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Abstract
We have presented the numerical analysis of a stochastic heroin epidemic model in
this paper. The mean of stochastic heroin model is itself a deterministic solution. The
effect of reproduction number has also been observed in the stochastic heroin
epidemic model. We have developed some stochastic explicit and implicitly driven
explicit methods for this model. But stochastic explicit methods have flopped for
certain values of parameters. In support, some theorems and graphical illustrations
are presented.
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1 Introduction
Humans have known about heroin and euphoria inducing properties for a long time.
Heroin is also known as smacks, gag, horse, gear, and brown. Opium poppy is the ma-
jor cause of drugs. In Neolithic times, the cultivation of these opium poppies was found
as evidence. More than six thousand years ago, opium poppies were collected and con-
sumed. In this way opium has remained popular drug for millennia. Opium dens were
especially common during the 1800s, and first-time drug morphine was extracted from
the opium poppy. Ultimately heroin introduced itself as an opiate drug extracted from
morphine [1, 2]. In 1897, the Bayer pharmaceutical company of Germany refined heroin
and started selling it as a cure for tuberculosis and addiction of drug morphine. Heroin is
an opioid derivative, and an estimated 13.5 million people in the world take opioids. But
approximately 9.2 million are heroin users. The average cost of a single dose of 0.1 g of
heroin is $15 to $20 in the US costing between $150 and $200 per day for an addict to
support their habit. According to the national survey on drug use and health (NSBUH),
in 2014 about 430,000 Americans reported using heroin in that year with the greatest in-
crease being by young adults aged 18 to 25. The number of people using heroin in 2016
was 948,000, which is nearly double the number of people from two years before [3]. These
figures may even be low as it is likely that many heroin users simply do not take part in
health service.

The biggest side effect of heroin is its addiction. Body changes and the traumatic mental
side effects compel the user to increase the dose. The individuals who have been taking
the drugs for quite some time will have high tolerance level hence making it all the more
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difficult to quit. If one decides to stop using heroin, the after effects include: extreme crav-
ing for the drug, restlessness, muscle, bone pain, diarrhea, and vomiting. These can persist
between 48 to 72 hours. It also may take several attempts to get rid of it. Approximately,
seventeen million peoples are directly affected by these types of drugs in the form of health
problems all over the world.

2 Literature survey
In the last decade of the twentieth century various mathematical models were proposed
to discuss the epidemic dynamics of heroin model. In 2009, Mulone and Straughan sug-
gested in [4] that the model proposed by White and Comiskey in [5] has stable steady
states. Wang, Yang, and Li in 2011 preferred bilinear incidence law over standard inci-
dence in the heroin epidemic model. They proposed that the population is not constant
with time in [6]. Samanta extended the model in [5] to non-autonomous epidemic form,
which was an improved version of the periodic epidemic model. Here, the population has
been treated periodically in [7]. Liu and Zhang worked on time delayed heroin epidemic
model, which led to the formulation of a delay differential equation system in [8]. In 2013,
Haung and Liu in [9] found that, under specific condition, the delay differential equa-
tion model can be converted into an ordinary differential equation model which resem-
bles the renowned SIR epidemic model. Abdurahman, Zhang, and Teng in [10] changed a
non-autonomous time delayed heroin epidemic model to an autonomous model. Here the
non-standard finite difference pattern was applied to get the discretized heroin epidemic
model. In 2015 the authors Fang et al. in [2, 11] formulated age-dependent susceptible
and treat-age heroine epidemic models respectively. In 2016 Yang, Li, and Zhang in [12]
inquired an age structured heroin model. Non-linear incidence rate was discussed instead
of ordinary incidence rate. The time delayed heroin epidemic model was also proposed by
the authors in [13]. Ma, Liu, and Li in [14] discussed various types of bifurcation of heroin
epidemic model with non-linear contact rate. Besides, the age structured heroin epidemic
model was also proposed in [15]. Wangari and Stone discussed the backward bifurcations
and stability in the heroin model, and they considered that heroin users can be rehabili-
tated quickly in [16]. In 2018, a stochastic heroin epidemic model with bilinear incidence
and varying population size was obtained from a deterministic version by Liu, Zhang, and
Li in [17]. Liu, Zhang, and Xing inspected the vanishing and existence of ergodic station-
ary distribution in a stochastic heroine epidemic model. Stochastic Lyapunov function was
developed to discuss the extinction of drug users among the population in [18]. Inspired
by the previous work contributions, Zhang and Wang acquired a delayed heroin model in
2019. The authors studied the impact of the time delay on heroin model and concluded
that the addicts are not cured quickly, rather they need a time period [19]. Random per-
turbations were introduced in the deterministic heroin epidemic model by Wei, Yang, and
Li in [20].

Although huge improvements have been made towards the utilization of mathematical
methods to model infectious disease, very little efforts have been made to impose this work
on heroin epidemic models. In this paper, dynamic disease modeling is extended to the
drug-using career. Here the drug users are interpreted as people who directly or indirectly
hurt themselves or their families with their drug using habit [21]. The author has made his
contributions towards the evolution of mathematical epidemiology. Social issues like drug
and alcohol use are termed as epidemics, little work has been carried out towards the
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utilization of mathematical modeling techniques to these difficulties [22–26]. Different
models of the transmission of heroin have been studied. The usual quantitative schemes
like Euler and Runge–Kutta never maintain dynamical possessions as we have seen in the
deterministic modeling. We have also seen that in Euler–Maruyama, stochastic Euler and
stochastic Runge–Kutta do not maintain the dynamical possessions in stochastic case. So,
from this a question arises and needs to be researched more: Could we develop the random
emphatical scheme which maintains all the dynamical possessions [27–29]?

A rule introduced in the deterministic case has been used to start the notion stochastic
non-standard finite difference scheme (SNSFD). These regulations were given by Mickens.
This is the major point of this paper.

The flow of the paper is based on the following sections:
In Sect. 2, the deterministic heroin epidemic model is described. Section 3 explains the

construction way of a stochastic heroin epidemic model and its equilibria. Section 4 ex-
plains the stochastic numerical schemes for the stochastic heroin epidemic model and its
convergence analysis. In Sect. 5, the conclusion and directions are given.

3 Deterministic heroin epidemic model
We consider the heroin epidemic model presented in [5] in this section.

Let at any time t, the variables be described as S (denotes the susceptible group of peo-
ple), U1 (denotes the drug users who are not in treatment), and U2 (denotes the drug users
who are in treatment). In Fig. 1, the diagram of heroin epidemic model is presented.

The model parameters are described as Λ (denotes the individuals entering the sus-
ceptible population from general population), μ (denotes the general population natural
decease rate), δ1 (denotes the removal rate due to drug related deaths of users not in treat-
ment and the recovery rate of those who stop using drugs without treatment), δ2 (denotes
the removal rate due to drug related deaths of users in treatment and the lucky cure rate
that leads to drug-free life accompanied by immunity to drug addiction in the time pe-
riod of modeling), β1 (denotes the probability of becoming a drug user), p (denotes the
drug users who get treatment), and β3 (denotes the probability of a drug user in treatment
relapsing to untreated use).

Figure 1 Flow diagram of heroin epidemic model
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The deterministic equations of the heroin epidemic model are as follows:

dS
dt

= ΛN –
β1U1S

N
– μ1S, (1)

dU1

dt
=

β1U1S
N

– pU1 +
β3U1U2

N
– (μ + δ1)U1, (2)

dU2

dt
= pU1 –

β3U1U2

N
– (μ + δ2)U2, (3)

where

S + U1 + U2 = N

put

S =
S
N

, U1 =
U1

N
, U2 =

U2

N
.

The normalized form of model (1)–(3) is as follows:

dS
dt

= Λ – β1U1S – μ1S, (4)

dU1

dt
= β1U1S – pU1 + β3U1U2 – μ1U1, (5)

dU2

dt
= pU1 – β3U1U2 – μ1U2, (6)

where the region for system (4)–(6) is Γ = {(S, U1, U2) : S + U1 + U2 ≤ Λ
μ1

, S ≥ 0, U1 ≥ 0,
U2 ≥ 0}. The given region is called feasible region for model (4)–(6). So, the solutions of
model (4)–(6) lie in this region and are bounded.

3.1 Equilibria of heroin epidemic model
The equilibria of heroin model (4)–(6) are as follows:

Drug-free equilibrium is DFE = (S, U1, U2) = ( Λ
μ1

, 0, 0),
Drug-present equilibrium is DPE = (S∗, U∗

1, U∗
2),

where

U∗
1 =

Λ – μ1S∗

β1S∗ , U∗
2 =

p + μ1 – β1S∗

β3
,

S∗ =
[(

β1(p + μ1)μ2 + pβ3μ1 – Λβ1β3 – μ1(p + μ1)β3
)

± [(
Λβ1β3 + μ1(p + μ1)β3 – β1(p + μ1)μ2 – pβ3μ1

)2

– 4
(
–β2

1μ2 – μ1β1β3
)(

p + β3Λ – β3Λ(p + μ1)
)]1/2]

/[
2
(
–β2

1μ2 – μ1β1β3
)]

,

Rd
0 =

β1

(p + μ1)
.

Note that Rd
0 is heroin generation number.
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Table 1 Transition probabilities

Transitions (Ti) Probabilities (Pi)

T1 = (�W)1 = [1, 0, 0]T P1 =Λ�t
T2 = (�W)2 = [–1, 1, 0]T P2 = β1U1S�t
T3 = (�W)3 = [–1, 0, 0]T P3 =μ1S�t
T4 = (�W)4 = [0, –1, 1]T P4 = pU1�t
T5 = (�W)5 = [0, 1, –1]T P5 = β3U1U2�t
T6 = (�W)5 = [0, –1, 0]T P6 =μ1U1�t
T7 = (�W)5 = [0, 0, –1]T P7 =μ2U2�t

4 Stochastic heroin epidemic model
Let us consider the vector W = [S, U1, U2]T, the transition probabilities of system (4)–(6)
are as follows (see Table 1).

The expectation and variance of stochastic heroin epidemic model is defined as

E∗[�W] =
7∑

i=1

PiTi,

Expectation = E∗[�W] =

⎡

⎢
⎣

P1 – P2 – P3

P2 – P4 + P5 – P6

P4 – P5 – P7

⎤

⎥
⎦�t,

Var = E∗[�W�WT]
=

7∑

i=1

Pi[Ti][Ti]T,

E∗[�W�WT]
=

⎡

⎢
⎣

P1 + P2 + P3 –P2 0
–P2 P2 + P4+P5 + P6 –P4 – P5

0 –P4 – P5 P4 + P5 + P7

⎤

⎥
⎦�t.

The general form of SDEs is as follows:

dW(t)
dt

= f
(
W(t), t

)
+ L

(
W(t), t

)dB(t)
dt

,

Stochastic drift = f
(
W(t), t

)
=

E∗[�W]
�t

,

Stochastic diffusion = L
(
W(t), t

)
=

√
E∗[�W�WT]

�t
.

The SDE of system (4)–(6) is as follows:

dW(t) = f
(
W(t), t

)
dt + L

(
W(t), t

)
dB(t) (7)

with initial conditions W(0) = W0 = [0.5, 0.3, 0.2]T, 0 ≤ t ≤ T, and B(t) is called Brownian
motion.

4.1 Euler–Maruyama method
System (7) could be written and presented in [30] as follows:

Wn+1 = Wn + f(Wn, t)�t + L(Wn, t)�Bn, (8)
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Table 2 Parameter values [5]

Parameters Values (years)

μ1 0.04
Λ 0.04
β1 DFE = 0.02

DPE = 0.2
β3 0.03
p 0.02
σ 0.09

Figure 2 (a) In drug users’ fraction Euler–Maruyama converges to drug-present equilibrium, while
deterministic solution is the mean of Euler–Maruyama solution for h = 0.01. (b) In drug users’ fraction
Euler–Maruyama shows negativity and divergence for drug-present equilibrium for h = 4

where ‘�t’ could be represented as a time step size and �Bn is the standard normal dis-
tribution, i.e., �Bn ∼ N(0, 1). For the solution of system (8), we shall use the parameter
values presented in [5] (see Table 2).

The solution of system (8), i.e., DFE = ( Λ
μ1

, 0, 0) and DPE = (0.2713, 0.5372, 0.1915). For
the graphical illustration of system (8), see Fig. 2.

5 Parametric perturbation in heroin epidemic model
In this technique, we shall choose parameters from system (4)–(6) and change into the
random parameters with small noise as β1 dt = β1 dt + σ dB. So, the stochastic heroin epi-
demic of system (4)–(6) is as follows [31]:

dS = (Λ – β1U1S – μ1S) dt – σU1S dB, (9)

dU1 = (β1U1S – pU1 + β3U1U2 – μ1U1) dt + σU1S dB, (10)

dU2 = (pU1 – β3U1U2 – μ2U2) dt. (11)

The Brownian motion is denoted by Bk(t) (k = 1, 2, 3). The stochasticity of system (9)–
(11) is denoted by σ and σ1. System (9)–(11) has no analytic solution due to non-integral
term of Brownian motion. So, in the coming section we shall assume some stochastic
methods for the solution of system (9)–(11).
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5.1 Equilibria of stochastic heroin epidemic model
The equilibria of system (9)–(11) are as follows:

Drug-free equilibrium is DFE = (S, U1, U2) = ( Λ
μ1

, 0, 0),
Drug-present equilibrium is DPE = (S∗, U∗

1, U∗
2),

where

U∗
1 =

Λ – μ1S
β1S

, U∗
2 =

p + μ1 – β1S
β3

,

S∗ =
[(

β1(p + μ1)μ2 + pβ3μ1 – Λβ1β3 – μ1(p + μ1)β3
)

± [(
Λβ1β3 + μ1(p + μ1)β3 – β1(p + μ1)μ2 – pβ3μ1

)2 – 4
(
–β2

1μ2 – μ1β1β3
)]1/2

× (
p + β3Λ – β3Λ(p + μ1)

)]

/[
2
(
–β2

1μ2 – μ1β1β3
)]

.

Lemma 5.1 The solution (S(t), U1(t), U2(t)) of system (9)–(11), for any assumed initial
value (S(0), U1(0), U2(0)) ∈ R3

+, has the following possessions, almost surely.

5.1.1 Stochastic threshold dynamics
Extinction Let us introduce RS

0 = Rd
0 – σ 2R

2μ2
1(P+μ1)3 .

Then we have the following.

Definition 5.1 For system (9)–(11) the drug users U1(t) are supposed to be extinct if
limt→∞ U1(t) = 0 almost surely.

Theorem 5.1 If σ 2 < β1μ1
Λ

and RS
0 < 1, then the drug users of system (9)–(11) approach to

zero exponentially almost surely.

Proof Let us assume that (S(t), U1(t), U2(t)) is a solution of system (9)–(11) with holding
the initial conditions (S(0), U1(0), U2(0)) ∈ R3

+ by Ito’s formula.
Let f(U1) = ln(U1) and

d ln(U1) = f ′(U1) dU1 +
1
2

f
′′
(U1)U2

1
(
σ 2S2)dt,

d ln(U1) =
1

U1
dU1 +

1
2

(
–

1
U2

1

)
U2

1
(
σ 2S2)dt,

d ln(U1) =
(

β1S – p + β3U2 – μ1 –
1
2
σ 2S2

)
dt + σS dt.

By integrating “0” to “t” on both sides, we have

ln(U1) = ln U1(0) +
∫ t

0

(
β1S – p + β3U2 – μ1 –

1
2
σ 2S2

)
dt +

∫ t

0
σS dB,

where M(t) =
∫ t

0 σS dB is the continuous martingale with M(0) = 0.
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If σ 2 > β1μ1
Λ

,

ln(U1) ≤
(

β2
1

2σ 2 – (p + μ1)
)

t + M1(t) + ln U1(0),

ln(U1)
t

≤ –
(

(p + μ1) –
β2

1
2σ 2

)
+

M1(t)
t

+
ln U1(0)

t
.

By above Lemma 5.1, if

lim
t→∞

M1(t)
t

= 0

and

lim
t→∞

ln U1(t)
t

≤
(

(P + μ1) –
β2

1
2σ 2

)
< 0,

then σ 2 > β2
1

2(p+μ1) and limt→∞ U1(t) = 0 almost surely.
If σ 2 < β1μ1

Λ
, then

ln
(
U1(t)

) ≤
(

β1Λ

μ1
–

1
2
σ 2 Λ2

μ2
1

– (p + μ1)
)

t + M1(t) + ln U1(0),

ln U1(t)
t

≤ (p + μ1)
(

β1Λ

μ1(p + μ1)
–

1
2
σ 2 Λ2

μ2
1(p + μ1)

– 1
)

+
M1(t)

t
+

ln U1(0)
t

. (12)

By taking the superior limit on both sides of (12), we have

lim
t→∞ sup

ln U1(t)
t

≤ (P + μ1)
(
RS

0 – 1
)
,

when RS
0 < 1 we get

lim
t→∞ sup

ln U1(t)
t

≤ 0 ⇒ lim
t→∞ U1(t) = 0

almost surely

RS
0 = Rd

0 –
1
2
σ 2 Λ2

μ2
1(p + μ1)

< 1.

The stochastic reproduction number RS
0 = 0.3320 < 1 means these measures are help-

ful in controlling the heroin in population and the stochastic reproduction number RS
0 =

3.3320 > 1 means the heroin is endemic in population. �

5.2 Stochastic Euler method
System (9)–(11) could be written as follows [31–33]:

Sn+1 = Sn + h(Λ – β1Un
1�

n – μ1�
n – σUn

1Sn�Bn)
Un+1

1 = Un
1 + h(β1Un

1�
n – pUn

1 + β3Un
1Un

2 – μ1Un
1 – σUn

1Sn�Bn)
Un+1

2 = Un
2 + h(pUn

1 – β3Un
1Un

2 – μ2Un
2)

⎫
⎪⎬

⎪⎭
, (13)
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Figure 3 (a) In susceptible users’ fraction stochastic Euler method converges to drug-free equilibrium, while
deterministic solution is the mean of stochastic Euler method solution for h = 0.01. (b) In susceptible users’
fraction stochastic Euler method fails to maintain the positivity and diverges for drug-free equilibrium for
h = 5. (c) In drug users’ fraction stochastic Euler method converges to drug-present equilibrium, while
deterministic solution is the mean of stochastic Euler method solution for h = 0.01. (d) In drug users’ fraction
stochastic Euler method shows negativity and unstable behavior for drug-present equilibrium for h = 5

where “h” is represented as a time step size and �Bn ∼ N(0, 1). The solution of system (13)
is illustrated in Fig. 3.

5.3 Stochastic Runge–Kutta method
System (9)–(11) could be written as follows [31–33]:

Stage 1

A1 = h
(
Λ – β1Un

1Sn – μ1Sn – σUn
1Sn�Bn

)
,

B1 = h
(
β1Un

1Sn – pUn
1 + β3Un

1Un
2 – μ1Un

1 – σUn
1Sn�Bn

)
,

C1 = h
(
pUn

1 – β3Un
1Un

2 – μ2Un
2
)
.
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Stage 2

A2 = h
(

Λ – β1

(
Un

1 +
B1

2

)(
Sn +

A1

2

)

– μ1

(
Sn +

A1

2

)
– σ

(
Un

1 +
B1

2

)(
Sn +

A1

2

)
�Bn

)
,

B2 = h
(

β1

(
Un

1 +
B1

2

)(
Sn +

A1

2

)
– p

(
Un

1 +
B1

2

)
+ β3

(
Un

1 +
B1

2

)(
Un

2 +
C1

2

)

– μ1

(
Un

1 +
B1

2

)
– σ

(
Un

1 +
B1

2

)(
Sn +

A1

2

)
�Bn

)
,

C2 = h
[

p
(

Un
1 +

B1

2

)
– β3

(
Un

1 +
B1

2

)(
Un

2 +
C1

2

)
– μ2

(
Un

2 +
C1

2

)]
.

Stage 3

A3 = h
(

Λ – β1

(
Un

1 +
B2

2

)(
Sn +

A2

2

)

– μ1

(
Sn +

A2

2

)
– σ

(
Un

1 +
B2

2

)(
Sn +

A2

2

)
�Bn

)
,

B3 = h
(

β1

(
Un

1 +
B2

2

)(
Sn +

A2

2

)
– p

(
Un

1 +
B2

2

)
+ β3

(
Un

1 +
B2

2

)(
Un

2 +
C2

2

)

– μ1

(
Un

1 +
B2

2

)
– σ

(
Un

1 +
B2

2

)(
Sn +

A2

2

)
�Bn

)
,

C3 = h
[

p
(

Un
1 +

B2

2

)
– β3

(
Un

1 +
B2

2

)(
Un

2 +
C2

2

)
– μ2

(
Un

2 +
C2

2

)]
.

Stage 4

A4 = h
(

Λ – β1

(
Un

1 +
B3

2

)(
Sn +

A3

2

)

– μ1

(
Sn +

A3

2

)
– σ

(
Un

1 +
B3

2

)(
Sn +

A3

2

)
�Bn

)
,

B4 = h
(

β1

(
Un

1 +
B3

2

)(
Sn +

A3

2

)
– p

(
Un

1 +
B3

2

)
+ β3

(
Un

1 +
B3

2

)(
Un

2 +
C3

2

)

– μ1

(
Un

1 +
B3

2

)
– σ

(
Un

1 +
B3

2

)(
Sn +

A3

2

)
�Bn

)
,

C4 = h
[

p
(

Un
1 +

B3

2

)
– β3

(
Un

1 +
B3

2

)(
Un

2 +
C3

2

)
– μ2

(
Un

2 +
C3

2

)]
.

Final stage

Sn+1 = Sn + 1
6 [A1 + 2A2 + 2A3 + A4]

Un+1
1 = Un

1 + 1
6 [B1 + 2B2 + 2B3 + B4]

Un+1
2 = Un

2 + 1
6 [C1 + 2C2 + 2C3 + C4]

⎫
⎪⎬

⎪⎭
, (14)

where “h” is represented as a time step size and �Bn ∼ N(0, 1). The solution of system (14)
is shown in Fig. 4.
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Figure 4 (a) In susceptible users’ fraction stochastic Runge–Kutta method converges to drug-free
equilibrium, while deterministic solution is the mean of stochastic Runge–Kutta method solution for h = 0.01.
(b) In susceptible users’ fraction stochastic Runge–Kutta method solution is unbound for drug-free
equilibrium for h = 0.01. (c) In drug users’ fraction stochastic Runge–Kutta method converges to drug-present
equilibrium, while deterministic solution is the mean of stochastic Runge–Kutta method solution for h = 0.01.
(d) In drug users fraction stochastic Runge–Kutta method shows failure of dynamical properties for
drug-present equilibrium for h = 6

5.4 Stochastic NSFD method
System (9)–(11) could be written as follows [31–33]:

Sn+1 = Sn+λΛ
1+hβ1Un

1 +hμ1+hσUn
1�Bn

Un+1
1 = Un

1 +hβ1Un
1 Sn+β3Un

1 Un
2 +σUn

1 Sn�Bn
1+hp+hμ1

Un+1
2 = Un

2 +hpUn
1

1+hβ3Un
1 +hμ2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, (15)

where “h” is represented as a time step size and �Bn ∼ N(0, 1).

5.4.1 Analysis of the stochastic NSFD method
Let us assume some theorems as follows.

Theorem 5.2 System (15) has a unique positive solution (Sn, Un
1, Un

2) ∈ R3
+ on n ≥ 0, for

any initial system (Sn(0), Un
1(0), Un

2(0)) ∈ R3
+, almost surely.
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Theorem 5.3 The set Ω = {(Sn, Un
1, Un

2) ∈ R3
+ : Sn ≥ 0, Un

1 ≥ 0, Un
2 ≥ 0, Sn + Un

1 + Un
2 ≤ Λ

μ1
}

for all n ≥ 0 is a non-negative invariant for system (15).

Proof System (15) could be written as follows:

Sn+1 – Sn

h
= Λ – β1Un

1Sn – μ1Sn – σUn
1Sn�Bn,

Un+1
1 – Un

1
h

= β1Un
1Sn – pUn

1 + β3Un
1Un

2 – μ1Un
1 + σUn

1Sn�Bn,

Un+1
2 – Un

2
h

= pUn
1 – β3Un

1Un
2 – μ2Un

2.

So,

(Sn+1 + Un+1
1 + Un+1

2 ) – (Sn + Un
1 + Un

2)
h

= Λ – μ1
(
Sn + Un

1 + Un
2
)
,

Sn+1 + Un+1
1 + Un+1

2 =
(
Sn + Un

1 + Un
2
)

+ hΛ – μ1
(
Sn + Un

1 + Un
2
)
,

Sn+1 + Un+1
1 + Un+1

2 ≤ Λ

μ1
+ hΛ – hμ1

(
Λ

μ1

)
,

Sn+1 + Un+1
1 + Un+1

2 ≤ Λ

μ1
,

almost surely. �

Theorem 5.4 Discrete dynamical system (15) has the same equilibria as those of Contin-
uous dynamical system (9)–(11) for all n ≥ 0.

Proof The equilibria of system (9)–(11) are as follows:
DFE, i.e., D3 = (Sn, Un

1, Un
2) = ( Λ

μ1
, 0, 0),

DPE, i.e., E3 = (Sn, Un
1, Un

2),
where

Un
1 =

Λ – μ1Sn

β1Sn , Un
2 =

p + μ1 – β1Sn

β3
,

Sn =
[(

β1(p + μ1)μ2 + pβ3μ1 – Λβ1β3 – μ1(p + μ1)β3
)

± [(
Λβ1β3 + μ1(p + μ1)β3 – β1(p + μ1)μ2 – pβ3μ1

)2

– 4
(
–β2

1μ2 – μ1β1β3
)(

p + β3Λ – β3Λ(p + μ1)
)]1/2]

/[
2
(
–β2

1μ2 – μ1β1β3
)]

,

almost surely. �

Theorem 5.5 The eigenvalues of discrete dynamical system (15) lie in the unit circle for all
n ≥ 0.
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Proof Let us consider F, G, and H from system (15) as follows:

F =
S + hΛ

1 + hβ1U1 + hμ1 + hσU1�Bn
,

G =
U1 + hβ1U1S + β3U1U2 + σU1S�Bn

1 + hp + hμ1
,

H =
U2 + hpU1

1 + hβ3U1 + hμ2
.

The Jacobean matrix is defined as

J =

⎡

⎢
⎢
⎣

∂F
∂S

∂F
∂U1

∂F
∂U2

∂G
∂S

∂G
∂U1

∂G
∂U2

∂H
∂S

∂H
∂U1

∂H
∂U2

⎤

⎥
⎥
⎦ ,

where

∂F
∂S

=
1

1 + hβ1U1 + hμ1 + hσU1�Bn
,

∂F
∂U1

=
–(S + hΛ)hβ1

(1 + hβ1U1 + hμ1 + hσU1�Bn)2 ,
∂F
∂U2

= 0,

∂G
∂S

=
hβ1U1

1 + hp + hμ1
,

∂G
∂U1

=
1 + hβ1S + β3U2

1 + hp + hμ1
,

∂G
∂U2

=
β3U1

1 + hp + hμ1
,

∂H
∂S

= 0,
∂H
∂U1

=
hp
hβ3

,
∂H
∂U2

=
1

1 + hβ3U1 + hμ2
.

Now we want to linearize the model about the equilibria of model for drug-free equilib-
rium D1 = (S, U1, U2) = ( Λ

μ1
, 0, 0) and RS

0 < 1.
The given Jacobean is

J =

⎡

⎢
⎢
⎣

1
1+hμ1

–hβ1(Λ+μ1hΛ)
μ1(1+hμ1)2 0

0 μ1+hβ1Λ

μ1(1+hp+hμ1) 0

0 hp
hβ3

1
1+hμ2

⎤

⎥
⎥
⎦ .

The eigenvalues of J are as follows:

λ1 =
1

1 + hμ1
< 1, λ2 =

μ1 + hβ1Λ

μ1(1 + hp + hμ1)
< 1, RS

0 < 1,

λ3 =
1

1 + hμ2
< 1.

This is to guarantee the fact that all the eigenvalues of Jacobean lie in the unit circle. So,
system (15) is LAS around D1. So, the graphical illustration of system (15) is presented in
Fig. 5. �

5.5 Contrast section
Let us assume the comparison among the stochastic methods and the stochastic NSFD
method in this section as follows.
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Figure 5 (a) In susceptible users’ fraction stochastic-NSFD converges to drug-free equilibrium, while the
deterministic solution is the mean of stochastic NSFD solution for h = 0.01. (b) In susceptible users’ fraction
stochastic-NSFD preserves all dynamical properties for drug-free equilibrium for h = 100. (c) In drug users’
fraction stochastic-NSFD converges to drug-present equilibrium, while deterministic solution is the mean of
stochastic NSFD solution for h = 0.01. (d) In drug users’ fraction stochastic-NSFD preserves all dynamical
properties for drug-present equilibrium, while deterministic solution is the mean of stochastic NSFD solution
for h = 100

5.6 Covariance of heroin epidemic model
Let us describe the covariance among the compartments of heroin epidemic model. For
this, we have designed the correlation factors and its consequences as stated in Table 3.

The inverse relationship approved that the number of susceptible users has increased
with decrease in the remaining compartments of heroin epidemic model. So, the heroin
epidemic model will be a drug-free model.

6 Results and discussion
In Fig. 2(a), the given Euler–Maruyama method converges to equilibria of model at h =
0.01, and unstability could observed in Fig. 2(b). In Fig. 3(a) and 3(c) the stochastic Euler
converges to both equilibria at h = 0.01. But failure to maintain stability and non-negativity
for both equilbria could be observed in Fig. 3(b) and 3(d). In Fig. 4(a) and 4(c), the stochas-
tic Runge–Kutta converges to both equilibria of model at h = 0.01, and in Fig. 4(b) and 4(d),
the given method shows divergence. So, the stochastic explicit schemes are time depen-
dent and conditionally convergent schemes. On the other hand, in Fig. 5, the stochastic
NSFD converges to equilibria of the model for any time. In Fig. 6, we have showed the
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Figure 6 (a) Drug users’ fraction with Euler–Maruyama and its average at h = 0.01. (b) Drug users’ fraction
with Euler–Maruyama and its average at h = 4. (c) Drug users’ fraction with stochastic Euler and its average at
h = 0.01. (d) Drug users’ fraction with stochastic Euler and its average at h = 5. (e) Drug users’ fraction with
stochastic Runge–Kutta and its average at h = 0.01. (f) Drug users’ fraction with stochastic Runge–Kutta and
its average at h = 6

efficiency of the stochastic NSFD method with existing stochastic explicit methods for
different time step sizes. Also, we can observe in the above graphical illustration that the
deterministic solutions are called the average of stochastic solutions of a heroin epidemic
system. So, the stochastic explicit methods are time dependent and conditionally con-
vergent methods. This is the beauty of stochastic NSFD as compared to other stochastic
explicit methods.



Rafiq et al. Advances in Difference Equations        (2019) 2019:434 Page 16 of 17

Table 3 Covariance of model

Sub-populations Correlation factor (ρ) Relationship

(S,U1) –0.8315 Inverse
(U1,U2) 0.1969 Direct
(S,U2) –0.4590 Inverse

7 Conclusion and directions
In comparison to the deterministic heroin epidemic model, the stochastic heroin epidemic
model is a more reliable strategy. The stochastic numerical techniques are detail-oriented,
and they work well for even minute time step size. They may lose the necessary proper-
ties of a continuous dynamical system due to divergence on specific values of time step
size. The SNSFD for a heroin epidemic model is capable of preserving important prop-
erties like positivity, dynamical consistency, and boundedness. It is also appropriate for
any time step size [27–29]. For our future work, we are aiming to execute SNSFD to so-
phisticated stochastic delay and spatio-temporal systems. Additionally, we could utilize
the current numerical work in the extension of networking flows and fractional network-
ing flows systems [34]. In the future, we are going to work for the reaction diffusion and
fractional-order stochastic models.
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