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Abstract
The general solution to the difference equation

xn+1 =
axnxn–1xn–2 + bxn–1xn–2 + cxn–2 + d

xnxn–1xn–2
, n ∈ N0,

where a,b, c ∈C, d ∈C \ {0}, is presented by using the coefficients, the initial values
x–j , j = 0, 2, and the solution to the difference equation

yn+1 = ayn + byn–1 + cyn–2 + dyn–3, n ∈N0,

satisfying the initial conditions y–3 = y–2 = y–1 = 0, y0 = 1. The representation
complements known ones of the general solutions to the corresponding difference
equations of the first and second order. Besides, the general representation formula is
investigated in detail and refined by using the roots of the characteristic polynomial

P4(λ) = λ4 – aλ3 – bλ2 – cλ – d

of the linear equation. The following cases are considered separately: (1) all the roots
of the polynomial are distinct; (2) there is a unique double root of the polynomial;
(3) there is a triple root of the polynomial and one simple; (4) there is a quadruple root
of the polynomial; (5) there are two distinct double roots of the polynomial.

MSC: Primary 39A20; secondary 39A06; 39A45

Keywords: Third-order difference equation; Solvable difference equation; Linear
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1 Introduction
Regarding some notations which are used in this paper, say that we denote the sets of
positive, nonnegative, integer, and complex numbers by N, N0, Z, and C, respectively. If
l1, l2 ∈ Z, l1 ≤ l2, then the notation l = l1, l2, which is frequently used throughout the paper,
denotes the set of all l ∈ Z satisfying the inequalities l1 ≤ l ≤ l2. We also use the standard
convention

∏k–1
j=k aj = 1, k ∈ Z.
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A method for solving the linear difference equation

xn+k = ak–1xn+k–1 + · · · + a0xn, n ≥ l, (1)

where k ∈N, l ∈ Z, aj ∈C, j = 0, k – 1, a0 �= 0, has been known to de Moivre yet [1]. See also
Euler’s book [2] where some old results on solvability can be found. Solvability theory of
linear difference equations was developed later, and it became a standard topic of almost
any book on difference equations (see, e.g., [3–10]). Equation (1) is practically solvable
when k ≤ 4, whereas if k > 5 then it is theoretically solvable. These facts are consequences
of a well-known form of the general solution to the equation (see, e.g., [3–10]), as well as
of the Abel–Ruffini theorem on solvability of the polynomial equations by radicals [11].

Solvability of equation (1) of the corresponding nonhomogeneous linear difference
equation, as well as of the nonhomogeneous linear first-order difference equation whose
coefficients can be nonconstant, is frequently used in pure and applied mathematics as
well as in other branches of science. For some recently studied classes of nonlinear dif-
ference equations and systems of nonlinear difference equations which have been solved
by using one of these equations, see, e.g., [12–17]. For some recent applications of their
solvability, see, e.g., [18–20]. For example, by using solvability methods in [19] and [20],
some classes of difference equations are transformed to “integral” forms, which are usu-
ally more suitable for studying the existence of bounded or periodic solutions to difference
equations than the equations in their original forms.

Employing various changes of variables, many classes of nonlinear difference equations
can be transformed to special cases of equation (1), from which solvability of the nonlinear
equations can follow.

One of the first of such nonlinear difference equations which appeared in the literature
is the following:

xn+1 =
αxn + β

γ xn + δ
, n ∈ N0, (2)

where α,β ,γ , δ, z0 ∈C (the bilinear difference equation).
Namely, if αδ – βγ �= 0 and γ �= 0 (these conditions eliminate two simple cases), then the

change of variables

xn =
yn+1

γ yn
–

δ

γ
, n ∈N0, (3)

transforms equation (2) to

yn+2 – (α + δ)yn+1 + (αδ – βγ )yn = 0, n ∈N0, (4)

(see, e.g., [3, 10, 21–25]).
For a method which uses an associated two-dimensional system of difference equations

in solving equation (2), see, e.g., [7] or [26]. For some other results on the difference equa-
tion and for some applications of the equation, see, e.g., [3, 12, 25, 27–30].

As an explanation for the study in this paper, let us note now that the change of variables

x̃n = γ xn + δ, n ∈N0,
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transforms equation (2) to

x̃n+1 = α̃ +
β̃

x̃n
, n ∈ N0, (5)

where

α̃ = α + δ and β̃ = βγ – αδ,

which further by the change of variables

x̃n =
yn+1

yn
, n ∈N0, (6)

where y0 is an arbitrary number different from zero, is transformed to equation (4), that
is, to

yn+2 = α̃yn+1 + β̃yn (7)

for n ∈N0.
The method for solving equation (5) by using the change of variables (6) is something

which is known to any expert. It is much less known that a transformation which trans-
forms equation (7) to equation (5) has been essentially known for more than two centuries
and can be found in book [4] by Vincenzo Brunacci. Namely, in nowadays notation, he em-
ployed the following change of variables:

yn = A
n∏

j=0

zj, n ∈N0, (8)

from which after some calculation and cancelation, where is tacitly assumed that zn �= 0,
n ∈N0, equation (7) becomes

zn+2zn+1 = α̃zn+1 + β̃ , n ∈N0,

and consequently,

zn+2 = α̃ +
β̃

zn+1
, n ∈N0.

Note that the last difference equation is equation (5) with indices shifted forward for one.

Remark 1 Note that the change of variables

yn = y0

n–1∏

j=0

xj, n ∈N0, (9)

transforms equation (7) to equation (5) directly, and that the change of variables is quite
natural.
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Namely, from relation (6), where x̃n is replaced by xn, it immediately follows that

yn = xn–1yn–1, n ∈ N,

which is a simple product-type recurrent relation from which relation (9) is easily ob-
tained.

This should be the main reason why Brunacci tried to solve equation (7) by using the
change of variables (8). It is also interesting to note that in this way Brunacci “solved” equa-
tion (7) in terms of a product of continuous fractions, which is, in fact, a quite complicated
representation of general solution to the difference equation.

Now note that the change of variables (8), where yn is replaced by xn, transforms equa-
tion (1) to the following:

zn+k = ak–1 +
ak–2

zn+k–1
+ · · · +

a0
∏k–1

j=1 zn+j
(10)

for n ≥ l.
In [25] we explained why the general solutions to some special cases of the difference

equations in (2), as well as the general solutions to some special cases of the corresponding
two-dimensional systems of difference equations, can be written in terms of the Fibonacci
sequence, that is, in terms of the solution to the difference equation

xn+1 = xn + xn–1, n ∈N,

such that

x0 = 0 and x1 = 1. (11)

(Many facts related to the Fibonacci sequence and its numerous applications in various
branches in mathematics can be found, e.g., in books [31] and [32]; see also [23] and [26]
for some basic facts and relations concerning the sequence). Moreover, we have shown
that the general solution to equation (2), as well as the general solution to the correspond-
ing two-dimensional system of difference equations, can be written in terms of their co-
efficients, initial values, and the solution to an associated second-order linear difference
equation with constant coefficients satisfying the initial conditions in (11).

Our further investigations on solvability of difference equations and systems of differ-
ence equations have shown that these solutions, the solutions to the linear difference equa-
tions with constant coefficients of the third order such that x–2 = x–1 = 0 and x0 = 1, as well
as the solutions to the linear difference equations with constant coefficients of the fourth
order such that x–3 = x–2 = x–1 = 0 and x0 = 1, naturally appear in representations of gen-
eral solutions to several other classes of difference equations and systems of difference
equations. For example, they appear in papers [25, 28–30] predominately connected to the
bilinear difference equations, as well as in the representations of general solutions to the
product-type difference equations and systems of difference equations, e.g., in [15, 33–39]
(see also the references therein).
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For some other results on solvability of difference equations and systems of difference
equations, related topics such as invariants for difference equations and systems, and their
applications, see, e.g., [3, 5–7, 9, 10, 23, 26, 32, 40–47].

If k = 3, equation (10) can be written as follows:

xn+1 = a +
b
xn

+
c

xnxn–1
(12)

for n ∈N0.
Employing the change of variables

xn =
yn

yn–1
, n ≥ –1, (13)

it is transformed to

yn+1 = ayn + byn–1 + cyn–2, n ∈N0, (14)

which is clearly solvable.
Motivated, among other things, by some results in [15, 25, 33–39], recently in [48] we

have proved the following theorem extending and theoretically explaining a recent result
in the literature.

Theorem 1 Let a, b ∈ C, c ∈ C \ {0}, and let (tn)n≥–2 be the solution to equation (14) such
that

t–2 = t–1 = 0, t0 = 1. (15)

Then every well-defined solution to equation (12) has the following representation:

xn =
x0x–1tn + x–1(tn+1 – atn) + ctn–1

x0x–1tn–1 + x–1(tn – atn–1) + ctn–2
(16)

for n ≥ –1.

It is a natural problem to obtain the corresponding representation of the general solution
to the following difference equation:

xn+1 = a +
b
xn

+
c

xnxn–1
+

d
xnxn–1xn–2

, n ∈N0, (17)

where a, b, c ∈C, d ∈C \ {0}.
Our aim here is to solve the problem. Besides, we also present more concrete represen-

tations of the general solution to equation (17) by using the roots of the polynomial

P4(λ) = λ4 – aλ3 – bλ2 – cλ – d, (18)

which is associated with a naturally chosen linear difference equation with constant coef-
ficients.
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The following cases are considered separately: (1) all the roots of the polynomial are
distinct; (2) there is a unique double root of the polynomial; (3) there is a triple root of the
polynomial and one simple; (4) there is a quadruple root of the polynomial; (5) there are
two distinct double roots of the polynomial.

2 Main results
The main results in this paper are stated and proved in this section.

2.1 A representation of general solution to equation (17)
Our first result concerns the problem of representing the general solution to equation
(17) in terms of the parameters a, b, c, d, initial values, and a specially chosen solution
to a linear difference equation with constant coefficients of the fourth order associated
with the equation. It complements known representations of the general solutions to the
corresponding difference equation of the first order (i.e., of equation (5)), as well as of the
second order (i.e., of equation (12)).

Theorem 2 Let a, b, c ∈C, d ∈C \ {0}, and (sn)n≥–2 be the solution to the equation

yn+1 = ayn + byn–1 + cyn–2 + dyn–3, n ∈N0, (19)

such that

s–3 = s–2 = s–1 = 0, s0 = 1. (20)

Then every well-defined solution to equation (17) has the following representation:

xn =
snx0x–1x–2 + (sn+1 – asn)x–1x–2 + (csn–1 + dsn–2)x–2 + dsn–1

sn–1x0x–1x–2 + (sn – asn–1)x–1x–2 + (csn–2 + dsn–3)x–2 + dsn–2
(21)

for n ≥ –2.

Proof We consider the following four cases: (1) a �= 0, (2) a = 0, b �= 0, (3) a = b = 0, c �= 0,
(4) a = b = c = 0, separately.

Case a �= 0. The first part of the proof in this case was essentially presented in [49] (see
also [36, 38]). Hence, we will present only essential details for the completeness and benefit
of the reader.

First note that, by employing (13) in equation (17), it is transformed to equation (19).
Let

α1 := a, β1 := b, γ1 := c, δ1 := d. (22)

Employing (19), where n is replaced by n – 2, in relation (19), where n is replaced by n – 1,
and using (22), we have

yn = α1(ayn–2 + byn–3 + cyn–4 + dyn–5) + β1yn–2 + γ1yn–3 + δ1yn–4

= α2yn–2 + β2yn–3 + γ2yn–4 + δ2yn–5 (23)
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for n ≥ 2, where

α2 := aα1 + β1, β2 := bα1 + γ1, γ2 := cα1 + δ1, δ2 := dα1. (24)

Assume that for an l ∈N \ {1} and all n ≥ l, we have proved

yn = αlyn–l + βlyn–l–1 + γlyn–l–2 + δlyn–l–3 (25)

and

αl = aαl–1 + βl–1, βl = bαl–1 + γl–1, γl = cαl–1 + δl–1, δl = dαl–1. (26)

Employing relation (19) where n is replaced by n – l – 1 in (25), it follows that

yn = αl(ayn–l–1 + byn–l–2 + cyn–l–3 + dyn–l–4) + βlyn–l–1 + γlyn–l–2 + δlyn–l–3

= αl+1yn–l–1 + βl+1yn–l–2 + γl+1yn–l–3 + δl+1yn–l–4 (27)

for n ≥ l + 1, where

αl+1 := aαl + βl, βl+1 := bαl + γl, γl+1 := cαl + δl, δl+1 := dαl. (28)

Relations (23), (24), (27), (28), and the induction imply that (25) and (26) hold 2 ≤ l ≤ n.
Since d �= 0, (26) can be used to calculate αl , βl , γl , and δl for l ≤ 0. Namely, by taking

l = 1, 0, –1, –2, respectively, it easily follows that (see, e.g., [34, 38] for some details)

α0 = 1, α–1 = 0, α–2 = 0, α–3 = 0,

β0 = 0, β–1 = 1, β–2 = 0, β–3 = 0,

γ0 = 0, γ–1 = 0, γ–2 = 1, γ–3 = 0,

δ0 = 0, δ–1 = 0, δ–2 = 0, δ–3 = 1.

(29)

The relations in (26) further yield

αn = aαn–1 + bαn–2 + cαn–3 + dαn–4, (30)

βn = αn+1 – aαn, (31)

γn = cαn–1 + dαn–2, (32)

δn = dαn–1 (33)

for n ∈ Z (since d �= 0).
If we take l = n in (25), we obtain

yn = αny0 + βny–1 + γny–2 + δny–3 (34)

for n ∈N0, from which along with (31)–(33), we get

yn = αny0 + (αn+1 – aαn)y–1 + (cαn–1 + dαn–2)y–2 + dαn–1y–3 (35)

for n ∈N0 (in fact, (35) holds for every n ∈ Z).
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Using (35) in (13), we obtain

xn =
αny0 + (αn+1 – aαn)y–1 + (cαn–1 + dαn–2)y–2 + dαn–1y–3

αn–1y0 + (αn – aαn–1)y–1 + (cαn–2 + dαn–3)y–2 + dαn–2y–3

for n ≥ –2, from which, along with (29) and (30), as well as the definition of the sequence
sn, it follows that

xn =
sny0 + (sn+1 – asn)y–1 + (csn–1 + dsn–2)y–2 + dsn–1y–3

sn–1y0 + (sn – asn–1)y–1 + (csn–2 + dsn–3)y–2 + dsn–2y–3
(36)

for n ≥ –2.
Case a = 0, b �= 0. Since a = 0, we have

yn+1 = byn–1 + cyn–2 + dyn–3, n ∈N0. (37)

Let

β̃1 := b, γ̃1 := c, δ̃1 := d, η̃1 := 0. (38)

Employing (37), where n is replaced by n – 3, in equality (37), where n is replaced by n – 1,
we obtain

yn = β̃1(byn–4 + cyn–5 + dyn–6) + γ̃1yn–3 + δ̃1yn–4 + η̃1yn–5

= γ̃1yn–3 + (bβ̃1 + δ̃1)yn–4 + (cβ̃1 + η̃1)yn–5 + dβ̃1yn–6

= β̃2yn–3 + γ̃2yn–4 + δ̃2yn–5 + η̃2yn–6 (39)

for n ≥ 3, where

β̃2 := γ̃1, γ̃2 := bβ̃1 + δ̃1, δ̃2 := cβ̃1 + η̃1, η̃2 := dβ̃1. (40)

Assume that for an l ∈N \ {1} and all n ≥ l + 1, we have proved

yn = β̃lyn–l–1 + γ̃lyn–l–2 + δ̃lyn–l–3 + η̃lyn–l–4 (41)

and

β̃l = γ̃l–1, γ̃l = bβ̃l–1 + δ̃l–1, δ̃l = cβ̃l–1 + η̃l–1, η̃l = dβ̃l–1. (42)

Then, by using equality (37) where n is replaced by n – l – 2 in (41), we have

yn = β̃l(byn–l–3 + cyn–l–4 + dyn–l–5) + γ̃lyn–l–2 + δ̃lyn–l–3 + η̃lyn–l–4

= γ̃lyn–l–2 + (bβ̃l + δ̃l)yn–l–3 + (cβ̃l + η̃l)yn–l–4 + dβ̃lyn–l–5

= β̃l+1yn–l–2 + γ̃l+1yn–l–3 + δ̃l+1yn–l–4 + η̃l+1yn–l–5, (43)
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where

β̃l+1 := γ̃l, γ̃l+1 := bβ̃l + δ̃l, δ̃l+1 := cβ̃l + η̃l, η̃l+1 := dβ̃l. (44)

Relations (39), (40), (43), (44) together with the induction imply that (41) and (42) hold for
l, n ∈ N such that 2 ≤ l ≤ n – 1.

Since d �= 0, from (42) it follows that β̃l , γ̃l , δ̃l , η̃l can be calculated for l ≤ 0. Namely, by
taking l = 1, 0, –1, –2, –3, respectively, it easily follows that

β̃–1 = 1, β̃–2 = 0, β̃–3 = 0, β̃–4 = 0,

γ̃–1 = 0, γ̃–2 = 1, γ̃–3 = 0, γ̃–4 = 0,

δ̃–1 = 0, δ̃–2 = 0, δ̃–3 = 1, δ̃–4 = 0,

η̃–1 = 0, η̃–2 = 0, η̃–3 = 0, η̃–4 = 1,

(45)

(for l = 1 are obtained β̃0, γ̃0, δ̃0, η̃0, but they are not used further, which is why we have
not listed them here).

The relations in (42) further yield

β̃n = bβ̃n–2 + cβ̃n–3 + dβ̃n–4, (46)

γ̃n = β̃n+1, (47)

δ̃n = cβ̃n–1 + dβ̃n–2, (48)

η̃n = dβ̃n–1 (49)

for n ∈ Z.
From (41) with l = n – 1, we obtain

yn = β̃n–1y0 + γ̃n–1y–1 + δ̃n–1y–2 + η̃n–1y–3 (50)

for n ∈N0.
Employing (47)–(49) in (50), we get

yn = β̃n–1y0 + β̃ny–1 + (cβ̃n–2 + dβ̃n–3)y–2 + dβ̃n–2y–3 (51)

for n ∈N0.
From (45) and (46) it follows that β̃n is the solution to equation (19) with a = 0, b �= 0

such that

β̃n–1 = sn.

Hence, from (13) and (51) it follows that (36) also holds in this case.
Case a = b = 0 �= c. Since a = b = 0, equation (19) is

yn+1 = cyn–2 + dyn–3 (52)

for n ∈N0.
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Let

γ̂1 := c, δ̂1 := d, η̂1 := 0, ζ̂1 := 0. (53)

Employing (52), where n is replaced by n – 4, in equality (52), where n is replaced by n – 1,
we obtain

yn = γ̂1yn–3 + δ̂1yn–4 + η̂1yn–5 + ζ̂1yn–6

= γ̂1(cyn–6 + dyn–7) + δ̂1yn–4 + η̂1yn–5 + ζ̂1yn–6

= δ̂1yn–4 + η̂1yn–5 + (cγ̂1 + ζ̂1)yn–6 + dγ̂1yn–7

= γ̂2yn–4 + δ̂2yn–5 + η̂2yn–6 + ζ̂2yn–7 (54)

for n ≥ 4, where

γ̂2 := δ̂1, δ̂2 := η̂1, η̂2 := cγ̂1 + ζ̂1, ζ̂2 := dγ̂1. (55)

Assume that for an l ∈N \ {1} and all n ≥ l + 2, we have proved

yn = γ̂lyn–l–2 + δ̂lyn–l–3 + η̂lyn–l–4 + ζ̂lyn–l–5 (56)

and

γ̂l = δ̂l–1, δ̂l = η̂l–1, η̂l = cγ̂l–1 + ζ̂l–1, ζ̂l = dγ̂l–1. (57)

Then, by using equality (52) where n is replaced by n – l – 3 in (56), we have

yn = γ̂lyn–l–2 + δ̂lyn–l–3 + η̂lyn–l–4 + ζ̂lyn–l–5

= γ̂l(cyn–l–5 + dyn–l–6) + δ̂lyn–l–3 + η̂lyn–l–4 + ζ̂lyn–l–5

= δ̂lyn–l–3 + η̂lyn–l–4 + (cγ̂l + ζ̂l)yn–l–5 + dγ̂lyn–l–6

= γ̂l+1yn–l–3 + δ̂l+1yn–l–4 + η̂l+1yn–l–5 + ζ̂l+1yn–l–6, (58)

where

γ̂l+1 := δ̂l, δ̂l+1 := η̂l, η̂l+1 := cγ̂l + ζ̂l, ζ̂l+1 := dγ̂l. (59)

From (54), (55), (58), (59), and the induction it follows that (56) and (57) hold for l, n ∈N

such that 2 ≤ l ≤ n – 2.
Since d �= 0, employing the recurrent relations (57), we can calculate γ̂l , δ̂l , η̂l , ζ̂l for l ≤ 0

and get

γ̂–2 = 1, γ̂–3 = 0, γ̂–4 = 0, γ̂–5 = 0,

δ̂–2 = 0, δ̂–3 = 1, δ̂–4 = 0, δ̂–5 = 0,

η̂–2 = 0, η̂–3 = 0, η̂–4 = 1, η̂–5 = 0,

ζ̂–2 = 0, ζ̂–3 = 0, ζ̂–4 = 0, ζ̂–5 = 1

(60)

(see, e.g., the corresponding calculations in [34, 37]).



Stević Advances in Difference Equations        (2019) 2019:431 Page 11 of 19

The relations in (57) further yield

γ̂n = cγ̂n–3 + dγ̂n–4, (61)

δ̂n = γ̂n+1, (62)

η̂n = cγ̂n–1 + dγ̂n–2, (63)

ζ̂n = dγ̂n–1, (64)

for n ∈ Z.
If we choose l = n – 2 in (56), we obtain

yn = γ̂n–2y0 + δ̂n–2y–1 + η̂n–2y–2 + ζ̂n–2y–3 (65)

for n ∈N0.
Employing (62)–(64) in (65), it follows that

yn = γ̂n–2y0 + γ̂n–1y–1 + (cγ̂n–3 + dγ̂n–4)y–2 + dγ̂n–3y–3 (66)

for n ∈N0.
From (60) and (61) we see that γ̂n is the solution to equation (19) with a = b = 0, c �= 0

such that

γ̂n–2 = sn,

from which along with (13) and (65) it follows that (36) also holds in this case.
Case a = b = c = 0 �= d. Since a = b = c = 0, equation (19) is

yn+1 = dyn–3 (67)

for n ∈N0.
From (67) we have

s4m–i = dms–i (68)

for m ∈ N0 and i = 0, 3. It is not difficult to check that (36) holds for the sequence defined
in (68).

From (36) we have

xn =
sny0 + (sn+1 – asn)y–1 + (csn–1 + dsn–2)y–2 + dsn–1y–3

sn–1y0 + (sn – asn–1)y–1 + (csn–2 + dsn–3)y–2 + dsn–2y–3

=
sn

y0
y–3

+ (sn+1 – asn) y–1
y–3

+ (csn–1 + dsn–2) y–2
y–3

+ dsn–1

sn–1
y0

y–3
+ (sn – asn–1) y–1

y–3
+ (csn–2 + dsn–3) y–2

y–3
+ dsn–2

=
snx0x–1x–2 + (sn+1 – asn)x–1x–2 + (csn–1 + dsn–2)x–2 + dsn–1

sn–1x0x–1x–2 + (sn – asn–1)x–1x–2 + (csn–2 + dsn–3)x–2 + dsn–2

for n ∈ Z, as claimed. �
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Remark 2 The case a �= 0 has been essentially treated in [49]. However, the proofs in the
other cases, in all of which is a = 0, have been omitted there; although, as it is seen in the
proof of Theorem 2, they follow the idea of the proof in the case a �= 0. Hence, the proof of
Theorem 2 can be regarded as a completion of the proof of Theorem 6 in [49] in the case
a = 0.

2.2 About the roots of polynomial P4(λ)
Here we present the roots of polynomial P4 and some facts related to them.

First, we formulate a well-known lemma, whose proofs can be found, e.g., in [26, 38, 50].

Lemma 1 Let tj, j = 1, k be the roots of the polynomial

p(t) = ãktk + ãk–1tk–1 + · · · + ã1t + ã0

such that ti �= tj, i �= j, then

k∑

j=1

ts
j

p′(tj)
=

{
0, s = 0, k – 2;
1/̃ak , s = k – 1.

Now we discuss the form of the sequence sn defined in Theorem 2. Equation P4(λ) = 0
can be written in the form

(

λ2 –
a
2

λ +
s
2

)2

–
((

a2

4
+ b + s

)

λ2 –
(

as
2

– c
)

λ +
s2

4
+ d

)

= 0. (69)

Further, choose s so that

(as – 2c)2 =
(
a2 + 4b + 4s

)(
s2 + 4d

)

(see, for example, [50]), that is,

s3 + bs2 + (ac + 4d)s + a2d + 4bd – c2 = 0. (70)

Then (69) is

(

λ2 –
a
2
λ +

s
2

)2

–
(√

a2 + 4b + 4s
2

λ –
as – 2c

2
√

a2 + 4b + 4s

)2

= 0, (71)

from which it follows that

λ2 –
(

a
2

+
√

a2 + 4b + 4s
2

)

λ +
s
2

+
as – 2c

2
√

a2 + 4b + 4s
= 0 (72)

or

λ2 –
(

a
2

–
√

a2 + 4b + 4s
2

)

λ +
s
2

–
as – 2c

2
√

a2 + 4b + 4s
= 0. (73)
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By using the change of variables

s = ŝ –
b
3

(74)

in (70), we have

ŝ3 + p̂s + q = 0, (75)

where

p = ac + 4d –
b2

3

and

q = a2d +
8bd

3
–

abc
3

– c2 +
2b3

27
.

A standard procedure for solving cubic equation (75) says that the solutions should be
looked for in the form ŝ = u + v, where it is assumed that uv = –p/3. Hence, u3 + v3 = –q
and u3v3 = –p3/27, implying that u3 and v3 are the zeros of z2 + qz – p3/27 = 0.

Thus

ŝ =
3

√

–
q
2

–
√

q2

4
+

p3

27
+

3

√

–
q
2

+
√

q2

4
+

p3

27
. (76)

Let p = –	0/3 and q = –	1/27, then from (74) and (76) we have

s =
1

3 3√2

(
3

√

	1 –
√

	2
1 – 4	3

0 + 3

√

	1 +
√

	2
1 – 4	3

0

)
–

b
3

. (77)

From (72) and (73) and by some calculations, we obtain

λ1 =
a
4

+
√

a2 + 4b + 4s
4

+
1
2

√
a2

2
+ b – s –

Q
2
√

a2 + 4b + 4s
, (78)

λ2 =
a
4

+
√

a2 + 4b + 4s
4

–
1
2

√
a2

2
+ b – s –

Q
2
√

a2 + 4b + 4s
, (79)

λ3 =
a
4

–
√

a2 + 4b + 4s
4

+
1
2

√
a2

2
– s +

Q
2
√

a2 + 4b + 4s
, (80)

λ4 =
a
4

–
√

a2 + 4b + 4s
4

–
1
2

√
a2

2
+ b – s +

Q
2
√

a2 + 4b + 4s
, (81)

where

	0 = –3p = b2 – 3ac – 12d, (82)

	1 = –27q = –2b3 – 27a2d – 72bd + 9abc + 27c2, (83)

Q = –a3 – 4ab – 8c. (84)
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Multiplicity of the zeros of the polynomial P4 are described in the following lemma (see,
e.g., [51]).

Lemma 2 Let polynomial P4 be defined in (18), 	0 in (82), 	1 in (83), Q in (84), and let
	 = 1

27 (4	3
0 – 	2

1), P = –8b – 3a2, and D = –64d – 16b2 – 16a2b – 16ac – 3a4.
Then the following statements hold:
(a) If 	 �= 0, then the zeros of P4 are distinct.
(b) If 	 = 0 and P < 0, D < 0, 	0 �= 0, or D > 0, or P > 0, D �= 0, or P > 0, Q �= 0, then

exactly two zeros of P4 are equal.
(c) If 	 = 0, 	0 = 0, and D �= 0, then there is a triple zero of P4 and one simple.
(d) If 	 = 0, D = 0, and if P < 0, or P > 0 and Q = 0, then P4 has two distinct double zeros.
(e) If 	 = 0, D = 0, and 	0 = 0, then all the zeros of P4 are equal to a/4.

2.3 Possible forms of the sequence sn

While formula (21) gives a representation of the general solution to equation (17) in terms
of the sequence sn, it does not tell anything about its possible forms. In this section we will
describe the forms in terms of the roots λj, j = 1, 4, of polynomial (18).

Case 	 �= 0. In this case, by Lemma 2(a), we have that the roots λj, j = 1, 4, are distinct.
By using Lemma 1 and the general solution to equation (19) in this case, we have proved
in [38] (see also [36]) that the following formula holds:

sn =
4∑

j=1

λn+3
j

P′
4(λj)

(85)

for n ≥ –3 (in fact, (85) holds for every n ∈ Z).
If one of the roots of P4 is one, say λ1, then we have

P4(λ) = (λ – 1)
(
λ3 + (1 – a)λ2 + (1 – a – b)λ + 1 – a – b – c

)
. (86)

Employing the change of variables

λ = s –
1 – a

3
(87)

in the equation

λ3 + (1 – a)λ2 + (1 – a – b)λ + 1 – a – b – c = 0,

it is transformed to

s3 + p̂s + q̂ = 0, (88)

where

p̂ = 1 – a – b –
(1 – a)2

3
and q̂ =

2(1 – a)3

27
+

(1 – a – b)(2 + a)
3

– c.
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We have (see [50]; see also (76))

sj =
3

√

–
q̂
2

–
√

q̂2

4
+

p̂3

27
εj–2 +

3

√

–
q̂
2

+
√

q̂2

4
+

p̂3

27
εj–2

for j = 2, 4, where ε is a complex root of the equation t3 = 1, from which along with (87) it
follows that

λj =
3

√

–
q̂
2

–
√

q̂2

4
+

p̂3

27
εj–2 +

3

√

–
q̂
2

+
√

q̂2

4
+

p̂3

27
εj–2 –

1 – a
3

(89)

for j = 2, 4.
From the above analysis, we get the following corollary.

Corollary 1 Consider equation (17) with a, b, c ∈ C and d ∈ C \ {0}. Assume that 	 �= 0.
Then the following statements are true.

(a) If a + b + c + d �= 1, then the general solution to equation (17) is given by (21), where
sequence (sn)n≥–3 is given by (85), whereas λj, j = 1, 4, are given by (78)–(81).

(b) If a + b + c + d = 1, then the general solution to equation (17) is given by (21), where
sequence (sn)n≥–3 is given by (85) where λ1 = 1, λj, j = 2, 4, are given by (89).

Remark 3 Note that from (85) we have

sn+1 – asn =
4∑

j=1

λj – a
P′

4(λj)
λn+3

j , (90)

csn–1 + dsn–2 =
4∑

j=1

cλj + d
P′

4(λj)
λn+1

j , (91)

dsn–1 =
4∑

j=1

d
P′

4(λj)
λn+2

j (92)

for n ∈ Z. By using (85), (90)–(92) in (21), we get the following representation of the general
solution to equation (17) in the case 	 �= 0:

xn =

∑4
j=1

λ2
j x0x–1x–2+(λ3

j –aλ2
j )x–1x–2+(cλj+d)x–2+dλj
P′

4(λj)
λn+1

j

∑4
j=1

λ2
j x0x–1x–2+(λ3

j –aλ2
j )x–1x–2+(cλj+d)x–2+dλj
P′

4(λj)
λn

j

(93)

for n ∈ Z.

Case 	 = 0 and P < 0, D < 0, 	0 �= 0, or D > 0, or P > 0, D �= 0, or P > 0, Q �= 0. By
Lemma 2(b) in this case P4 has exactly one double zero. We may assume λ1 = λ2 �= λj,
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j = 3, 4. To find the solution satisfying (20), we let λ1 → λ2 in (85) and get

sn =
λn+2

2 ((n + 3)(λ2 – λ3)(λ2 – λ4) – λ2(2λ2 – λ3 – λ4))
(λ2 – λ3)2(λ2 – λ4)2

+
λn+3

3
(λ3 – λ2)2(λ3 – λ4)

+
λn+3

4
(λ4 – λ2)2(λ4 – λ3)

(94)

for n ∈ Z (for details, see [36]).
If λ1 = λ2 = 1, then from (94) we immediately get

sn =
n(1 – λ3)(1 – λ4) + 3λ3λ4 – 2λ3 – 2λ4 + 1

(1 – λ3)2(1 – λ4)2

+
λn+3

3
(λ3 – 1)2(λ3 – λ4)

+
λn+3

4
(λ4 – 1)2(λ4 – λ3)

(95)

for n ∈ Z.
In this case we have a + b + c + d – 1 = 4 – 3a – 2b – c = 0, 12 �= 6a + 2b, and

P4(λ) = (λ – 1)2(λ2 + (2 – a)λ + 3 – 2a – b
)
, (96)

from which it follows that

λ3,4 =
a – 2 ± √

a2 + 4a + 4b – 8
2

. (97)

Corollary 2 Consider equation (17) with a, b, c ∈ C and d ∈ C \ {0}. Assume that 	 = 0
and P < 0, D < 0, 	0 �= 0, or D > 0, or P > 0, D �= 0, or P > 0, Q �= 0. Then the following
statements hold.

(a) If 3a + 2b + c �= 4, then the general solution to equation (17) is given by formula (21),
where sequence (sn)n≥–3 is given by (94).

(b) If a + b + c + d – 1 = 4 – 3a – 2b – c = 0, then the general solution to equation (17) is
given by formula (21), where sequence (sn)n≥–3 is given by (95), whereas λ3,4 are given
by (97).

Case 	 = 0, D = 0, and P < 0, or P > 0 and Q = 0. By Lemma 2(d) in this case P4 has two
pairs of double zeros. By letting λ3 → λ4 in (94), it is obtained

sn =
λn+2

2 (n(λ2 – λ4)2 + λ2
2 – 4λ2λ4 + 3λ2

4)
(λ2 – λ4)4

+
λn+2

4 (n(λ4 – λ2)2 + λ2
4 – 4λ2λ4 + 3λ2

2)
(λ4 – λ2)4 (98)

for n ≥ –3 (see [36]).
If a + b + c + d = 1, then two of the zeros, say λ1 and λ2, are equal to 1, and from (98) we

obtain

sn =
λn+2

4 (n(λ4 – 1)2 + λ2
4 – 4λ4 + 3) + n(1 – λ4)2 + 1 – 4λ4 + 3λ2

4
(λ4 – 1)4 (99)
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for n ≥ –3. Besides, from (97) we have

λ3,4 =
a – 2

2
. (100)

Corollary 3 Consider equation (17) with a, b, c ∈ C and d ∈ C \ {0}. Assume that 	 = 0,
D = 0, and P < 0, or P > 0 and Q = 0. Then the following statements hold.

(a) If a + b + c + d �= 1, then the general solution to equation (17) is given by formula (21),
where sequence (sn)n≥–3 is given by (98).

(b) If a + b + c + d = 1, then the general solution to equation (17) is given by formula (21),
where sequence (sn)n≥–3 is given by (99), whereas λ3,4 are given by (100).

Case 	 = 0, 	0 = 0, and D �= 0. By Lemma 2(c) we have that P4 has a triple zero and one
simple. We may assume that λ1 = λ2 = λ3. In [35] we proved that in this case

sn =
(

1 –
λ3

4
(λ4 – λ1)3 +

λ1(3λ1 – 5λ4)
2(λ4 – λ1)2 n +

λ1

2(λ1 – λ4)
n2

)

λn
1 +

λn+3
4

(λ4 – λ1)3 (101)

for n ≥ –3.
If λj = 1, j = 1, 3, then from (101) it follows that

sn = 1 –
λ3

4
(λ4 – 1)3 +

(3 – 5λ4)
2(λ4 – 1)2 n +

1
2(1 – λ4)

n2 +
λn+3

4
(λ4 – 1)3 (102)

for n ≥ –3. Besides, from (96) we have

λ4 = a – 3. (103)

Corollary 4 Consider equation (17) with a, b, c ∈ C and d ∈ C \ {0}. Assume that 	 = 0,
	0 = 0, and D �= 0. Then the following statements hold.

(a) If 3a + 2b + c �= 4, then the general solution to equation (17) is given by formula (21),
where sequence (sn)n≥–3 is given by (101).

(b) If a + b + c + d = 1 and 3a + 2b + c = 4, then the general solution to equation (17) is
given by formula (21), where sequence (sn)n≥–3 is given by (102), whereas λ4 is given
by (103).

Case 	 = 0, D = 0, and 	0 = 0. By Lemma 2(e) we have that all the zeros to P4 are equal
to a/4.

The general solution in this case is given by

an =
(
c1 + c2n + c3n2 + c4n3)

(
a
4

)n

, n ≥ –3. (104)

From this and (20) it follows that s0 = 1 = c1,

c1 – c2 + c3 – c4 = 0,

c1 – 2c2 + 4c3 – 8c4 = 0,

c1 – 3c2 + 9c3 – 27c4 = 0.
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Solving the system, we get

c1 = c3 = 1, c2 =
11
6

, and c4 =
1
6

.

Using this in (104), after some calculation, we obtain

sn =
(n + 1)(n + 2)(n + 3)

6

(
a
4

)n

(105)

for n ≥ –3.

Corollary 5 Consider equation (17) with a, b, c ∈ C and d ∈ C \ {0}. Assume that 	 = 0,
D = 0, and 	0 = 0. Then the general solution to equation (17) is given by formula (21), where
the sequence (sn)n≥–3 is given by (105).
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Stević Advances in Difference Equations        (2019) 2019:431 Page 19 of 19
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20. Stević, S.: Existence of a unique bounded solution to a linear second order difference equation and the linear first
order difference equation. Adv. Differ. Equ. 2017, Article ID 169 (2017)
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39. Stević, S., Iričanin, B., Šmarda, Z.: Two-dimensional product-type system of difference equations solvable in closed

form. Adv. Differ. Equ. 2016, Article ID 253 (2016)
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