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Abstract
This paper deals with existence, uniqueness, and Hyers–Ulam stability of solutions to
a nonlinear coupled implicit switched singular fractional differential system involving
Laplace operator φp. The proposed problem consists of two kinds of fractional
derivatives, that is, Riemann–Liouville fractional derivative of order β and Caputo
fractional derivative of order σ , wherem – 1 < β , σ <m,m ∈ {2, 3, . . . }. Prior to
proceeding to the main results, the system is converted into an equivalent integral
form by the help of Green’s function. Using Schauder’s fixed point theorem and
Banach’s contraction principle, the existence and uniqueness of solutions are proved.
The main results are demonstrated by an example.
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1 Introduction
Fractional differential equations (FDEs) arise in different branches of applied mathemat-
ics. Recently, it has been evidently realized that the mathematical models of systems and
processes involving fractional order derivatives often appear in the fields of physics, chem-
istry, biology, viscoelasticity, control hypothesis, speculation, fluid dynamics, hydrody-
namics, aerodynamics, information processing system networking, notable and picture
processing; see the remarkable monographs [22, 24, 37]. The study of fractional order
differential models has been associated with the fact that they provide a more accurate
description of real phenomena than the counterpart integer order models. The reason
behind this intensive interest is that FDEs provide practical tools for the depictions of
memory and inherited properties of many materials and processes. As a result, FDEs have
experienced significant developments in recent years; see [5, 6, 13, 28, 30, 32, 34, 35, 41,
45] for further details.

One of the most interesting research areas in the field of FDEs, which has attracted
great consideration amongst researchers, is dedicated to the existence theory of the so-
lutions of fractional models. The aforesaid part has been extensively explored for integer
order differential equations (DEs). However, for arbitrary order DEs, there are still many
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aspects which need further study and research. Different mathematicians have explored
the existence of solutions of FDEs in various directions [1–3, 9, 12, 17, 21, 27]. Another
imperative and more remarkable area of research, which has recently attracted more at-
tention, is committed to the stability analysis of DEs of integer and noninteger order. The
first effort was initiated by Ulam himself and later was confirmed by Hyers in [19]. That
is why this type of stability is referred to as Ulam–Hyers (UH) stability. Further, Rassias
introduced the Ulam–Hyers–Rassias (UHR) stability; see some recently reported stability
results in the sense of Ulam [4, 7, 20, 29, 33, 38, 42–44, 47–50]. It is to be noted that the
above said areas of interest (existence and stability) have been often deliberated within
the settings of Riemann–Liouville and Caputo derivatives. The above results can also be
studied for Caputo-Fabrizio derivative [10, 11, 14–16, 23].

In the solutions of differential and integral equations, the concept of fixed point theory is
very important. Different fixed point theorems, which have numerous applications in the
mentioned equations, are presented. Few important fixed point theorems can be found in
[18, 39, 46].

For the sake of completeness and comparison, we assemble herein some relevant results.
In [26], Liu et al. investigated the existence results of fractional Sturm–Liouville boundary
value problem:

⎧
⎪⎪⎨

⎪⎪⎩

Dσ
0+ (Φ(ρ(t)))(Dσ ′

0+ u(t)) + f (t, u(t), Dσ ′
0+ u(t)) = 0, t ∈ (0, 1), 0 < σ ,σ ′ < 1,

a0 limt→0 t1–σ ′u(t) – b0 limt→0 Φ–1(t1–σ )ρ(t)Dσ ′
0+ u(0) = 0,

c0 limt→1 Φ–1(t1–σ )ρ(t)Dσ ′
0+ u(0) + d0 limt→1 t1–σ ′u(t) = 0,

where Dσ
0+ , Dσ ′

0+ denote the Riemann–Liouville fractional derivatives of order σ and σ ′

respectively, a0, b0, c0, d0 ∈ R, while ρ : (0, 1) → R+ is a given continuous function. The
function f : (0, 1) ×R×R→R is a quasi-Carathéodory function which may be singular
at the points t = 0, 1. The p-Laplacian operator Φ is defined as Φ(s) = |s|p–2 with inverse
operator represented by Φ–1(s) = |s|q–2, where 1

p + 1
q = 1. The analysis relies on the well-

known Leray–Schauder alternative principle.
In [25], Li studied the existence of a positive solution to the fractional differential equa-

tion involving integral boundary conditions with nonlinear p-Laplacian operator of the
form:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dα(φp(cDσ u(t))) + f (t, u(t)) = 0, t ∈ (0, 1), 2 < α,σ < 3,

φp(cDσ u(0)) = [φp(cDσ u(0))]′ = (cDσ u(1)) = 0,

u′′(0) = u′(1) = 0,

λu(0) + ζu′(0) =
∫ 1

0 u(t)ϕ(t) dt,

where Dα , cDσ denote the Riemann–Liouville and Caputo fractional derivatives of order
α and σ , respectively, and φ(s) = |s|p–2, p > 1. The function ϕ satisfies ϕ : [0, 1] →R+ with
ϕ ∈ L1[0, 1],

∫ 1
0 ϕ(t) dt > 0 and

∫ 1
0 tϕ(t) dt > 0, a, b ∈ R+ with

∫ 1
0 ϕ(t) dt < a, where b > a,

and f : [0, 1] × (0,∞) → (0,∞) is continuous. By employing the Avery–Henderson fixed
point theorem, new results have been obtained for the above problem.
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In [8], Alkhazzan et al. studied the existence and stability results for a class of nonlinear
fractional differential equations with singularity of the form:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cDσ [φpDβu(t)] + F1(t)ψ1(t, u(t)) = 0,

([φpDβu(0)])(j) = 0, j = 0, 1, . . . , m – 1,

Ik–β(u(0)) = 0, k = 2, 3, . . . , m,

Dδ(u(1)) = 0,

where Dβ and cDσ respectively represent the Riemann–Liouville and Caputo fractional
derivatives of order β and σ , m – 1 < β , σ ≤ m, m ∈ {2, 3, . . . }, 1 < δ ≤ 2. The nonlinear
p-Laplacian operator φp has expression in the form φp(θ ) = θ

|θ |2–p , φp(0) = 0, with inverse
φq, that is, φq = φ–1

p such that 1
p + 1

q = 1. The nonlinear function ψ1 ∈ C[0, 1] is continuous
and perhaps singular with respect to t, u. Some classical fixed point theorems are utilized
to prove the main results.

The objective of this paper is to use the concepts mentioned in [8] to examine the exis-
tence, uniqueness as well as different kinds of Hyers–Ulam stability for the solution of the
nonlinear coupled implicit switched singular system of fractional differential equations
with singularities of the form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cDσ [φpDβu(t)] + F1(t)ψ1(t, u(t), cDρ[φpDβv(t)]) = 0, t ∈ J = ]0, 1[,
cDρ[φpDβv(t)] + F2(t)ψ2(t, cDσ [φpDβu(t)], v(t)) = 0, t ∈ J,

([φpDβu(0)])(j) = 0, j = 0, 1, . . . , m – 1,

([φpDβv(0)])(j) = 0, j = 0, 1, . . . , m – 1,

Ik–β(u(0)) = Ik–β (v(0)) = 0, k = 2, 3, . . . , m,

Dδ(u(1)) = Dδ(v(1)) = 0,

(1.1)

where Dβ and cDσ respectively denote the Riemann–Liouville and Caputo fractional
derivatives of order β and σ , m – 1 < β , σ ≤ m, m ∈ {2, 3, . . . }, 1 < δ ≤ 2, and F1(·), F2(·)
are linear and bounded operators on R. Furthermore, the nonlinear p-Laplacian operator
φp has expression in the form φp(θ ) = θ

|θ |2–p , φp(0) = 0, with inverse operator φq, that is,
φq = φ–1

p such that 1
p + 1

q = 1. The nonlinear functions ψ1,ψ2 ∈ C[0, 1] are continuous and
perhaps singular with respect to t, u, v.

The current work is organized as follows: In Sect. 2, we present some basic definitions
and assertions that will be used in the subsequent sections. In Sect. 3 we state and prove
our main existence results. We discuss the Ulam stability of the proposed problem in
Sect. 4. Concrete example is illustrated to demonstrate consistency with the proposed
results.

2 Basic definitions and assertions
Here we state some fundamental facts, definitions, and lemmas which will be used
throughout this paper.

Let C(J,X ) be the space of all continuous functions of the form u(t) : J → X , t ∈ J. It
is obvious that C(J,X ) is a Banach space with norm ‖u‖ = max{|u(t)|, t ∈ J}. Further, we
understand that C(J,X ) × C(J,X ) is a Banach space with norm ‖(u, v)‖ = ‖u‖ + ‖v‖.
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Definition 2.1 ([22]) Let α ∈ R+. Then the noninteger order integral in the Riemann–
Liouville sense for a function θ : J →R is given as

Iαθ (t) =
1

Γ (α)

∫ t

0
(t – s)α–1θ (s) ds,

such that the integral on the right-hand side is pointwise defined on R+.

Definition 2.2 ([22]) Let α ∈ (n – 1, n] with n – 1 = [α]. Then the noninteger order deriva-
tive in the Caputo sense of θ : [a, b] →R is stated as

dα

dtα
θ (t) =

∫ t

a

(t – s)n–α–1

Γ (n – α)

(
dn

dsn θ (s)
)

ds.

In particular, if p is defined on the interval [a, b] and α ∈ (0, 1], then

dα

dtα
θ (t) =

1
Γ (1 – α)

∫ t

a

θ ′(s)
(t – s)α

ds, where θ ′(s) =
dθ (s)

ds
.

It is to be noted that the integral on the right-hand side is pointwise defined on R+.

Definition 2.3 ([22]) The noninteger order derivative in the Riemann–Liouville sense
having order σ for a function θ : (0,∞) →R+ is defined by

Dσ
1+θ (t) =

1
Γ (n – σ )

dn

dtn

∫ t

0
(t – s)n–σ–1θ (s) ds, n – 1 < σ < n = 1 + �σ	,

where the integral on the right-hand side is pointwise continuous and defined on the in-
terval (0,∞) and �σ	 is the integer part of σ .

Lemma 2.4 ([8]) Let σ ∈ (m–1, m], θ ∈ Cm–1, and cDσ be the Caputo fractional derivative.
Then

cIσ cDσ θ (t) = θ (t) + b1 + b2t + b3t2 + · · · + bmtm–1,

where bi ∈R, i = 1, 2, . . . m, m = [σ ] + 1.

Lemma 2.5 ([8]) Let σ ∈ (m–1, m], θ ∈ Cm–1, and Dσ be the Riemann–Liouville fractional
derivative. Then

Iσ Dσ θ (t) = θ (t) + c1tσ–1 + c2tσ–2 + · · · + cmtσ–m,

where ci ∈R, i = 1, 2, . . . m, m = [σ ] + 1.

Lemma 2.6 ([36], Arzelä–Ascoli theorem) An operator H : Br ∩ (Ω̄1/Ω2) → Br is said to
be compact if and only if H is uniformly bounded and discontinuous.

Lemma 2.7 (Schauder fixed point theorem [39]) Let S �= ∅ be a convex and closed subset of
the Banach space X . Let φ : S → S be a continuous operator such that φ(S) is a relatively
compact subset of X . Then the operator system φ has at least one fixed point in S .



Ahmad et al. Advances in Difference Equations        (2019) 2019:436 Page 5 of 22

Lemma 2.8 ([27]) Let φp : R → R be a nonlinear p-Laplacian operator, that is, φp(ζ ) =
|ζ |p–2ζ , ζ ∈R. Then

dφp

dζ
= (p – 1)|ζ |p–2.

Some basic properties of the operator φp are as follows:
(A1) If 1 < p ≤ 2, ζ1, ζ2 > 0, 0 < � ≤ |ζ1|, |ζ2|, then

∣
∣φp(ζ1) – φp(ζ2)

∣
∣ ≤ (p – 1)�p–2|ζ1 – ζ2|.

(A2) For p > 2, |ζ1, ζ2| ≤ �∗, then

∣
∣φp(ζ1) – φp(ζ2)

∣
∣ ≤ (p – 1)�p–2|ζ1 – ζ2|.

Lemma 2.9 ([31]) Let X be a Banach space and B ⊂X be a nonempty, closed, and convex
set. If a map H : B → B is compact, then H has a fixed point.

Definition 2.10 (Urs [40], Definition 2) Let X be a Banach space such that Υ1,Υ2 : X ×
X →X are two operators. Then the system

⎧
⎨

⎩

y(t) = Υ1(y, z)(t),

z(t) = Υ2(y, z)(t),
(2.1)

is said to be Hyers–Ulam stable if there exist constants �j(j = 1, 2, 3, 4) > 0 with αj(j = 1, 2) >
0, and for each solution (y∗, z∗) ∈X ×X of the inequalities

⎧
⎨

⎩

‖y∗ – Φ(y∗, z∗)‖ ≤ α1,

‖z∗ – Ψ (y∗, z∗)‖ ≤ α2,
(2.2)

there exists a solution (̃y, z̃) ∈X ×X of system (2.1), which satisfies
⎧
⎨

⎩

‖y∗ – ỹ‖ ≤ �1α1 + �2α2,

‖z∗ – z̃‖ ≤ �3α1 + �4α2.
(2.3)

Definition 2.11 Let νJ , where J = 1, 2, . . . , k, be the eigenvalues (real or complex) of a ma-
trix � ∈ � k×k . Then the term spectral radius α(�) of � ∈ � k×k is defined as

α(�) = max
{|νJ | for J = 1, 2, . . . , k

}
.

It is well known that the system corresponding to matrix � ∈ � k×k will converge to zero
if α(�) is less than one.

Theorem 2.12 (Urs [40], Theorem 4) Consider a Banach space X and define two opera-
tors Υ1,Υ2 : X ×X →X such that

⎧
⎨

⎩

‖Υ1(y, z) – Υ1(y∗, z∗)‖ ≤ �1‖y – y∗‖ + �2‖z – z∗‖,

‖Υ2(y, z) – Υ2(y∗, z∗)‖ ≤ �3‖y – y∗‖ + �4‖z – z∗‖.
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If the spectral radius of the matrix

� =

(
�1 �2

�3 �4

)

is less than one, then the fixed points correlated with operating system (2.1) are Hyers–Ulam
stable.

3 Existence results
This section is devoted to investigating the existence of solutions. The first result converts
the proposed problem into an equivalent integral form by the help of Green’s function.

Theorem 3.1 Let ψ1, ψ2 be integrable functions and u, v ∈ C(J,X ) satisfy (1.1). Then, for
3 < σ , β ,ρ ≤ m, m ≥ 4, the solution of the switched coupled system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cDσ [φpDβu(t)] + F1(t)ψ1(t, u(t), cDρ[φpDβv(t)]) = 0, t ∈ J,
cDρ[φpDβv(t)] + F2(t)ψ2(t, cDσ [φpDβu(t)], v(t)) = 0, t ∈ J,

([φpDβu(0)])(j) = 0, j = 0, 1, . . . , m – 1,

([φpDβv(0)])(j) = 0, j = 0, 1, . . . , m – 1,

Ik–β(u(0)) = Ik–β (v(0)) = 0, k = 2, 3, . . . , m,

Dδ(u(1)) = Dδ(v(1)) = 0

(3.1)

is equivalent to the integral equations

u(t) =
∫ 1

0
Gβ (t, s)φq

(∫ s

0
(s – τ )σ–1F1(τ )ψ1

(
τ , u(τ ), cDσ

(
φpDβu(τ )

))
dτ

)

ds

and

v(t) =
∫ 1

0
Gβ (t, s)φq

(∫ s

0
(s – τ )σ–1F2(τ )ψ2

(
τ , cDρ

(
φpDβu(τ )

)
, v(τ )

)
dτ

)

ds,

where Gβ (t, s) is Green’s function given by

Gβ (t, s) =

⎧
⎨

⎩

–(t–s)β–1

Γ (β) – tβ–1(1–s)β–δ–1

Γ (β) , s ≤ t ≤ 1, t ∈ J = (0, 1),
–tβ–1(1–s)β–δ–1

Γ (β) , t ≤ s ≤ 1.
(3.2)

Proof Let u, v ∈ C(J,X ) be the solution of (3.1), then

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cDσ [φpDβu(t)] + F1(t)ψ1(t, u(t), cDρ[φpDβv(t)]) = 0, t ∈ J,
cDρ[φpDβv(t)] + F2(t)ψ2(t, cDσ [φpDβu(t)], v(t)) = 0, t ∈ J,

([φpDβu(0)])(j) = 0, j = 0, 1, . . . , m – 1,

([φpDβv(0)])(j) = 0, j = 0, 1, . . . , m – 1,

Ik–β(u(0)) = Ik–β (v(0)) = 0, k = 2, 3, . . . , m,

Dδ(u(1)) = Dδ(v(1)) = 0.
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Since

cDσ (φp
(
Dβu(t)

)
+ F1(t)ψ1

(
t, u(t), cDρ

[
φpDβv(t)

])
= 0, (3.3)

where m – 1 < σ < m, m – 1 < β ≤ m, t ∈ J. Using Lemma 2.4, we have

φp
(
Dβu(t)

)
= –b0 – b1t – b2t2 – · · · – bm–1tm–1

–
1

Γ (σ )

∫ t

0
(t – s)σ–1F1(s)ψ1

(
s, u(s), cDρ

[
φpDβv(s)

])
. (3.4)

The (φp(Dβu(t)))(0)|t=0 = 0 implies that –b0 = 0 or b0 = 0. Therefore (3.4) becomes

φp
(
Dβu(t)

)
= –b1t – b2t2 – · · · – bm–1tm–1

–
1

Γ (σ )

∫ t

0
(t – s)σ–1F1(s)ψ1

(
s, u(s), cDρ

[
φpDβv(s)

])
. (3.5)

Differentiating (3.5) with respect to t, we have

(
φp

(
Dβu(t)

))′ = –b1 – 2b2t – · · · – (m – 1)bm–1tm–2

–
1

Γ (σ – 1)

∫ t

0
(t – s)σ–2F1(s)ψ1

(
s, u(s), cDρ

[
φpDβv(s)

])
.

Using the condition (φp(Dβu(t)))′|t=0 = 0 implies that b1 = 0. Similarly, by applying the
conditions (φp(Dβu(t)))(j)|t=0 = 0, we get bj = 0, ∀j = 2, 3, . . . m. Therefore, (3.4) becomes

Dβu(t) = – φ–1
p (Iσ

(
F1(t)ψ1

(
t, u(t), cDρ

(
φpDβv(t)

)))

= – φq(IσF1(t)ψ1
(
t, u(t), cDρ

(
φpDβv(t)

))
.

Applying Iβ to both sides and using Lemma 2.5, we have

u(t) = –d1tβ–1 – d2tβ–2 – · · · – dmtβ–m

–
1

Γ (β)

∫ t

0
(t – s)β–1φq(IσF1(t)ψ1

(
t, u(t), cDρ

(
φpDβv(t)

))
. (3.6)

Putting Ik–βu(t)|t=0 = 0 for k = 2, 3, . . . , m, we obtain d2 = d3 = · · · = dm = 0, and using
Dδu(t)|t=1 = 0, we get

d1 = –
Γ (β – δ)

Γ (β)
φq(IσF1(t)ψ1

(
t, u(t), cDρ

(
φpDβv(t)

))|t=1.

It follows that

u(t) = –
1

Γ (β)

∫ t

0
(t – s)β–1φq

(∫ s

0
(s – τ )σ–1F1(τ )ψ1

(
τ , u(τ ), cDρ

(
φpDβv(τ )

))
dτ

)

ds

–
tβ–1

Γ (β)

∫ 1

0
(1 – s)β–δ–1

× φq

(∫ s

0
(s – τ )σ–1F1(τ )ψ1

(
τ , u(τ ), cDρ

(
φpDβv(τ )

))
dτ

)

ds
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=
∫ 1

0
Gβ (t, s)φq

(∫ s

0
(s – τ )σ–1F1(τ )ψ1

(
τ , u(τ ), cDρ

(
φpDβv(τ )

))
dτ

)

ds.

In a similar manner, we may conclude that

v(t) =
∫ 1

0
Gβ (t, s)φq

(∫ s

0
(s – τ )σ–1F2(τ )ψ2

(
τ , cDρ

(
φpDβu(τ )

)
, v(τ )

)
dτ

)

ds, (3.7)

where Gβ (t, s) is the Green’s function defined above. �

Lemma 3.2 ([8]) The Green’s function Gβ (t, s) satisfies the following properties:
(P1) Gβ (t, s) > 0, ∀0 < s, t < 1;
(P2) Gβ (t, s) is a nondecreasing function and maxt∈(0,1) Gβ (t, s) = Gβ (1, s);
(P3) tβ–1 maxt∈(0,1) Gβ (t, s) ≤ Gβ (t, s) for 0 < s, t < 1.

We introduce the following assumptions:
(H1) The functions ψ1,ψ2 : J×X ×X →X are continuous, and ∀u, v, u, v ∈X and t ∈ J,

there exist Mψ1 ,Mψ2 ,M′
ψ1,M′

ψ2 > 0 such that

∥
∥ψ1(t, u, v) – ψ1(t, u, v)

∥
∥ ≤Mψ1‖u – u‖ + M′

ψ1‖v – v‖

and

∥
∥ψ2(t, u, v) – ψ2(t, u, v)

∥
∥ ≤Mψ2‖u – u‖ + M′

ψ2‖v – v‖.

(H2) The functions ψ1,ψ2 : J ×X ×X →X are completely continuous such that, ∀u, v ∈
X and t ∈ J, there exist nondecreasing continuous linear functions μψ1 ,μψ2 : R+ →
R such that

∥
∥ψ1(t, u, v)

∥
∥ ≤ φp

(
μψ1‖u‖ + μ′

ψ1‖v‖)

and

∥
∥ψ2(t, u, v)

∥
∥ ≤ φp

(
μψ2‖u‖ + μ′

ψ2‖v‖),

where

sup
{
μψ1 (t), t ∈ J

}
= μψ1 , sup

{
μψ2 (t), t ∈ J

}
= μψ2 ,

sup
{
μ′

ψ1 (t), t ∈ J
}

= μ′
ψ1 , sup

{
μ′

ψ2 (t), t ∈ J
}

= μ′
ψ2 .

(H3) The functions F1,F2 : (0, 1) →X are nonzero and continuous with

‖F1‖ = max
t∈J

|F1| < ∞+, ‖F2‖ = max
t∈J

|F2| < ∞+.

Let Br ⊂ B = C(J,X ) × C(J,X ) be a cone of nonnegative functions of the form

Br =
{

(u, v) ∈ B, min
t∈J

(
u(t) + v(t)

) ≥ tβ
∥
∥(u, v)

∥
∥
}

,
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and

Ω(r) =
{
∥
∥(u, v)

∥
∥ < r,‖u‖ <

r
2

,‖v‖ <
r
2

}

, ∂Ω(r) =
{∥
∥(u, v)

∥
∥ = r

}
.

Consider the operator H∗ = (H∗
1,H∗

2) : Br/(0, 0) → B, where H∗
1, H∗

2 are defined as
follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

H∗
1(u, v)(t)

=
∫ 1

0 Gβ (t, s)φq( 1
σ

∫ s
0 (s – τ )σ–1F1(τ )ψ1(τ , u(τ ), cDρ(φpDβv(τ ))) dτ ) ds,

H∗
2(u, v)(t)

=
∫ 1

0 Gβ (t, s)φq( 1
ρ

∫ s
0 (s – τ )ρ–1F2(τ )ψ2(τ , cDσ (φpDβu(τ )), v(τ )) dτ ) ds.

(3.8)

Theorem 3.3 Let assumptions (H1) to (H3) hold. Then (1.1) has at least one solution.

Proof For any (u, v) ∈ Ω(r2)/Ω(r1), and using Lemma 3.2, we have

H∗
1(u, v)(t)

=
∫ 1

0
Gβ (t, s)φq

(
1
σ

∫ s

0
(s – τ )σ–1F1(τ )ψ1

(
τ , u(τ ), cDρ

(
φpDβv(τ )

))
dτ

)

ds

≤
∫ 1

0
Gβ (1, s)φq

(
1
σ

∫ s

0
(s – τ )σ–1F1(τ )ψ1

(
τ , u(τ ), cDρ

(
φpDβv(τ )

))
dτ

)

ds (3.9)

and

H∗
1(u, v)(t)

=
∫ 1

0
Gβ (t, s)φq

(
1
σ

∫ s

0
(s – τ )σ–1F1(τ )ψ1

(
τ , u(τ ), cDρ

(
φpDβv(τ )

))
dτ

)

ds

≥ tβ–1
∫ 1

0
Gβ (1, s)

× φq

(
1
σ

∫ s

0
(s – τ )σ–1F1(τ )ψ1

(
τ , u(τ ), cDρ

(
φpDβv(τ )

))
dτ

)

ds. (3.10)

By the help of inequalities (3.7) and (3.8), we have

H∗
1(u, v)(t) ≥ tβ–1∥∥H∗

1(u, v)(t)
∥
∥. (3.11)

Similarly, we may obtain

H∗
2(u, v)(t) ≥ tβ–1∥∥H∗

2(u, v)(t)
∥
∥. (3.12)

Combining (3.11) and (3.12), we get

H∗(u, v)(t) ≥ tβ–1∥∥H∗(u, v)(t)
∥
∥.

Thus H∗ : Ω(r2)/Ω(r1) → B is closed.
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For the uniform boundedness of the operator H∗, we consider

∥
∥H∗(u, v)(t)

∥
∥

= sup
t∈J

∣
∣H∗(u, v)(t)

∣
∣

= sup
t∈J

∣
∣
(
H∗

1,H∗
2
)
(u, v)(t)

∣
∣

≤ sup
t∈J

|(H∗
1(u, v)(t)| + sup

t∈J

∣
∣H∗

2(u, v)(t)
∣
∣

≤ sup
t∈J

∣
∣
∣
∣

∫ 1

0
Gβ (t, s)

× φq

(
1

Γ (σ )

∫ s

0
(s – τ )σ–1F1(τ )ψ1

(
τ , u(τ ), cDρ

(
φpDβv(τ )

))
dτ

)

ds
∣
∣
∣
∣

+ sup
t∈J

∣
∣
∣
∣

∫ 1

0
Gβ (t, s)

× φq

(
1

Γ (ρ)

∫ s

0
(s – τ )ρ–1F2(τ )ψ2

(
τ , cDσ

(
φpDβu(τ )

)
, v(τ )

)
dτ

)

ds
∣
∣
∣
∣

≤
∫ 1

0

∣
∣Gβ (1, s)

∣
∣

× φq

(
1

Γ (σ )

∫ s

0
(s – τ )σ–1∥∥F1(τ )

∥
∥
∥
∥ψ1

(
τ , u(τ ), cDρ

(
φpDβv(τ )

))∥
∥dτ

)

ds

+
∫ 1

0

∣
∣Gβ (1, s)

∣
∣

× φq
( 1
Γ (ρ)

∫ s

0
(s – τ )ρ–1∥∥F2(τ )

∥
∥
∥
∥ψ2

(
τ , cDσ

(
φpDβu(τ ), v(τ )

))∥
∥dτ

)
ds

≤
(

1
Γ (β + 1)

–
1

Γ (β – δ)Γ (β)

)[
1

Γ (σ + 1)

]q–1

× ‖F1‖q–1
(

μψ1‖u‖ + μ′
ψ1

μ′
ψ2

‖F2‖‖v‖
1 – ‖F1‖‖F2‖μ′

ψ1
μψ2

)

+
(

1
Γ (β + 1)

–
1

Γ (β – δ)Γ (β)

)[
1

Γ (ρ + 1)

]q–1

× ‖F2‖q–1
(

μψ1μψ2‖F1‖‖u‖ + μψ2‖v‖
1 – ‖F1‖‖F2‖μ′

ψ1
μψ2

)

=
(

1
Γ (β + 1)

–
1

Γ (β – δ)Γ (β)

)[(
1

Γ (σ + 1)

)q–1

× ‖F1‖q–1
(

μψ1‖u‖ + μψ1μ
′
ψ2

‖F2‖‖v‖
1 – ‖F1‖‖F2‖μ′

ψ1
μψ2

)

+
(

1
Γ (ρ + 1)

)q–1

‖F2‖q–1
(

μψ1μψ2‖F1‖‖u‖ + μ′
ψ2

‖v‖
1 – ‖F1‖‖F2‖μ′

ψ1
μψ2

)]

< ∞.

Hence H∗ is a uniformly bounded operator.
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Now, we show that the operator H∗ is continuous and compact. For this reason, we
construct a sequence ξn = (un, vn) such that (un, vn) → (u, v) as n → ∞. Therefore, we have

∥
∥
(
H∗(un, vn) – H∗(u, v)

)∥
∥

=
∥
∥
(
H∗

1,H∗
2
)
(un, vn) –

(
H∗

1,H∗
2
)
(u, v))

∥
∥

≤ ∥
∥
(
H∗

1(un, vn) – H∗
1(u, v)

)∥
∥ +

∥
∥
(
H∗

2(un, vn) – H∗
2(u, v)

)∥
∥

= sup
t∈J

∣
∣
∣
∣

∫ 1

0
Gβ (t, s)

× φq

(
1

Γ (σ )

∫ s

0
(s – τ )σ–1F1(τ )ψ1

(
τ , un(τ ), cDρ

(
φpDβvn(τ )

))
dτ

)

ds

–
∫ 1

0
Gβ (t, s)φq

(
1

Γ (σ )

∫ s

0
(s – τ )σ–1F1(τ )ψ1

(
τ , u(τ ), cDρ

(
φpDβv(τ )

))
dτ

)

ds
∣
∣
∣
∣

+ sup
t∈J

∣
∣
∣
∣

∫ 1

0
Gβ (t, s)

× φq

(
1

Γ (ρ)

∫ s

0
(s – τ )ρ–1F2(τ )ψ2

(
τ , cDσ

(
φpDβun(τ )

)
, vn(τ )

)
dτ

)

ds

–
∫ 1

0
Gβ (t, s)φq

(
1

Γ (ρ)

∫ s

0
(s – τ )ρ–1F2(τ )ψ2

(
τ , cDσ

(
φpDβu(τ )

)
, v(τ )

)
dτ

)

ds
∣
∣
∣
∣

≤
∫ 1

0

∣
∣Gβ (t, s)

∣
∣

×
{∥
∥
∥
∥φq

(
1

Γ (σ )

∫ s

0
(s – τ )σ–1F1(τ )ψ1

(
τ , un(τ ), cDρ

(
φpDβvn(τ )

))
dτ

)

ds

– φq

(
1

Γ (σ )

∫ s

0
(s – τ )σ–1F1(τ )ψ1

(
τ , u(τ ), cDρ

(
φpDβv(τ )

))
dτ

)

ds
∥
∥
∥
∥

}

+
∫ 1

0

∣
∣Gβ (t, s)

∣
∣

×
{∥
∥
∥
∥φq

(
1

Γ (ρ)

∫ s

0
(s – τ )ρ–1F2(τ )ψ2

(
τ , cDσ

(
φpDβun(τ )

)
, vn(τ )

)
dτ

)

ds

– φq

(
1

Γ (ρ)

∫ s

0
(s – τ )ρ–1F2(τ )ψ2

(
τ , cDσ

(
φpDβu(τ )

)
, v(τ )

)
dτ

)

ds
∥
∥
∥
∥

}

≤ (q – 1)�2
∫ 1

0

∣
∣Gβ (t, s)

∣
∣

×
{

1
Γ (σ )

∫ s

0
(s – τ )σ–1∥∥F1(τ )

∥
∥
∥
∥ψ1

(
τ , un(τ ), cDρ

(
φpDβvn(τ )

))

– ψ1
(
τ , u(τ ), cDρ

(
φpDβv(τ )

)∥
∥dτ

)
ds

+
1

Γ (ρ)

∫ s

0
(s – τ )ρ–1∥∥F2(τ )

∥
∥
∥
∥ψ2

(
τ , cDσ

(
φpDβun(τ )

)
, vn(τ )

)

– ψ2
(
τ ,c Dσ

(
φpDβu(τ ), v(τ )

)∥
∥dτ

)
ds

}

≤ (q – 1)�2
∫ 1

0

∣
∣Gβ (t, s)

∣
∣

{Mψ1‖F1‖‖un – u‖ + M′
ψ1
M′

ψ2
‖F1‖‖F2‖‖vn – v‖

Γ (σ + 1)
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+
Mψ1Mψ2‖F1‖F2‖‖un – u‖ + M′

ψ2
‖F2‖‖vn – v‖

Γ (ρ + 1)

}

→ 0, as n → ∞.

Therefore, ‖H∗(un, vn) – H∗(u, v)‖ → 0 as n → ∞. Hence H∗ is continuous.
For equicontinuity, take υ1,υ2 ∈ J with υ1 < υ2, and for any (u, v) ∈ Ω(r), we have

∥
∥
(
H∗(u, v)(υ1) – H∗(u, v)(υ2)

)∥
∥

≤ ∥
∥
((
H∗

1(u, v)(υ1) – H∗
1(u, v)(υ2)

))∥
∥ +

∥
∥
(
H∗

2(u, v)(υ1) – H∗
2(u, v)(υ2)

)∥
∥

= sup
t∈J

∣
∣
∣
∣

∫ 1

0
Gβ (υ1, s)φq

(
1

Γ (σ )

∫ s

0
(s – τ )σ–1F1(τ )ψ1

(
τ , u(τ ), cDρ

(
φpDβv(τ )

))
dτ

)

ds

–
∫ 1

0
Gβ (υ2, s)φq

(
1

Γ (σ )

∫ s

0
(s – τ )σ–1F1(τ )ψ1

(
τ , u(τ ), cDρ

(
φpDβv(τ )

))
dτ

)

ds
∣
∣
∣
∣

+ sup
t∈J

∣
∣
∣
∣

∫ 1

0
Gβ (τ1, s)

× φq

(
1

Γ (ρ)

∫ s

0
(s – τ )ρ–1F2(τ )ψ1

(
τ , cDσ

(
φpDβu(τ ), v(τ )

))
dτ

)

ds

–
∫ 1

0
Gβ (υ2, s)φq

(
1

Γ (ρ)

∫ s

0
(s – τ )ρ–1F2(τ )ψ1

(
τ , cDσ

(
φpDβu(τ ), v(τ )

))
dτ

)

ds
∣
∣
∣
∣

≤
∫ 1

0

∣
∣Gβ (τ1, s) – Gβ (τ2, s)

∣
∣

× φq

(
1

Γ (σ )

∫ s

0
(s – τ )σ–1‖F1‖

∥
∥ψ1

(
τ , u(τ ), cDρ

(
φpDβv(τ )

))∥
∥dτ

)

ds

+
∫ 1

0

∣
∣Gβ (τ1, s) – Gβ (τ2, s)

∣
∣

× φq

(
1

Γ (ρ)

∫ s

0
(s – τ )ρ–1‖F2‖

∥
∥ψ1

(
τ , cDσ

(
φpDβu(τ ), v(τ )

))∥
∥dτ

)

ds

≤
( |υβ

1 – υ
β
2 |

Γ (β + 1)
+

|υβ–1
1 – υ

β–1
2 |

Γ (β – δ)Γ (β + 1)

)[
1

Γ (σ + 1)

]q–1

× ‖F1‖q–1
(

μψ1‖u‖ + μ′
ψ1

μ′
ψ2

‖F2‖‖v‖
1 – ‖F1‖‖F2‖μ′

ψ1
μψ2

)

≤
( |υβ

1 – υ
β
2 |

Γ (β + 1)
+

|υβ–1
1 – υ

β–1
2 |

Γ (β – δ)Γ (β + 1)

)[
1

Γ (ρ + 1)

]q–1

× ‖F2‖q–1
(

μψ1μψ2‖u‖ + μ′
ψ2

‖v‖
1 – ‖F1‖‖F2‖μ′

ψ1
μψ2

)

.

This implies that ‖H∗(u, v)(υ1) –H∗(u, v)(υ2)‖ → 0 as υ1 → υ2. Therefore H∗ is relatively
compact. By Arzelä–Ascolli theorem, H∗ is compact and hence completely continuous
operator.

Now let us define a set

W =
{

(u, v) ∈ Ω(r2)/Ω(r1)) there exist λ ∈ [0, 1] such that (u, v) = λH(u, v)
}

.
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We will show that W is bounded. Suppose on the contrary that W is unbounded. Let
(u, v) ∈ W such that ‖(u, v)‖ = K → ∞. But

∥
∥(u, v)

∥
∥ =

∥
∥λH(u, v)

∥
∥

≤ ∥
∥H(u, v)

∥
∥

≤
(

1
Γ (β + 1)

–
1

Γ (β – δ)Γ (β)

)

×
[(

1
Γ (σ + 1)

)q–1

‖F1‖q–1
(

μψ1‖u‖ + μψ1μ
′
ψ2

‖F2‖‖v‖
1 – ‖F1‖‖F2‖μ′

ψ1
μψ2

)

+
(

1
Γ (ρ + 1)

)q–1

‖F2‖q–1
(

μψ1μψ2‖F1‖‖u‖ + μ′
ψ2

‖v‖
1 – ‖F1‖‖F2‖μ′

ψ1
μψ2

)]

.

This implies that

∥
∥(u, v)

∥
∥ ≤

(
1

Γ (β + 1)
–

1
Γ (β – δ)Γ (β)

)

×
[(

1
Γ (σ + 1)

)q–1

‖F1‖q–1
(

μψ1‖u‖ + μψ1μ
′
ψ2

‖F2‖‖v‖
1 – ‖F1‖‖F2‖μ′

ψ1
μψ2

)

+
(

1
Γ (ρ + 1)

)q–1

‖F2‖q–1
(

μψ1μψ2‖F1‖‖u‖ + μ′
ψ2

‖v‖
1 – ‖F1‖‖F2‖μ′

ψ1
μψ2

)]

,

equivalently

1 ≤ 1
‖(u, v)‖

(
1

Γ (β + 1)
–

1
Γ (β – δ)Γ (β)

)

×
[(

1
Γ (σ + 1)

)q–1

‖F1‖q–1
(

μψ1‖u‖ + μψ1μ
′
ψ2

‖F2‖‖v‖
1 – ‖F1‖‖F2‖μ′

ψ1
μψ2

)

+
(

1
Γ (ρ + 1)

)q–1

‖F2‖q–1
(

μψ1μψ2‖F1‖‖u‖ + μ′
ψ2

‖v‖
1 – ‖F1‖‖F2‖μ′

ψ1
μψ2

)]

=
1
K

(
1

Γ (β + 1)
–

1
Γ (β – δ)Γ (β)

)

×
[(

1
Γ (σ + 1)

)q–1

‖F1‖q–1
(

μψ1‖u‖ + μψ1μ
′
ψ2

‖F2‖‖v‖
1 – ‖F1‖‖F2‖μ′

ψ1
μψ2

)

+
(

1
Γ (ρ + 1)

)q–1

‖F2‖q–1
(

μψ1μψ2‖F1‖‖u‖ + μ′
ψ2

‖v‖
1 – ‖F1‖‖F2‖μ′

ψ1
μψ2

)]

→ 0 as K → ∞.

This is a contradiction. Ultimately W is bounded, therefore by Lemma 2.7 the operator H
has at least one fixed point in Ω(r2)/Ω(r1), which is a solution of coupled system (1.1).

Thus, by Lemma 2.9, (1.1) has at least one solution. �
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To control the growth bound of the nonlinearity functions ψ1, ψ2 and proceed to the
next result, we need the following height functions. Let

⎧
⎨

⎩

�maxt∈J,x>0 (t, x) = max{{ψ1,ψ2} : tβ–1x ≤ (u, v) ≤ x},
�mint∈J,x>0 (t, x) = min{{ψ1,ψ2} : tβ–1x ≤ (u, v) ≤ x}.

(3.13)

Theorem 3.4 Let assumptions (H1) to (H3) hold, and there exist r∗, � ∈ R+ such that one
of the following conditions is satisfied:

(�1)

� ≤
∫ 1

0
Gβ (1, s)φq

(
1

Γ (σ )

∫ s

0
(s –τ )σ–1F1(τ )�min

(
τ , �, cDρ

(
φpDβv(τ )

))
dτ

)

ds < ∞+

and

∫ 1

0
Gβ (1, s)φq

(
1

Γ (σ )

∫ s

0
(s – τ )σ–1F1(τ )�max

(
τ , r∗, cDρ

(
φpDβv(τ )

))
dτ

)

ds ≤ r∗

(�2)

∫ 1

0
Gβ (1, s)φq

(
1

Γ (σ )

∫ s

0
(s – τ )σ–1F1(τ )�max

(
τ , �, cDρ

(
φpDβv(τ )

))
dτ

)

ds < �;

and

r∗ ≤
∫ 1

0
Gβ (1, s)φq

(
1

Γ (σ )

∫ s

0
(s–τ )σ–1F1(τ )�min

(
τ , r∗, cDρ

(
φpDβv(τ )

))
dτ

)

ds < ∞+;

(�3)

� ≤
∫ 1

0
Gβ (1, s)φq

(
1

Γ (σ )

∫ s

0
(s–τ )σ–1F2(τ )�min

(
τ , cDρ

(
φpDβu(τ ), �

))
dτ

)

ds < ∞+;

and

∫ 1

0
Gβ (1, s)φq

(
1

Γ (σ )

∫ s

0
(s – τ )σ–1F2(τ )�max

(
τ , cDρ

(
φpDβu(τ )

)
, r∗)dτ

)

ds ≤ r∗;

(�4)

∫ 1

0
Gβ (1, s)φq

(
1

Γ (σ )

∫ s

0
(s – τ )σ–1F2(τ )�max

(
τ , cDρ

(
φpDβu(τ )

)
, �

)
dτ

)

ds < �;

and

r∗ ≤
∫ 1

0
Gβ (1, s)φq

(
1

Γ (σ )

∫ s

0
(s–τ )σ–1F2(τ )�min

(
τ , cDρ

(
φpDβu(τ )

)
, r∗)dτ

)

ds < ∞+.

Then problem (1.1) has a nonnegative solution (u∗, v∗) ∈ Br ×Br , so that � ≤ ‖(u∗, v∗)‖ ≤ r∗.
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Proof Without loss of generality we take only (�1) and (�2). If (u, v) ∈ ∂Ω(�), then
‖(u, v)‖ = � and tβ–1

� ≤ (u, v) ≤ �, t ∈ J. By (3.13) we have

∥
∥H∗(u, v)(t)

∥
∥

=
∥
∥
(
H∗

1,H∗
2
)
(u, v)(t)

∥
∥

= sup
t∈J

∫ 1

0
Gβ (t, s)φq

(
1

Γ (σ )

∫ s

0
(s – τ )σ–1F1(τ )ψ1

(
τ , u(τ ), cDρ

(
φpDβv(τ )

))
dτ

)

ds

+ sup
t∈J

∫ 1

0
Gβ (t, s)φq

(
1

Γ (ρ)

∫ s

0
(s – τ )ρ–1F2(τ )ψ2

(
τ , cDσ

(
φpDβu(τ )

)
, v(τ )

)
dτ

)

ds

≥ tβ–1
∫ 1

0
Gβ (1, s)φq

(
1

Γ (σ )

∫ s

0
(s – τ )σ–1F1(τ )ψ1

(
τ , u(τ ), cDρ

(
φpDβv(τ )

))
dτ

)

ds

+ tβ–1
∫ 1

0
Gβ (1, s)

× φq

(
1

Γ (ρ)

∫ s

0
(s – τ )ρ–1F2(τ )ψ2

(
τ , cDσ

(
φpDβu(τ )

)
, v(τ )

)
dτ

)

ds

≥
∫ 1

0
Gβ (1, s)φq

(
1

Γ (σ )

∫ s

0
(s – τ )σ–1[F1(τ )�mint∈J

(
τ , �, cDρ

(
φpDβv(τ )

))]
dτ

)

ds

+
∫ 1

0
Gβ (1, s)φq

(
1

Γ (ρ)

∫ s

0
(s – τ )ρ–1[F2(τ )�mint∈J

(
τ , cDσ

(
φpDβu(τ )

)
, �

)]
dτ

)

ds

≥ �

2
+

�

2
= � =

∥
∥(u, v)

∥
∥.

Thus

∥
∥H∗(u, v)(t)

∥
∥ ≥ � =

∥
∥(u, v)

∥
∥.

When (u, v) ∈ ∂Ω(r∗), then ‖(u, v)‖ = r∗, and by (3.13), tβ–1r∗ ≤ (u, v) ≤ r∗, we have
�maxt∈J ≥ {ψ1,ψ2}, therefore

∥
∥H∗(u, v)(t)

∥
∥

=
∥
∥
(
H∗

1,H∗
2
)
(u, v)(t)

∥
∥

= max
t∈J

∫ 1

0
Gβ (t, s)φq

(
1

Γ (σ )

∫ s

0
(s – τ )σ–1F1(τ )ψ1

(
τ , u(τ ), cDρ

(
φpDβv(τ )

))
dτ

)

ds

+ max
t∈J

∫ 1

0
Gβ (t, s)

× φq

(
1

Γ (ρ)

∫ s

0
(s – τ )ρ–1F2(τ )ψ2

(
τ , cDσ

(
φpDβu(τ )

)
, v(τ )

)
dτ

)

ds

≤ tβ–1
∫ 1

0
Gβ (1, s)φq

(
1

Γ (σ )

∫ s

0
(s – τ )σ–1F1(τ )ψ1

(
τ , u(τ ), cDρ

(
φpDβv(τ )

))
dτ

)

ds

+ tβ–1
∫ 1

0
Gβ (1, s)

× φq

(
1

Γ (ρ)

∫ s

0
(s – τ )ρ–1F2(τ )ψ2

(
τ , cDσ

(
φpDβu(τ )

)
, v(τ )

)
dτ

)

ds
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≤
∫ 1

0
Gβ (1, s)φq

(
1

Γ (σ )

∫ s

0
(s – τ )σ–1[F1(τ )�maxt∈J

(
τ , r∗, cDρ

(
φpDβv(τ )

))]
dτ

)

ds

+
∫ 1

0
Gβ (1, s)

× φq

(
1

Γ (ρ)

∫ s

0
(s – τ )ρ–1[F2(τ )�maxt∈J

(
τ , cDσ

(
φpDβu(τ )

)
, r∗)]dτ

)

ds

≤ r∗

2
+

r∗

2
= r∗ =

∥
∥(u, v)

∥
∥.

Thus

∥
∥H∗(u, v)(t)

∥
∥ ≥ � =

∥
∥(u, v)

∥
∥.

Combining these inequalities, we say that H∗ has a fixed point in the interval [�, r∗], say
(u∗, v∗) ∈ Ω(r∗)/Ω(�), such that � ≤ ‖(u∗, v∗)‖ ≤ r∗. Next we show that (u∗, v∗) is a non-
negative solution for t ∈ J as

u∗(t) =
∫ 1

0
Gβ (t, s)φq

(
1

Γ (σ )

∫ s

0
(s – τ )σ–1F1(τ )ψ1

(
τ , u∗(τ ), cDρ

(
φpDβv∗(τ )

))
dτ

)

ds

≥ tβ–1 max
t∈J

∫ 1

0
Gβ (1, s)

× φq

(
1

Γ (σ )

∫ s

0
(s – τ )σ–1F1(τ )ψ1

(
τ , u∗(τ ), cDρ

(
φpDβv∗(τ )

))
dτ

)

ds

implies

u∗(t) ≥ tβ–1∥∥u∗∥∥ ≥ �

2
tβ–1 > 0.

Similarly, we get

v∗(t) ≥ tβ–1∥∥v∗∥∥ ≥ �

2
tβ–1 > 0.

With the help of Lemma 3.2 and (P3), the solution (u∗, v∗) is nondecreasing for t ∈ J. �

Theorem 3.5 Let hypotheses (H1) to (H3) be true with � = max{�1,�2} < 1, where

�1 =
(q – 1)�q–1(2β – δ)Mψ1‖F1‖

(β – δ)Γ (β + 1)

[
1

Γ (σ + 1)
+
Mψ2‖F2‖
Γ (ρ + 1)

]

,

�2 =
(q – 1)�q–1(2β – δ)M′

ψ2‖F2‖
(β – δ)Γ (β + 1)

[‖F1‖M′
ψ1

Γ (σ + 1)
+

1
Γ (ρ + 1)

]

.

Then (1.1) has a unique solution.

Proof Define operator Φ = (Φ1,Φ2) : Ω(r)/Ω(r) → B by

Φ(u, v)(t) =
(
Φ1(u, v),Φ2(u, v)

)
(t), t ∈ J,



Ahmad et al. Advances in Difference Equations        (2019) 2019:436 Page 17 of 22

where

Φ1(u, v)(t)

=
∫ 1

0
Gβ (t, s)φq

(
1

Γ (σ )

∫ s

0
(s – τ )σ–1F1(τ )ψ1

(
τ , u(τ ), cDρ

(
φpDβv(τ )

))
dτ

)

ds

and

Φ2(u, v)(t)

=
∫ 1

0
Gβ (t, s)φq

(
1

Γ (σ )

∫ s

0
(s – τ )σ–1F1(τ )ψ1

(
τ , u(τ ), cDρ

(
φpDβv(τ )

))
dτ

)

ds.

Now, for any (u, v), (ū, v̄) ∈ Ω(r)/Ω(r), we have

∥
∥Φ(u, v) – Φ(ū, v̄)

∥
∥

≤ sup
t∈J

∫ 1

0

∣
∣Gβ (t, s)

∣
∣

×
{∣
∣
∣
∣φq

(
1

Γ (σ )

∫ s

0
(s – τ )σ–1F1(τ )ψ1

(
τ , u(τ ), cDρ

(
φpDβv(τ )

))
dτ

)

ds

– φq

(
1

Γ (σ )

∫ s

0
(s – τ )σ–1F1(τ )ψ1

(
τ , ū(τ ), cDρ

(
φpDβ v̄(τ )

))
dτ

)

ds
∣
∣
∣
∣

}

+ sup
t∈J

∫ 1

0

∣
∣Gβ (t, s)

∣
∣

×
{∣
∣
∣
∣φq

(
1

Γ (ρ)

∫ s

0
(s – τ )ρ–1F2(τ )ψ2

(
τ , cDσ

(
φpDβu(τ )

)
, v(τ )

)
dτ

)

ds

– φq

(
1

Γ (ρ)

∫ s

0
(s – τ )ρ–1F2(τ )ψ2

(
τ , cDσ

(
φpDβ ū(τ )

)
, v̄(τ )

)
dτ

)

ds
∣
∣
∣
∣

}

≤ (q – 1)�q–1(2β – δ)
(β – δ)Γ (β + 1)

[Mψ1‖F1‖‖u – ū‖ + M′
ψ1
M′

ψ2
‖F1‖‖F2‖‖v – v̄‖

Γ (σ + 1)

+
Mψ1Mψ2‖F1‖F2‖‖u – ū‖ + M′

ψ2
‖F2‖‖v – v̄‖

Γ (ρ + 1)

]

≤ (q – 1)�q–1(2β – δ)Mψ1‖F1‖
(β – δ)Γ (β + 1)

[
1

Γ (σ + 1)
+
Mψ2‖‖F2‖
Γ (ρ + 1)

]

‖u – ū‖

+
(q – 1)�q–1(2β – δ)M′

ψ2‖F2‖
(β – δ)Γ (β + 1)

[‖F1‖M′
ψ1

Γ (σ + 1)
+

1
Γ (ρ + 1)

]

‖v – v̄‖

= �1‖u – ū‖ + �2‖v – v̄‖ ≤ �
∥
∥(u, ū) – (v, v̄)

∥
∥.

Thus

∥
∥Φ(u, v) – Φ(ū, v̄)

∥
∥ ≤ �

∥
∥(u, ū) – (v, v̄)

∥
∥.

Hence the assumption � < 1 implies that the operator Φ is a contraction. Therefore, by
Theorem 2.9, (1.1) has a unique fixed point. �
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4 Stability analysis
In this section, we analyze Hyers–Ulam stability for the proposed problem.

Theorem 4.1 Let assumptions (H1)–(H3) with � < 1 hold, along with the condition that
the spectral radius of Q is less than one. Then the solution of (1.1) is Hyers–Ulam stable.

Proof Let (u, v) be the exact and (ū, v̄) be an approximate solution of the considered prob-
lem (1.1), then in view of Theorem 3.5 we have

∥
∥Φ(u, v)(t) – Φ(ū, v̄)(t)

∥
∥

=
∥
∥
(
Φ1(u, v)(t),Φ2(u, v)(t)

)
–

(
Φ1(ū, v̄)(t),Φ2(ū, v̄)(t)

)∥
∥

≤ ∥
∥Φ1(u, v)(t) – Φ1(ū, v̄)

∥
∥ +

∥
∥Φ2(u, v)(t) – Φ2(ū, v̄)

∥
∥

= sup
t∈J

∣
∣Φ1(u, v)(t) – Φ1(ū, v̄)(t)

∣
∣ + sup

t∈J

∣
∣Φ2(u, v)(t) – Φ2(ū, v̄)(t)

∣
∣

= sup
t∈J

∣
∣
∣
∣

∫ 1

0
Gβ (t, s)φq

(
1

Γ (σ )

∫ s

0
(s – τ )σ–1F1(τ )ψ1

(
τ , u(τ ), cDρ

(
φpDβv(τ )

))
dτ

)

ds

–
∫ 1

0
Gβ (t, s)φq

(
1

Γ (σ )

∫ s

0
(s – τ )σ–1F1(τ )ψ1

(
τ , ū(τ ), cDρ

(
φpDβ v̄(τ )

))
dτ

)

ds
∣
∣
∣
∣

+ sup
t∈J

∣
∣
∣
∣

∫ 1

0
Gβ (t, s)

× φq

(
1

Γ (ρ)

∫ s

0
(s – τ )ρ–1F2(τ )ψ2

(
τ , cDσ

(
φpDβu(τ )

)
, v(τ )

)
dτ

)

ds

–
∫ 1

0
Gβ (t, s)φq

(
1

Γ (ρ)

∫ s

0
(s – τ )ρ–1F2(τ )ψ2

(
τ , cDσ

(
φpDβ ū(τ )

)
, v̄(τ )

)
dτ

)

ds
∣
∣
∣
∣

≤ (q – 1)�q–2
∫ 1

0

∣
∣Gβ (t, s)

∣
∣

{(
1

Γ (σ )

∫ s

0
(s – τ )σ–1‖F1‖

∥
∥ψ1

(
τ , u(τ ), cDρ

(
φpDβv(τ )

))

– ψ1
(
τ , ū(τ ), cDρ

(
φpDβ v̄(τ )

))∥
∥dτ

)

ds

+
1

Γ (ρ)

∫ s

0
(s – τ )ρ–1‖F2‖

∥
∥ψ2

(
τ , cDσ

(
φpDβu(τ ), v(τ )

))

– ψ2
(
τ , cDσ

(
φpDβ ū(τ ), v̄(τ )

))∥
∥dτ ds

}

≤ (q – 1)�q–1(2β – δ)
(β – δ)Γ (β + 1)

[Mψ1‖F1‖‖u – ū‖ + M′
ψ1
M′

ψ2
‖F1‖‖F2‖‖v – v̄‖

Γ (σ + 1)

+
Mψ1Mψ2‖F1‖F2‖‖u – ū‖ + M′

ψ2
‖F2‖‖v – v̄‖

Γ (ρ + 1)

]

≤ (q – 1)�q–1(2β – δ)Mψ1‖F1‖
(β – δ)Γ (β + 1)Γ (σ + 1)

‖u – ū‖

+
(q – 1)�q–1(2β – δ)M′

ψ1M′
ψ2‖F1‖‖F2‖

(β – δ)Γ (β + 1)Γ (σ + 1)
‖v – v̄‖

+
(q – 1)�q–1(2β – δ)Mψ1Mψ2‖F1‖‖F2‖

(β – δ)Γ (β + 1)Γ (σ + 1)
‖u – ū‖
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+
(q – 1)�q–1(2β – δ)M′

ψ1‖F1‖
(β – δ)Γ (β + 1)Γ (σ + 1)

‖v – v̄‖

≤ ∥
∥(u, v) – (ū, v̄)

∥
∥Q,

where Q =
( C1 C2
C3 C4

)
. Since the spectral radius of Q is less than one, thus the solution of the

considered system (1.1) is Hyers–Ulam stable. Here

C1 =
(q – 1)�q–1(2β – δ)Mψ1‖F1‖

(β – δ)Γ (β + 1)Γ (σ + 1)
,

C2 =
(q – 1)�q–1(2β – δ)M′

ψ1M′
ψ2‖F1‖‖F2‖

(β – δ)Γ (β + 1)Γ (σ + 1)
,

C3 =
(q – 1)�q–1(2β – δ)Mψ1Mψ2‖F1‖‖F2‖

(β – δ)Γ (β + 1)Γ (σ + 1)
,

C4 =
(q – 1)�q–1(2β – δ)M′

ψ1‖F1‖
(β – δ)Γ (β + 1)Γ (σ + 1)

. �

The same approach can be followed to obtain results regarding the generalized Hyers–
Ulam, Hyers–Ulam–Rassias, and generalized Hyers–Ulam–Rassias stability.

5 An illustrative example
For the support of our theoretical results, an example is presented here.

Example 5.1 Corresponding to (1.1), we consider the system of fractional order differen-
tial equations involving p-Laplacian operator φp as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cDσ (φpDβu(t)) + t√
1–t

u2(t)+1+cDσ (φpDβ v(t))
10et2 +1

= 0, t ∈ [0, 1) = J,
cDσ (φpDβv(t)) + 1√

4–4t2
v(t)+2+cDσ (φpDβ u(t))

20+t3 = 0,

([φpDβu(0)])(j) = 0, j = 0, 1, 2, 3, . . . , m – 1,

([φpDβv(0)])(j) = 0,

Ik–β(u(0)) = Ik–β (v(0)) = 0, k = 2, 3, . . . , m,

Dδ(u(1)) = Dδ(v(1)) = 0.

(5.1)

Set

ψ1
(
t, u(t), cDσ

(
φpDβv(t)

))
=

u2(t) + 1 + cDσ (φpDβu(t))
10et2 + 1

and

ψ2
(
t, cDσ

(
φpDβu(t)

)
, v(t)

)
=

v(t) + 2 + cDσ (φpDβu(t))
20 + t3 .

Now, for any u, v, ū, v̄ ∈X , we have

∣
∣ψ1

(
t, u(t), v(t)

)
– ψ1

(
t, ū(t), v̄(t)

)∣
∣ ≤ 1

10e2 ‖u – ū‖ +
1

10e2 ‖v – v̄‖
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and

∣
∣ψ2

(
t, u(t), v(t)

)
– ψ2

(
t, ū(t), v̄(t)

)∣
∣ ≤ 1

20
‖u – ū‖ +

1
20

‖v – v̄‖.

Here, Mψ1 = M′
ψ1 = 1

10e2 , Mψ2 = M′
ψ2 = 1

20 . Take q = 5
2 , β = 3, ρ = σ = 7

2 , δ = 3
2 , � = 1,

then p = 5
3 , and upon calculations we have � = 0.000192 < 1, so system (5.1) has a unique

solution. Further,

H∗ =

(
0.00002 0.00001
0.00001 0.00002

)

and if ω1 and ω2 are the eigenvalues, then ω1 = 0.00001 and ω2 = 0.00003. Since the spec-
tral radius of H∗ is less than one, thus system (5.1) is Hyers–Ulam stable.

6 Conclusion
In this paper, we have utilized the Arzelä–Ascoli theorem, Banach’s contraction principle,
and Schauder’s fixed point theorem to establish existence and uniqueness criteria for the
solution of the nonlinear coupled implicit switched singular fractional differential system
given in (1.1). Furthermore, under some particular assumptions and conditions, we have
proved stability results in the sense of Ulam for the solutions of the said problem. We
claim that the approach used to prove the main results is powerful, effectual, and suitable
for investigating different qualitative properties of the solutions of nonlinear fractional
differential equations.
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