)
(x)

∫ x

a
t(n)
1 (v)(x – v)n– β

k –1 dv

≥ kΓk

(
n –

α

k

)(
Cα

k,a+h2
)
(x)

∫ x

a
t(n)
1 (v)(x – v)n– β

k –1 dv

+ kΓk

(
n –

α

k

)(
Cα

k,a+g
)
(x)

∫ x

a
f (n)(v)(x – v)n– β

k –1 dv.

Again using the definition of Caputo k-fractional derivatives, inequality (2.14) can be ob-
tained.

For the proof of (2.15), (2.16), and (2.17), the following inequalities can be used respec-
tively:

(
g(n)(u) – h(n)

1 (u)
)(

t(n)
2 (v) – f (n)(v)

) ≥ 0, (2.18)
(
h(n)

2 (u) – g(n)(u)
)(

f (n)(v) – t(n)
2 (v)

) ≤ 0, (2.19)
(
h(n)

1 (u) – g(n)(u)
)(

f (n)(v) – t(n)
1 (v)

) ≤ 0. (2.20)

The rest of the proof follows along the same lines as the proof of (2.14). �

The further consequences of Theorem 3 are stated in the following corollaries.
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Corollary 8 If we take α = β in Theorem 3, then the following results hold:

(
Cα

k,a+h2
)
(x)

(
Cα

k,a+f
)
(x) +

(
Cα

k,a+t1
)
(x)

(
Cα

k,a+g
)
(x)

≥ (
Cα

k,a+h2
)
(x)

(
Cα

k,a+t1
)
(x) +

(
Cα

k,a+f
)
(x)

(
Cα

k,a+g
)
(x), (2.21)

(
Cα

k,a+t2
)
(x)

(
Cα

k,a+g
)
(x) +

(
Cα

k,a+h1
)
(x)

(
Cα

k,a+f
)
(x)

≥ (
Cα

k,a+h1
)
(x)

(
Cα

k,a+t2
)
(x) +

(
Cα

k,a+g
)
(x)

(
Cα

k,a+f
)
(x), (2.22)

(
Cα

k,a+h2
)
(x)

(
Cα

k,a+t2
)
(x) +

(
Cα

k,a+f
)
(x)

(
Cα

k,a+g
)
(x)

≥ (
Cα

k,a+h2
)
(x)

(
Cα

k,a+f
)
(x) +

(
Cα

k,a+t2
)
(x)

(
Cα

k,a+g
)
(x), (2.23)

(
Cα

k,a+h1
)
(x)

(
Cα

k,a+t1
)
(x) +

(
Cα

k,a+f
)
(x)

(
Cα

k,a+g
)
(x)

≥ (
Cα

k,a+h1
)
(x)

(
Cα

k,a+f
)
(x) +

(
Cα

k,a+t1
)
(x)

(
Cα

k,a+g
)
(x). (2.24)

Corollary 9 Using Theorem 1 in Corollary 8, the following results hold:

(x – a)n– α
k

kΓk(n – α
k + k)

[(
Cα

k,a+h2 ∗ f
)
(x) +

(
Cα

k,a+g ∗ t1
)
(x)

]

≥ (
Cα

k,a+h2
)
(x)

(
Cα

k,a+f
)
(x) +

(
Cα

k,a+t1
)
(x)

(
Cα

k,a+g
)
(x)

≥ (
Cα

k,a+h2
)
(x)

(
Cα

k,a+t1
)
(x) +

(
Cα

k,a+f
)
(x)

(
Cα

k,a+g
)
(x), (2.25)

(x – a)n– α
k

kΓk(n – α
k + k)

[(
Cα

k,a+g ∗ t2
)
(x) +

(
Cα

k,a+f ∗ h1
)
(x)

]

≥ (
Cα

k,a+t2
)
(x)

(
Cα

k,a+g
)
(x) +

(
Cα

k,a+h1
)
(x)

(
Cα

k,a+f
)
(x)

≥ (
Cα

k,a+h1
)
(x)

(
Cα

k,a+t2
)
(x) +

(
Cα

k,a+f
)
(x)

(
Cα

k,a+g
)
(x), (2.26)

(x – a)n– α
k

kΓk(n – α
k + k)

[(
Cα

k,a+h2 ∗ t2
)
(x) +

(
Cα

k,a+f ∗ g
)
(x)

]

≥ (
Cα

k,a+h2
)
(x)

(
Cα

k,a+t2
)
(x) +

(
Cα

k,a+f
)
(x)

(
Cα

k,a+g
)
(x)

≥ (
Cα

k,a+h2
)
(x)

(
Cα

k,a+f
)
(x) +

(
Cα

k,a+t2
)
(x)

(
Cα

k,a+g
)
(x), (2.27)

(x – a)n– α
k

kΓk(n – α
k + k)

[(
Cα

k,a+h1 ∗ t1
)
(x) +

(
Cα

k,a+f ∗ g
)
(x)

]

≥ (
Cα

k,a+h1
)
(x)

(
Cα

k,a+t1
)
(x) +

(
Cα

k,a+f
)
(x)

(
Cα

k,a+g
)
(x)

≥ (
Cα

k,a+h1
)
(x)

(
Cα

k,a+f
)
(x) +

(
Cα

k,a+t1
)
(x)

(
Cα

k,a+f
)
(x). (2.28)

Corollary 10 If we take k = 1 in Theorem 3, then the following inequalities hold:

(
Cα

a+h2
)
(x)

(
Cβ

a+f
)
(x) +

(
Cβ

a+t1
)
(x)

(
Cα

a+g
)
(x)

≥ (
Cα

a+h2
)
(x)

(
Cβ

a+t1
)
(x) +

(
Cα

a+g
)
(x)

(
Cβ

a+f
)
(x), (2.29)

(
Cβ

a+t2
)
(x)

(
Cα

a+g
)
(x) +

(
Cα

a+h1
)
(x)

(
Cβ

a+f
)
(x)

≥ (
Cα

a+h1
)
(x)

(
Cβ

a+t2
)
(x) +

(
Cα

a+g
)
(x)

(
Cβ

a+f
)
(x), (2.30)
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(
Cα

a+h2
)
(x)

(
Cβ

a+t2
)
(x) +

(
Cα

a+g
)
(x)

(
Cβ

a+f
)
(x)

≥ (
Cα

a+h2
)
(x)

(
Cβ

a+f
)
(x) +

(
Cβ

a+t2
)
(x)

(
Cα

a+g
)
(x), (2.31)

(
Cα

a+h1
)
(x)

(
Cβ

a+t1
)
(x) +

(
Cα

a+g
)
(x)

(
Cβ

a+f
)
(x)

≥ (
Cα

a+h1
)
(x)

(
Cβ

a+f
)
(x) +

(
Cβ

a+t1
)
(x)

(
Cα

a+g
)
(x). (2.32)

Corollary 11 Let f , g : [a, b] →R be the functions such that f , g ∈ ACn[a, b]. If m, M, n, N ∈
R satisfy m ≤ g(n)(x) ≤ M and l ≤ f (n)(x) ≤ L, then ∀x ∈ [a, b] the following inequalities for
the Caputo k-fractional derivatives hold:

M(x – a)n– α
k

kΓk(n – α
k + k)

(
Cβ

k,a+f
)
(x) +

l(x – a)n– β
k

kΓk(n – β

k + k)
(
Cα

k,a+g
)
(x)

≥ Ml(x – a)2n– α+β
k

kΓk(n – α
k + k)kΓk(n – β

k + k)
+

(
Cα

k,a+g
)
(x)

(
Cβ

k,a+f
)
(x), (2.33)

L(x – a)n– β
k

kΓk(n – β

k + k)
(
Cα

k,a+g
)
(x) +

m(x – a)n– α
k

kΓk(n – α
k + k)

(
Cβ

k,a+f
)
(x)

≥ mL(x – a)2n– α+β
k

kΓk(n – α
k + k)kΓk(n – β

k + k)
+

(
Cα

k,a+g
)
(x)

(
Cβ

k,a+f
)
(x), (2.34)

ML(x – a)2n– α+β
k

kΓk(n – α
k + k)kΓk(n – β

k + k)
+

(
Cα

k,a+g
)
(x)

(
Cβ

k,a+f
)
(x)

≥ M(x – a)n– α
k

kΓk(n – α
k + k)

(
Cβ

k,a+f
)
(x) +

L(x – a)n– β
k

kΓk(n – β

k + k)
(
Cα

k,a+g
)
(x), (2.35)

ml(x – a)2n– α+β
k

kΓk(n – α
k + k)kΓk(n – β

k + k)
+

(
Cα

k,a+g
)
(x)

(
Cβ

k,a+f
)
(x)

≥ m(x – a)n– α
k

kΓk(n – α
k + k)

(
Cβ

k,a+f
)
(x) + l

(x – a)n– β
k

kΓk(n – β

k + k)
(
Cα

k,a+g
)
(x). (2.36)

Proof If we take h1 = mxn

n! , h2 = Mxn

n! , t1 = lxn

n! , and t2 = Lxn

n! in Theorem 3 and follow the rest
of the proof along the same lines as the proof of Theorem 3, the required inequality can
be obtained. �

Corollary 12 If we take k = 1 in Corollary 11, then the following inequalities hold:

M(x – a)n–α

Γ (n – α + 1)
(
Cβ

a+f
)
(x) + l

(x – a)n–β

Γ (n – β + 1)
(
Cα

a+g
)
(x)

≥ Ml(x – a)2n–α–β

Γ (n – α + 1)Γ (n – β + 1)
+

(
Cα

a+g
)
(x)

(
Cβ

a+f
)
(x), (2.37)

L(x – a)n–β

Γ (n – β + 1)
(
Cα

a+g
)
(x) +

m(x – a)n–α

Γ (n – α + 1)
(
Cβ

a+f
)
(x)

≥ mL(x – a)2n–α–β

Γ (n – α + 1)Γ (n – β + 1)
+

(
Cα

a+g
)
(x)

(
Cβ

a+f
)
(x), (2.38)



Farid et al. Advances in Difference Equations        (2019) 2019:439 Page 11 of 16

ML(x – a)2n–α–β

Γ (n – α + 1)Γ (n – β + 1)
+

(
Cα

a+g
)
(x)

(
Cβ

a+f
)
(x)

≥ M(x – a)n–α

Γ (n – α + 1)
(
Cβ

a+f
)
(x) + L

(x – a)n–β

Γ (n – β + 1)
(
Cα

a+g
)
(x), (2.39)

ml(x – a)2n–α–β

Γ (n – α + 1)Γ (n – β + 1)
+

(
Cα

a+g
)
(x)

(
Cβ

a+f
)
(x)

≥ m(x – a)n–α

Γ (n – α + 1)
(
Cβ

a+f
)
(x) +

l(x – a)n–β

Γ (n – β + 1)
(
Cα

a+g
)
(x). (2.40)

3 Fractional differential equations
In this section, we formulate some generalized fractional differential equations and also
obtain their solutions. First we find the Laplace transform of Caputo k-fractional deriva-
tive.

Lemma 2 Let α > 0, k ≥ 1, and α /∈ {1, 2, 3, . . .}, n = [α] + 1. Then the Laplace transform of
left-sided Caputo k-fractional derivative is given by

L
{(

Cα
k,0+f

)
(x)

}
=

Γk(nk – α)
(ks)n– α

k Γk(n – α
k )

[
snL

{
f (t)

}
–

n–1∑
i=0

sn–i–1f (i)(0+)]
. (3.1)

Proof For a = 0, the left-sided Caputo k-fractional derivative is given by

(
Cα

k,0+f
)
(x) =

1
kΓk(n – α

k )

∫ x

0

f (n)(t)
(x – t)

α
k –n+1 dt. (3.2)

The Laplace convolution operator of two functions f (t) and g(t) given on R
+ is defined by

the integral

f ∗ g = (f ∗ g)(x) =
∫ x

0
f (x – t)g(t) dt

which has the commutative property, i.e., f ∗ g = g ∗ f .
Therefore (3.2) can be written as (f (n) ∗ g)(x), where f (t) = tn– α

k –1 and g(t) = f (n)(t)

(
Cα

k,0+f
)
(x) =

1
kΓk(n – α

k )
f (n) ∗ (t)n– α

k –1.

Now, taking Laplace transform and using the property L{f ∗ g} = L{f }L{g} of Laplace
transform, we have

L
{(

Cα
k,0+f

)
(x)

}
=

1
kΓk(n – α

k )
L

{
f (n)(t)

}
L

{
(t)n– α

k –1}.

Using formulas L{f (n)(t)}(s) = snL{f (t)} –
∑n–1

i=0 sn–i–1f (i)(0+) and L{tα}(s) = Γ (α+1)
sα+1 of the

Laplace transform, we get

L
{(

Cα
k,0+f

)
(x)

}
=

Γ (n – α
k )

kΓk(n – α
k )sn– α

k

[
snL

{
f (t)

}
–

n–1∑
i=0

sn–i–1f (i)(0+)]
.

Using the property of gamma function Γ ( α
k ) = Γk (α)

k
α
k –1 , (3.1) can be obtained. �
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Theorem 4 Let a ∈ R
+, μ,ν, l,γ , d ∈ C, Re(μ), Re(ν), Re(l) > 0, Re(d) > Re(γ ) > 0 with

p ≥ 0, δ > 0, and 0 < m ≤ δ + Re(μ). Then, for x > a, the following results hold:

Cα
k,a+

[
(t – a)ν–1Eγ ,δ,m,d

μ,ν,l
(
w(t – a)μ; p

)]
(x)

=
(x – a)ν– α

k –1Γk(μik + νk – nk)Γk(nk – α)
Γk(n – α

k )Γk(μik + νk – α)
Eγ ,δ,m,d

μ,ν–n,l
(
w(t – a)μ; p

)
(3.3)

and

Rα
k,a

[
(t – a)ν–1Eγ ,δ,m,d

μ,ν,l
(
w(t – a)μ; p

)]
(x) =

(x – a)ν– α
k –1

k
α
k

Eγ ,δ,m,d
μ,ν+ α

k ,l
(
w(t – a)μ; p

)
. (3.4)

Proof Using the definition of Mittag-Leffler function, we can write the left-hand side of
equation (3.3) as follows:

Cα
k,a+

[
(t – a)ν–1Eγ ,δ,m,d

μ,ν,l
(
w(t – a)μ; p

)]
(x)

=
∞∑
i=0

βp(γ + im, d – γ )
β(γ , d – γ )

(d)im

Γ (μi + ν)
wi

(l)iδ
Cα

k,a+
[
(t – a)μi+ν–1)

]
(x). (3.5)

Using Lemma 1, we can write (3.5) as follows:

Cα
k,a+

[
(t – a)ν–1Eγ ,δ,m,d

μ,ν,l
(
w(t – a)μ; p

)]
(x)

=
∞∑
i=0

[
βp(γ + im, d – γ )

β(γ , d – γ )
(d)im

Γ (μi + ν)
wi

(l)iδ

× (x – a)μi+ν– α
k –1Γ (μi + ν)Γk(μik + νk – nk)Γk(nk – α)

Γ (μi + ν – n)Γk(n – α
k )Γk(μik + νk – α)

]
.

Using the definition of Mittag-Leffler function, (3.3) can be obtained.
Now consider the left-hand side of equation (3.4), using the definition of Mittag-Leffler

function, we have

Rα
k,a

[
(t – a)ν–1Eγ ,δ,m,d

μ,ν,l
(
w(t – a)μ; p

)]
(x)

=
∞∑
i=0

βp(γ + im, d – γ )
β(γ , d – γ )

(d)im

Γ (μi + ν)
wi

(l)iδ
Rα

k,a
[
(t – a)μi+ν–1](x).

Using Rα
k,a(x – a)p = (x–a)p– α

k Γk (pk+k)
Γk (pk+k+α) , we get

Rα
k,a

[
(t – a)ν–1Eγ ,δ,m,d

μ,ν,l
(
w(t – a)μ; p

)]
(x)

=
∞∑
i=0

[
βp(γ + im, d – γ )

β(γ , d – γ )
(d)im

Γ (μi + ν)
wi

(l)iδ

(x – a)μi+ν– α
k –1Γk(k(μi + ν))

Γk(k(μi + ν) + α)

]
.
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Using Γk(α) = k
α
k –1Γ ( α

k ), we have

Rα
k,a

[
(t – a)ν–1Eγ ,δ,m,d

μ,ν,l
(
w(t – a)μ; p

)]
(x)

=
∞∑
i=0

βp(γ + im, d – γ )
β(γ , d – γ )

(d)im

Γ (μi + ν + α
k )

wi

(l)iδ

(x – a)μi+ν–1– α
k

k
α
k

,

which gives the required result (3.4). �

Theorem 5 Let a ∈ R
+, μ,ν, l,γ , d ∈ C, Re(μ), Re(ν), Re(l) > 0, Re(d) > Re(γ ) > 0 with

p ≥ 0, δ > 0 and 0 < m ≤ δ + Re(μ). The differential equation

(
Cα

k,0+y
)
(x) = λxνEγ ,δ,m,d

μ,ν+1,l
(
wxμ; p

)
+ f (x) (3.6)

with the initial condition y(0+) = c, where c is an arbitrary constant, has the solution as
follows:

y(x) = c1c +
λk1–αΓk(1 – α

k )
Γk(k – α)

∞∑
i=0

[
βp(γ + im, d – γ )

β(γ , d – γ )
(d)im

Γ (μi + α + ν + 1)
wixμi+α+ν

(l)iδ

]

+
k1–αΓk(1 – α

k )
Γk(k – α)

Rα
0+ f (x). (3.7)

Proof Applying the Laplace transform to equation (3.6), we have

L
{(

Cα
k,0+y

)
(x)

}
(s) = λL

{
xνEγ ,δ,m,d

μ,ν+1,l
(
wxμ; p

)}
(s) + L

{
f (x)

}
.

Using Lemma 2 for n = 1 and the definition of Mittag-Leffler function, we have

Γk(k – α)
(ks)1–αΓk(1 – α

k )
[
sL{y}(s) – y

(
0+)]

= λ

∞∑
i=0

βp(γ + im, d – γ )
β(γ , d – γ )

(d)im

Γ (μi + ν + 1)
wi

(l)iδ
L

{
xμi+ν

}
+ L

{
f (x)

}
.

After simplification we get

y(s) =
c
s

+
λk1–αΓk(1 – α

k )
sμi+α+ν+1Γk(k – α)

×
∞∑
i=0

βp(γ + im, d – γ )
β(γ , d – γ )

(d)imwi

(l)iδ
+

F(s)s–αk1–αΓk(1 – α
k )

Γk(k – α)
.

Now, taking the inverse Laplace transform, we get

y(x) = c1c +
λk1–αΓk(1 – α

k )
Γk(k – α)

L–1
{

1
sμi+α+ν+1

}

×
∞∑
i=0

βp(γ + im, d – γ )
β(γ , d – γ )

(d)imwi

(l)iδ
+

k1–αΓk(1 – α
k )

Γk(k – α)
L–1{F(s)s–α

}
,

which gives the required result (3.7). �
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Theorem 6 Let a ∈ R
+, μ,ν, l,γ , d ∈ C, Re(μ), Re(ν), Re(l) > 0, Re(d) > Re(γ ) > 0 with

p ≥ 0, δ > 0 and 0 < m ≤ δ + Re(μ). The differential equation

(
Cα

k,0+y
)
(x) = λ1xνEγ ,δ,m,d

μ,ν+1,l
(
wxμ; p

)
+ λ2xνEγ ,δ,m,d

μ,ν+1,l
(
wxμ; p

)
(3.8)

with the initial condition y(0+) = c, where c is an arbitrary constant, has the solution as
follows:

y(x) = c1c +
(λ1 + λ2)k1–αΓk(1 – α

k )
Γk(k – α)

×
∞∑
i=0

βp(γ + im, d – γ )
β(γ , d – γ )

(d)im

Γ (μi + α + ν + 1)
wixμi+α+ν

(l)iδ
. (3.9)

Proof Applying the Laplace transform to equation (3.8), we have

L
{(

Cα
k,0+y

)
(x)

}
(s) = (λ1 + λ2)L

{
xνEγ ,δ,m,d

μ,ν+1,l
(
wxμ; p

)}
(s).

Using Lemma 2 for n = 1 and the definition of Mittag-Leffler function, we have

Γk(k – α)
(ks)1–αΓk(1 – α

k )
[
sL{y}(s) – y

(
0+)]

= (λ1 + λ2)
∞∑
i=0

βp(γ + im, d – γ )
β(γ , d – γ )

(d)im

Γ (μi + ν + 1)
wi

(l)iδ
L

{
xμi+ν

}
.

After simplification we get

y(s) =
c
s

+
(λ1 + λ2)k1–αΓk(1 – α

k )
sμi+α+ν+1Γk(k – α)

∞∑
i=0

βp(γ + im, d – γ )
β(γ , d – γ )

(d)imwi

(l)iδ
.

Now, taking the inverse Laplace transform, we get

y(x) = c1c +
(λ1 + λ2)k1–αΓk(1 – α

k )
Γk(k – α)

L–1
{

1
sμi+α+ν+1

}

×
∞∑
i=0

βp(γ + im, d – γ )
β(γ , d – γ )

(d)imwi

(l)iδ
,

which gives the required result (3.9). �

Theorem 7 Let a ∈ R
+, μ,ν, l,γ , d ∈ C, Re(μ), Re(ν), Re(l) > 0, Re(d) > Re(γ ) > 0 with

p ≥ 0, δ > 0 and 0 < m ≤ δ + Re(μ). The differential equation

(
Cα

k,0+y
)
(x) = λxνEγ ,δ,m,d

μ,ν+1,l
(
wxμ; p

)
+

n∑
j=1

λjxνj Eγj ,δj ,mj ,dj
μj ,νj+1,lj

(
wj(x)μj ; p

)
(3.10)
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with the initial condition y(0+) = c, where c is an arbitrary constant, has the solution as
follows:

y(x) = c1c +
λk1–αΓk(1 – α

k )
Γk(k – α)

∞∑
i=0

[
βp(γ + im, d – γ )

β(γ , d – γ )

× (d)im

Γ (μi + α + ν + 1)
wixμi+α+ν

(l)iδ

]
+

n∑
j=1

[
λjk1–αΓk(1 – α

k )
Γk(k – α)

×
∞∑
i=0

βp(γj + imj, dj – γj)
β(γj, dj – γj)

(dj)imj

Γ (μji + α + νj + 1)
wi

jx
μj i+α+νj

(lj)iδj

]
. (3.11)

Proof Applying the Laplace transform to the above equation, we have

L
{(

Cα
k,0+y

)
(x)

}
(s) = λL

{
xνEγ ,δ,m,d

μ,ν+1,l
(
w(x)μ; p

)}
(s)

+ L
{ n∑

j=1

λjxνj Eγj ,δj ,mj ,dj
μj ,νj+1,lj

(
wj(x)μj ; p

)}
(s).

Using Lemma 2 for n = 1 and the definition of Mittag-Leffler function, we have

Γk(k – α)
(ks)1–αΓk(1 – α

k )
[
sL{y}(s) – y

(
0+)]

= λ

∞∑
i=0

βp(γ + im, d – γ )
β(γ , d – γ )

(d)im

Γ (μi + ν + 1)
wi

(l)iδ
L

{
xμi+ν

}

+
n∑

j=1

λj

[ ∞∑
i=0

βp(γj + imj, dj – γj)
β(γj, dj – γj)

(dj)imj

Γ (μji + νj + 1)
wi

j

(lj)iδj

L
{

xμj i+νj
}]

.

After simplification we get

y(s) =
c
s

+
λk1–αΓk(1 – α

k )
sμi+α+ν+1Γk(k – α)

∞∑
i=0

βp(γ + im, d – γ )
β(γ , d – γ )

(d)imwi

(l)iδ

+
n∑

j=1

[
λjk1–αΓk(1 – α

k )
sμj i+α+νj+1Γk(k – α)

∞∑
i=0

βp(γj + imj, dj – γj)
β(γj, dj – γj)

(dj)imj w
i
j

(lj)iδj

]
.

Now, taking the inverse Laplace transform, we get

y(x) = c1c +
λk1–αΓk(1 – α

k )
Γk(k – α)

L–1
{

1
sμi+α+ν+1

}

×
∞∑
i=0

βp(γ + im, d – γ )
β(γ , d – γ )

(d)imwi

(l)iδ

+
n∑

j=1

[
λjk1–αΓk(1 – α

k )
Γk(k – α)

L–1
{

1
sμj i+α+νj+1

} ∞∑
i=0

βp(γj + imj, dj – γj)
β(γj, dj – γj)

(dj)imj w
i
j

(lj)iδj

]
,

which gives the required result (3.11). �
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3.1 Concluding remarks
In this paper, by using Grüss type variable bounds of the functions having nth derivatives
absolutely continuous, Caputo k-fractional integral inequalities have been established.
Integral inequalities have been derived deploying Chebyshev inequality [12] for Caputo
k-fractional derivatives. Laplace transform of Caputo k-fractional derivative is derived
and further applied to solve fractional differential equations involving an extended gen-
eralized Mittag-Leffler function. Caputo k-fractional derivative and Riemann–Liouville
k-fractional integral of the extended generalized Mittag-Leffler function are calculated.
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