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Abstract
The present paper focuses on the oscillation of the third-order nonlinear neutral
differential equations with damping and distributed delay. The oscillation of the
third-order damped equations is often discussed by reducing the equations to the
second-order ones. However, by applying the Riccati transformation and the integral
averaging technique, we give an analytical method for the estimation of Riccati
dynamic inequality to establish several oscillation criteria for the discussed equation,
which show that any solution either oscillates or converges to zero. The results make
significant improvement and extend the earlier works such as (Zhang et al. in Appl.
Math. Lett. 25:1514–1519 2012). Finally, some examples are given to demonstrate the
effectiveness of the obtained oscillation results.
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1 Introduction
Differential equations arise in modeling situations to describe population growth, biol-
ogy, economics, chemical reactions, neural networks, and so forth; see, e.g., [2–8]. In the
present paper, we investigate the oscillatory behavior of a third-order neutral differential
equation with damping and distributed delay. The equation is given as follows:

(
r(t)

(
α(t)

(
x(t) +

∫ b

a
p(t,μ)x

(
τ (t,μ)

)
dμ

)′)′)′

+ m(t)
(

α(t)
(

x(t) +
∫ b

a
p(t,μ)x

(
τ (t,μ)

)
dμ

)′)′

+
∫ d

c
F
(
t, ζ , x

(
g(t, ζ )

))
dζ = 0. (1.1)

Throughout this article, we always make the hypotheses as follows:
(H1) r(t) ∈ C1([t0,∞), (0,∞)), m(t) ∈ C([t0,∞), (0,∞)),

∫ ∞
t0

1
r(t) exp(–

∫ t
t0

m(s)
r(s) ds) dt = ∞;

(H2) α(t) ∈ C1([t0,∞), (0,∞)),
∫ ∞

t0
1

α(t) dt = ∞;
(H3) p(t,μ) ∈ C([t0,∞) × [a, b], (0,∞)), 0 ≤ p(t) =

∫ b
a p(t,μ) dμ ≤ p < 1;
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(H4) τ (t,μ) ∈ C([t0,∞) × [a, b], (0,∞)) is not a decreasing function with respect to μ

and satisfies τ (t,μ) ≤ t and limt→∞ infμ∈[a,b] τ (t,μ) = ∞;
(H5) g(t, ζ ) ∈ C([t0,∞) × [c, d], [δ,∞)) for δ > 0 is not a decreasing function with respect

to ζ and satisfies g(t, ζ ) ≤ t and limt→∞ infζ∈[c,d] g(t, ζ ) = ∞;
(H6) F(t, ζ , w) ∈ C([t0,∞) × [c, d] × (0,∞), (0,∞)), q(t, ζ ) ∈ C([t0,∞) × [c, d], (0,∞)),

F(t,ζ ,w)
w ≥ q(t, ζ ).

Letting

y(t) = x(t) +
∫ b

a
p(t,μ)x

(
τ (t,μ)

)
dμ,

a function x(t) is the solution of equation (1.1) if x(t) satisfies (1.1) on [Tx,∞) for every
t ≥ Tx ≥ t0 with x(t), α(t)y′(t) and r(t)(α(t)y′(t))′ ∈ C1[Tx,∞). We focus on the solutions
satisfying sup{|x(t)| : T ≤ t < ∞} > 0, T ≥ Tx. The solution with arbitrarily large zeros on
[Tx,∞) is treated as an oscillatory solution.

More and more scholars pay attention to the oscillatory solution of functional differ-
ential equations, especially for the first-order or second-order equations. With the devel-
opment of the oscillation for the second-order equations, researchers began to study the
oscillation for the third-order equations, such as [9–18] for the delay equations, [19–27]
for the equations on time scales, [28–37] for the damping equations. For the neutral delay
equation

(
a(t)

(
b(t)

(
x(t) + px(t – τ )

)′)′)′ + q(t)f
(
x(t – σ )

)
= 0,

the oscillation was discussed in [38], and its general cases were discussed in [39–42]. For
the distributed neutral delay equations

[
r(t)

[
x(t) +

∫ b

a
p(t,μ)x

(
τ (t,μ)

)
dμ

]′′]′
+

∫ d

c
q(t, ζ )f

(
x
[
σ (t, ζ )

])
dζ = 0,

the Philos-type oscillation criteria were studied by Zhang et al. [1], and the further in-
vestigation for the oscillation was given in [43–45] by Riccati transformation and integral
averaging technique.

However, our focus is on the oscillation for third-order neutral differential equations
with distributed delay and damping term, such as [46]. The research on the damped dif-
ferential equations of third-order has been developed in recent years. Furthermore, the
methods discussed are relatively limited. A general means used in the above mentioned
papers [28–37] is reducing the third-order equations to the second-order ones. We notice
that in the discussion of oscillation for the differential equations, the key is the inequality
estimation techniques. In [46], by the Riccati transformation we give a method for the es-
timation of Riccati dynamic inequality to get some oscillation criteria. Moreover, the main
contribution in this paper is that we provide another method for the inequality estimation
to discuss the oscillation of differential equations with damping and distributed delay on
the basis of the Riccati transformation and the integral averaging technique. The results
obtained continue and extend the analytic works in [1], where the methods using Lemmas
2.3 and 2.4 for the inequality estimation cannot be applied for (1.1).
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2 Preliminaries
For the oscillatory solutions of (1.1), we usually talk about the eventually positive solu-
tions. In this section, the following results may play an important role in establishing new
oscillation criteria for (1.1).

Lemma 2.1 Assume that x(t) is the positive solution of (1.1). Then there are two cases as
follows.

(I) y(t) > 0, y′(t) > 0, (α(t)y′(t))′ > 0;
(II) y(t) > 0, y′(t) < 0, (α(t)y′(t))′ > 0

for t ≥ t1 ≥ t0 with sufficiently large t1.

Proof We set that x(t) is the positive solution of (1.1) for [t0,∞). Then it follows from (H4)
and (H5) that x(τ (t,μ)) > 0 and x(g(t, ζ )) > 0 for t ≥ t1 with sufficiently large t1, respectively.
It is easy to get y(t) > x(t) > 0.

From (1.1) and (H6), we get

(
r(t)

(
α(t)y′(t)

)′)′ + m(t)
(
α(t)y′(t)

)′ = –
∫ d

c
F
(
t, ζ , x

(
g(t, ζ )

))
dζ

≤ –
∫ d

c
q(t, ζ )x

(
g(t, ζ )

)
dζ

< 0.

It follows that d
dt [exp(

∫ t
t1

m(s)
r(s) ds)r(t)(α(t)y′(t))′] < 0. Then exp(

∫ t
t1

m(s)
r(s) ds)r(t)(α(t)y′(t))′ is a

decreasing function with one sign eventually. Thus, from (H1),

(
α(t)y′(t)

)′ < 0 or
(
α(t)y′(t)

)′ > 0

for t ≥ t2 ≥ t1.
We claim that (α(t)y′(t))′ > 0. Suppose (α(t)y′(t))′ ≤ 0. According to the monotonicity of

exp(
∫ t

t1
m(s)
r(s) ds)r(t)(α(t)y′(t))′, we have

exp

(∫ t

t1

m(s)
r(s)

ds
)

r(t)
(
α(t)y′(t)

)′ ≤ –M

for M > 0. Integrate the above inequality on [t2, t] to get

α(t)y′(t) ≤ α(t2)y′(t2) – M
∫ t

t2

1
r(s)

exp

(
–

∫ s

t1

m(η)
r(η)

dη

)
ds.

Letting t → ∞, we have α(t)y′(t) → –∞ by (H1). Then it follows from (α(t)y′(t))′ ≤ 0 that
α(t)y′(t) ≤ α(t3)y′(t3) < 0 for t ≥ t3 ≥ t2. Dividing by α(t) and integrating on [t3, t], we have
that

y(t) – y(t3) ≤ α(t3)y′(t3)
∫ t

t3

1
α(s)

ds.

From condition (H2), we have y(t) → –∞ as t → ∞. This contradicts y(t) > 0, which im-
plies (α(t)y′(t))′ > 0. We complete the proof. �
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Lemma 2.2 Assume that x(t) is the positive solution of (1.1) and y(t) satisfies case (II).
Suppose

∫ ∞

t0

1
α(v)

∫ ∞

v

1
r(u)

∫ ∞

u
q(s) ds du dv = ∞, (2.1)

where q(t) =
∫ d

c q(t, ζ ) dζ . Then limt→∞ x(t) = 0.

Proof We set that x(t) is the positive solution of (1.1) for [t0,∞). Due to the fact that case
(II) is valid for y(t), we obtain limt→∞ y(t) = l ≥ 0. And then we use proof by contradiction
to prove l = 0. Suppose l > 0. Then it follows that l + ε > y(t) > l for ε > 0 with t ≥ t1 ≥ t0.
Taking ε such that pε < l(1 – p), from (H3), (H4), and property (II), we have

x(t) = y(t) –
∫ b

a
p(t,μ)x

(
τ (t,μ)

)
dμ

≥ l –
∫ b

a
p(t,μ)y

(
τ (t,μ)

)
dμ

≥ l – p(t)y
(
τ (t, a)

)
≥ l – p(l + ε)

> Ky(t), (2.2)

where K = l(1–p)–pε

l+ε
> 0. It follows from (H5), (H6), (2.2), and property (II) that

(
r(t)

(
α(t)y′(t)

)′)′ + m(t)
(
α(t)y′(t)

)′ ≤ –
∫ d

c
q(t, ζ )x

(
g(t, ζ )

)
dζ

≤ –Ky
(
g(t, d)

)
q(t).

Taking z(t) = exp(
∫ t

t1
m(s)
r(s) ds), we get

(
z(t)r(t)

(
α(t)y′(t)

)′)′ ≤ –Kz(t)y
(
g(t, d)

)
q(t).

Integrate on [t,∞) to obtain

–z(t)r(t)
(
α(t)y′(t)

)′ + K
∫ ∞

t
z(s)y

(
g(s, d)

)
q(s) ds ≤ 0.

By virtue of y(g(t, d)) > l and z′(t) > 0, we conclude

–
(
α(t)y′(t)

)′ +
Kl

r(t)

∫ ∞

t
q(s) ds < 0.

This yields

α(t)y′(t) + Kl
∫ ∞

t

1
r(u)

∫ ∞

u
q(s) ds du < 0
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by the integration from t to ∞. Further integrate on [t1,∞) to get

∫ ∞

t1

1
α(v)

∫ ∞

v

1
r(u)

∫ ∞

u
q(s) ds du dv <

y(t1)
Kl

.

This contradicts (2.1), which leads to l = 0, and then limt→∞ x(t) = 0 from y(t) > x(t) > 0.
We complete the proof. �

3 Oscillation results
Based on the lemmas in Section 2, some new oscillation criteria for (1.1) are obtained by
applying Riccati transformation, inequality estimation, and integral averaging technique
due to Philos [47]. Putting

D =
{

(t, s) : t0 ≤ s ≤ t < ∞}
; D0 =

{
(t, s) : t0 ≤ s < t < ∞}

,

a function H ∈ C(D,R) is said to belong to X class (H ∈ X) if it satisfies
(i) H(t, t) = 0, t ≥ t0 and H(t, s) > 0, (t, s) ∈ D0;

(ii) H(t, s) has a continuous and nonpositive partial derivative on D with respect to the
second variable;

(iii) There exists h(t, s) ∈ C(D,R) such that

∂H(t, s)
∂s

= –h(t, s)
√

H(t, s) for all (t, s) ∈ D.

Theorem 3.1 Assume that (2.1) holds and there exist H ∈ X and φ ∈ C([t0,∞),R) such
that

0 < inf
s≥t0

[
lim inf

t→∞
H(t, s)
H(t, t0)

]
≤ ∞, (3.1)

∫ ∞

t0

φ2
+(t)

ρ(t)r(t)
dt = ∞, (3.2)

and

φ(T) ≤ lim sup
t→∞

1
H(t, T)

∫ t

T

(
H(t, s)P(s) –

kρ(s)r(s)h2(t, s)
4

)
ds (3.3)

for t ≥ T ≥ t0, k > 1, θ > 0, where

P(t) = ρ(t)
(1 – p)θq(t)

α(t)
, ρ(t) = exp

∫ t

t0

m(s)
r(s)

ds, φ+(t) = max
{
φ(t), 0

}
. (3.4)

Then any solution x(t) of (1.1) either oscillates or converges to zero.

Proof Let x(t) be a nonoscillatory solution of (1.1). Without loss of generality, we assume
that x(t) > 0 on [t1,∞). From (H4) and (H5), we have x(τ (t,μ)) > 0, (t,μ) ∈ [t1,∞) × [a, b],
x(g(t, ζ )) > 0, (t, ζ ) ∈ [t1,∞) × [c, d] for sufficiently large t1. From Lemma 2.1, y(t) is one
case of (I) and (II).
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If y(t) satisfies case (I), then

x(t) ≥ y(t) –
∫ b

a
p(t,μ)y

(
τ (t,μ)

)
dμ

≥ (
1 – p(t)

)
y(t)

≥ (1 – p)y(t)

from (H3) and (H4). By (H5), (H6) and the above inequality, it is obvious that

(
r(t)

(
α(t)y′(t)

)′)′ + m(t)
(
α(t)y′(t)

)′ ≤ –(1 – p)
∫ d

c
q(t, ζ )y

(
g(t, ζ )

)
dζ

≤ –(1 – p)y
(
g(t, c)

)
q(t).

Putting that w(t) = ρ(t) r(t)(α(t)y′(t))′
α(t)y′(t) , t ≥ t1 with ρ(t) given in (3.4), we know

w′(t) =
ρ ′(t)
ρ(t)

w(t) + ρ(t)
(r(t)(α(t)y′(t))′)′

α(t)y′(t)
–

w2(t)
ρ(t)r(t)

≤ ρ ′(t)
ρ(t)

w(t) – ρ(t)
[

(1 – p)y(g(t, c))q(t)
α(t)y′(t)

+
m(t)(α(t)y′(t))′

α(t)y′(t)

]
–

w2(t)
ρ(t)r(t)

= –ρ(t)
(1 – p)y(g(t, c))q(t)

α(t)y′(t)
–

w2(t)
ρ(t)r(t)

.

By property (I), there exists a limit of 1
y′(t) as t → ∞, which is denoted by limt→∞ 1

y′(t) = η.
Choosing ε = η

2 , we obtain 1
y′(t) > η

2 for t ≥ t2 ≥ t1. Letting θ = y(δ)η
2 , from g(t, c) ≥ δ in (H5)

we have

w′(t) ≤ –P(t) –
w2(t)

ρ(t)r(t)
,

where P(t) is defined in (3.4). Multiply the above inequality by H(t, s) and integrate the
inequality from t2 to t to get

∫ t

t2

H(t, s)P(s) ds ≤ H(t, t2)w(t2) –
∫ t

t2

h(t, s)
√

H(t, s)w(s) ds –
∫ t

t2

H(t, s)w2(s)
ρ(s)r(s)

ds

= H(t, t2)w(t2) –
∫ t

t2

(
h(t, s)

√
kρ(s)r(s)

2
+ w(s)

√
H(t, s)

kρ(s)r(s)

)2

ds

+
∫ t

t2

kρ(s)r(s)h2(t, s)
4

ds –
∫ t

t2

(k – 1)H(t, s)w2(s)
kρ(s)r(s)

ds

from the integral averaging technique. Then

lim sup
t→∞

1
H(t, t2)

∫ t

t2

(
H(t, s)P(s) –

kρ(s)r(s)h2(t, s)
4

)
ds

≤ w(t2) – lim inf
t→∞

1
H(t, t2)

∫ t

t2

(k – 1)H(t, s)w2(s)
kρ(s)r(s)

ds.



Wei et al. Advances in Difference Equations        (2019) 2019:426 Page 7 of 11

Thus, it follows from (3.3) that

φ(t) ≤ w(t), t ≥ t2,

and

lim inf
t→∞

1
H(t, t2)

∫ t

t2

(k – 1)H(t, s)w2(s)
kρ(s)r(s)

ds ≤ w(t2) – φ(t2) < ∞, t ≥ t2. (3.5)

Next we claim
∫ ∞

t2

w2(t)
ρ(t)r(t)

dt < ∞.

Suppose
∫ ∞

t2
w2(t)

ρ(t)r(t) dt = ∞. It follows from (3.1) that

inf
s≥t0

[
lim inf

t→∞
H(t, s)
H(t, t0)

]
> μ

for μ > 0, and then H(t,t3)
H(t,t0) > μ for t ≥ t3 ≥ t2. Thus we have

∫ t

t3

w2(t)
ρ(t)r(t)

dt ≥ M1

μ

for M1 > 0. Then, when t ≥ t3, we conclude

1
H(t, t0)

∫ t

t3

H(t, s)w2(s)
ρ(s)r(s)

ds =
1

H(t, t0)

∫ t

t3

–
∂H(t, s)

∂s

∫ s

t3

w2(η)
ρ(η)r(η)

dη ds

≥ 1
H(t, t0)

M1

μ

∫ t

t3

–
∂H(t, s)

∂s
ds

=
M1

μ

H(t, t3)
H(t, t0)

≥ M1.

This implies

lim inf
t→∞

1
H(t, t0)

∫ t

t3

H(t, s)w2(s)
ρ(s)r(s)

ds = ∞.

This leads to a contradiction with (3.5). Then we conclude
∫ ∞

t2
w2(t)

ρ(t)r(t) dt < ∞, which con-
tradicts (3.2).

If y(t) satisfies case (II), then limt→∞ x(t) = 0 from (2.1) and Lemma 2.2. The proof is
complete. �

Theorem 3.2 Assume that (2.1) holds and there exist H ∈ X and R(t) ∈ C([t0,∞),R) such
that

lim sup
t→∞

1
H(t, T)

∫ t

T

(
H(t, s)D(s) –

kρ(s)r(s)h2(t, s)
4(k – 1)

)
ds = ∞ (3.6)
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for k > 1, θ > 0, and t ≥ T ≥ t0, where

D(t) = Q(t) – kρ(t)r(t)R2(t), ρ(t) = exp
∫ t

t0

m(s)
r(s)

ds, (3.7)

Q(t) = ρ(t)
[

r(t)R2(t) – m(t)R(t) –
(
r(t)R(t)

)′ +
(1 – p)θq(t)

α(t)

]
. (3.8)

Then any solution x(t) of (1.1) either oscillates or converges to zero.

Proof Let x(t) be a nonoscillatory solution of (1.1). Without loss of generality, we assert
that x(t) > 0 on [t1,∞). It follows from (H4) and (H5) that x(τ (t,μ)) > 0, (t,μ) ∈ [t1,∞) ×
[a, b], x(g(t, ζ )) > 0, (t, ζ ) ∈ [t1,∞) × [c, d] for sufficiently large t1. From Lemma 2.1, y(t) is
one case of (I) and (II).

If y(t) satisfies case (I), then by letting

w(t) = ρ(t)
[

r(t)(α(t)y′(t))′

α(t)y′(t)
+ r(t)R(t)

]
, t ≥ t1,

we conclude that

w′(t) ≤ ρ ′(t)
ρ(t)

w(t) – ρ(t)
[

(1 – p)y(g(t, c))q(t)
α(t)y′(t)

+
m(t)(α(t)y′(t))′

α(t)y′(t)
+ r(t)

(
(α(t)y′(t))′

α(t)y′(t)

)2]

+ ρ(t)
(
r(t)R(t)

)′.

In the same way as Theorem 3.1, taking limt→∞ 1
y′(t) = η, ε = η

2 , and θ = y(δ)η
2 , we have

w′(t) ≤ ρ ′(t)
ρ(t)

w(t) – ρ(t)
[

(1 – p)θq(t)
α(t)

+
m(t)w(t)
ρ(t)r(t)

– m(t)R(t) + r(t)
(

w(t)
ρ(t)r(t)

– R(t)
)2]

+ ρ(t)
(
r(t)R(t)

)′

= –Q(t) + 2R(t)w(t) –
w2(t)

ρ(t)r(t)

= –Q(t) + 2R(t)w(t) –
w2(t)

kρ(t)r(t)
–

(k – 1)w2(t)
kρ(t)r(t)

,

where Q(t) is defined by (3.8). Based on Bu – Au2 ≤ B2

4A for A > 0, u ∈R, we get

w′(t) ≤ –D(t) –
(k – 1)w2(t)

kρ(t)r(t)
,

where D(t) is given by (3.7). Multiplying the inequality by H(t, s) and integrating on [T , t],
we obtain

∫ t

T
H(t, s)D(s) ds ≤ w(T)H(t, T) –

∫ t

T

(
h(t, s)

√
H(t, s)w(s) +

(k – 1)H(t, s)w2(s)
kρ(s)r(s)

)
ds

= w(T)H(t, T) –
∫ t

T

(
h(t, s)

√
kρ(s)r(s)
4(k – 1)

+ w(s)

√
(k – 1)H(t, s)

kρ(s)r(s)

)2

ds

+
∫ t

T

kρ(s)r(s)h2(t, s)
4(k – 1)

ds.
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Then

1
H(t, T)

∫ t

T

(
H(t, s)D(s) –

kρ(s)r(s)h2(t, s)
4(k – 1)

)
ds ≤ w(T).

This contradicts (3.6).
If y(t) satisfies case (II), then limt→∞ x(t) = 0 from (2.1) and Lemma 2.2. The proof is

complete. �

Remark 3.3 The proofs of Theorems 3.1 and 3.2 provide a method for the estimation of
Riccati dynamic inequality, which is different from [46] and useful for the oscillation cri-
teria.

4 Examples
Example 4.1 Consider the equation

(
1
t

(
e–t

(
x(t) +

∫ 2

1

μ

6t
x(t – μ) dμ

)′)′)′
+

2
t2

(
e–t

(
x(t) +

∫ 2

1

μ

6t
x(t – μ) dμ

)′)′

+
∫ 1

1
2

tζx
(
(t – 3

√
t)ζ

)
dζ = 0. (4.1)

By (4.1), we note that r(t) = 1
t , α(t) = e–t , p(t,μ) = μ

6t , τ (t,μ) = t – μ, m(t) = 2
t2 , g(t, ζ ) =

(t – 3
√

t)ζ , a = 1, b = 2, c = 1
2 , d = 1, which satisfy conditions (H1)–(H6). Furthermore, we

choose H(t, s) = (t – s)2, k = 2, θ = 2, p = 1
2 , q(t, ζ ) = tζ , φ(t) = t, t0 = 1. By Theorem 3.1, we

obtain h(t, s) = 2, ρ(t) = t2 – 1, q(t) = 3
8 t, P(t) = 3

8 t(t2 – 1)et and

lim sup
t→∞

1
H(t, T)

∫ t

T

(
H(t, s)P(s) –

kρ(s)r(s)h2(t, s)
4

)
ds ≥ T = φ(T).

Clearly, it is obvious that other conditions of Theorem 3.1 are valid. Thus, it follows from
Theorem 3.1 that any solution of (4.1) is oscillatory or converges to zero as t → ∞.

Example 4.2 We consider the equation

(
2
t

(√
t
(

x(t) +
∫ 1

0
e–tμ2x

(
1
3

tμ
)

dμ

)′)′)′

+
1
t2

(√
t
(

x(t) +
∫ 1

0
e–tμ2x

(
1
3

tμ
)

dμ

)′)′

+
∫ 1

1
2

tζx(tζ ) dζ = 0. (4.2)

From (4.2), we find that r(t) = 2
t , α(t) =

√
t, p(t,μ) = e–tμ2, τ (t,μ) = 1

3 tμ, m(t) = 1
t2 ,

g(t, ζ ) = tζ , a = 0, b = 1, c = 1
2 , d = 1, which satisfy conditions (H1)–(H6). Furthermore,

we choose H(t, s) = (t – s)2, k = 2, θ = 2, p = 1
2 , q(t, ζ ) = ζ√

t , R(t) = 1
t , t0 = 1. By Theorem 3.2,

we have h(t, s) = 2, ρ(t) =
√

t – 1, q(t) = 3
8 t– 1

2 , D(t) = (
√

t – 1)( 3
8 t–1 + t–3) and

lim sup
t→∞

1
H(t, T)

∫ t

T

(
H(t, s)D(s) –

kρ(s)r(s)h2(t, s)
4(k – 1)

)
ds = ∞.
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Then by Theorem 3.2 we know that any solution of (4.2) is oscillatory or converges to zero
as t → ∞.
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