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Abstract
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1 Introduction
Fractional calculus earned more recognition due to its applications in diverse domains.
Recent research focuses on developing a large number of the fractional integral operators
(FIO) and their applications in multiple disciplines of sciences (see [13, 14, 20, 26]). In [15],
Liu et al. introduced interesting integral inequalities for continuous functions on [a, b].
Later on, Dahmani [8] generalized the work of [15] involving the Riemann–Liouville frac-
tional integral operators. In [9], Dahmani and Tabharit introduced weighted Grüss type
inequalities involving fractional integral operators. Dahmani [7] established some new in-
equalities for fractional integrals. Polya–Szego and Chebyshev type inequalities involving
the Riemann–Liouville fractional integral operators are found in [19]. Nisar et al. [16] es-
tablished some inequalities involving extended gamma and the Kummar confluent hyper-
geometric k-functions. In [28], Set et al. established generalized Grüss type inequalities
for k-fractional integrals and applications. Certain Gronwall inequalities associated with
Riemann–Liouville k and Hadamard k-fractional derivatives and their applications are
found in the work of Nisar et al. [17]. The (k, s)-fractional integrals and their applications
are found in [27]. Rahman et al. [23] presented certain inequalities via (k,ρ)-fractional in-
tegral operators. In [11], the authors introduced the idea of fractional conformable deriva-
tive operators with a shortcoming that the new derivative operator does not tend to the
original function when the order ρ → 0. In [1], the author studied certain various proper-
ties of the fractional conformable derivative operators and raised the problem of how to
use conformable derivative operators to generate more general types of nonlocal fractional
derivative operators, after that the method was demonstrated in [10].

The generalized FCIO defined in [12] is given by

μ
αI

β

r+ f (x) =
1

Γ (β)

∫ x

r

(
xα+μ – τα+μ

α + μ

)β–1 f (τ )
τ 1–α–μ

dτ , x > r, (1)
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and

μ
αI

β
s– f (x) =

1
Γ (β)

∫ s

x

(
τα+μ – xα+μ

α + μ

)β–1 f (τ )
τ 1–α–μ

dτ , x < s, (2)

where β ∈C, �(β) > 0, α ∈ (0, 1], μ ∈ R, α + μ �= 0, and Γ is the gamma function [29].

Remark 1 (i) If we set μ = 0 in (1) and (2), then we have the following Riemann–Liouville
(R-L) type FCIO:

αI
β

r+ f (x) =
1

Γ (β)

∫ x

r

(
xα – τα

α

)β–1 f (τ )
τ 1–α

dτ , x > r, (3)

and

αI
β
s– f (x) =

1
Γ (β)

∫ s

x

(
τα – xα

α

)β–1 f (τ )
τ 1–α

dτ , x < s, (4)

where β ∈C, �(β) > 0, α ∈ (0, 1].
(ii) If α = 1 in 3 and 4, then we obtain the following R-L FIO:

I
β

r+ f (x) =
1

Γ (β)

∫ x

r
(x – τ )β–1f (τ ) dτ , x > r, (5)

and

I
β
s– f (x) =

1
Γ (β)

∫ s

x
(τ – x)β–1f (τ ) dτ , x < s, (6)

where β ∈C, �(β) > 0.

Recently, the researchers [21, 24] established inequalities of Grüss type and Čebyšev
type by utilizing fractional conformable integral operators. Rahman et al. [25] established
certain Chebyshev type inequalities involving fractional conformable integral operators.
In [22], the authors introduced the Minkowski inequalities via generalized proportional
fractional integral operators. Some new inequalities involving fractional conformable in-
tegrals are found in the work of Nisar et al. [18]. Adjabi et al. [6] presented generalized
fractional integral operators and Gronwall type inequalities with applications. In [2], Ab-
deljawad established a Lyapunov type inequality for fractional operators with nonsingu-
lar Mittag-Leffler kernel. Abdeljawad et al. [4] introduced Lyapunov type inequalities for
mixed nonlinear forced differential equations within conformable derivatives. Fractional
operators with exponential kernels and a Lyapunov type inequality are found in [3]. Ab-
deljawad et al. [5] presented a generalized Lyapunov type inequality in the frame of con-
formable derivatives.

Our aim in this paper is to generalize the inequalities obtained earlier by [8, 15] by em-
ploying the left generalized fractional conformable integral operator (1).
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2 Main results
In this section, we employ the left generalized FCIO to establish the generalization of some
classical inequalities.

Theorem 1 Let (gi)i=1,2,3,...,n be n positive continuous and decreasing functions on the inter-
val [r, s]. Let r < x ≤ s, ϑ > 0, σ ≥ γp > 0 for any fixed p ∈ {1, 2, 3, . . . , n}. Then, for generalized
fractional conformable integral (1), we have

μ
αI

β
r [

∏n
i�=p gγi

i gσ
p (x)]

μ
αI

β
r [

∏n
i=1 gγi

i (x)]
≥

μ
αI

β
r [(x – r)ϑ

∏n
i�=p gγi

i gσ
p (x)]

μ
αI

β
r [(x – r)ϑ

∏n
i=1 gγi

i (x)]
, (7)

where β ∈C, α ∈ (0, 1], μ ∈R, α + μ �= 0, and �(β) > 0.

Proof Since (gi)i=1,2,3,...,n are n positive continuous and decreasing functions on the interval
[r, s]. Therefore, we have

(
(ρ – r)ϑ – (t – r)ϑ

)(
gσ–γp

p (t) – gσ–γp
p (ρ)

) ≥ 0, (8)

where r < x ≤ s, ϑ > 0, σ ≥ γp > 0, t,ρ ∈ [r, x] and for any fixed p ∈ {1, 2, 3, . . . , n}.
Define a function

μ
αI

β
r (x,ρ, t) =

1
Γ (β)

(
xα+μ – tα+μ

α + μ

)β–1

×
∏n

i=1 gγi
i (t)

t1–α–μ

(
(ρ – r)ϑ – (t – r)ϑ

)(
gσ–γp

p (t) – gσ–γp
p (ρ)

)
. (9)

We observe that the above function satisfies all the assumptions stated in Theorem 1, and
hence the function μ

αI
β
r (x,ρ, t) is positive for all t ∈ (r, x) (x > r). Integrating both sides of

(9) with respect to t over (r, x), we have

0 ≤
∫ x

r

μ
αI

β
r (x,ρ, t) dt

=
1

Γ (β)

∫ x

r

(
xα+μ – tα+μ

α + μ

)β–1

×
n∏

i=1

gγi
i (t)

(
(ρ – r)ϑ – (t – r)ϑ
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gσ–γp

p (t) – gσ–γp
p (ρ)

) dt
t1–α–μ

=

[
(ρ – r)ϑμ

αI
β
r

n∏
i�=p

gγi
i gσ

p (x)

]
+ gσ–γp

p (ρ)μαI
β
r

[
(x – r)ϑ

n∏
i=1

gγi
i (x)

]

– (ρ – r)ϑgσ–γp
p (ρ)

[
μ
αI

β
r

n∏
i=1

gγi
i (x)

]
– μ

αI
β
r

[
(x – r)ϑ

n∏
i=1

gγi
i (x)

]
. (10)
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Multiplying (10) by 1
Γ (β) ( xα+μ–ρα+μ

α+μ
)β–1

∏n
i=1 gγi

i (ρ)
ρ1–α–μ and integrating the resultant identity with

respect to ρ over (r, x), we have

0 ≤
[

μ
αI

β
r

n∏
i�=p

gγi
i gσ

p (x)

]
μ
αI

β
r

[
(x – r)ϑ

n∏
i=1

gγi
i (x)

]

– μ
αI

β
r

[
(x – r)ϑ

n∏
i�=p

gγi
i gσ

p (x)

][
μ
αI

β
r

n∏
i=1

gγi
i (x)

]
,

which completes the desired inequality (7). �

Corollary 1 Let (gi)i=1,2,3,...,n be n positive continuous and decreasing on [r, s]. Let r < x ≤ s,
ϑ > 0, σ ≥ γp > 0 for any fixed p ∈ {1, 2, 3, . . . , n}. Then, for R-L type fractional conformable
integral (3), we have

αI
β
r [

∏n
i�=p gγi

i gσ
p (x)]

αI
β
r [

∏n
i=1 gγi

i (x)]
≥ αI

β
r [(x – r)ϑ

∏n
i�=p gγi

i gσ
p (x)]

αI
β
r [(x – r)ϑ

∏n
i=1 gγi

i (x)]
, (11)

where β ∈C, α ∈ (0, 1], and �(β) > 0.

Corollary 2 Let (gi)i=1,2,3,...,n be n positive continuous and decreasing on [r, s]. Let r < x ≤ s,
ϑ > 0, σ ≥ γp > 0 for any fixed p ∈ {1, 2, 3, . . . , n}. Then, for R-L fractional integral (5), we
have

I
β
r [

∏n
i�=p gγi

i gσ
p (x)]

I
β
r [

∏n
i=1 gγi

i (x)]
≥ I

β
r [(x – r)ϑ

∏n
i�=p gγi

i gσ
p (x)]

I
β
r [(x – r)ϑ

∏n
i=1 gγi

i (x)]
, (12)

where β ∈C and �(β) > 0.

Remark 2 The inequality in Theorem 1 will reverse if (gi)i=1,2,3,...,n are increasing on the
interval [r, s]. If we let α = 1, μ = 0, then Theorem 1 will lead to Theorem 3.1 [8]. Moreover,
setting μ = 0, α = β = n = 1, x = s, then Theorem 1 reduces to the well-known Theorem 3
[15].

Theorem 2 Let (gi)i=1,2,3,...,n be n positive continuous and decreasing on [r, s]. Let r < x ≤ s,
ϑ > 0, σ ≥ γp > 0 for any fixed p ∈ {1, 2, 3, . . . , n}. Then, for generalized fractional con-
formable integral (1), we have

μ
αI

β
r [

∏n
i�=pgγi

i gσ
p (x)]μαIλ

r [(x – r)ϑ
∏n

i=1gγi
i (x)] + μ

αI
β
r [

∏n
i�=pgγi

i gσ
p (x)]μαIλ

r [(x – r)ϑ
∏n

i=1gγi
i (x)]

μ
αI

λ
r [(x – r)ϑ

∏n
i�=pgγi

i (x)]μαIβ
r [

∏n
i=1gγi

i (x)] + μ
αI

β
r [(x – r)ϑ

∏n
i�=pgγi

i (x)]μαIλ
r [

∏n
i=1gγi

i (x)]

≥ 1, (13)

where β ,λ ∈C, α ∈ (0, 1], μ ∈R, α + μ �= 0, �(β) > 0, and �(λ) > 0.

Proof Firstly, multiplying both sides of equation (10) by 1
Γ (λ) ( xα+μ–ρα+μ

α+μ
)λ–1

∏n
i=1 gγi

i (ρ)
ρ1–α–μ and

integrating the resultant identity with respect to ρ over (r, x), we have

0 ≤
∫ x

r

∫ x

r

1
Γ (λ)

(
xα+μ – ρα+μ

α + μ

)λ–1 ∏n
i=1 gγi

i (ρ)
ρ1–α–μ

μ
αI

β
r (x,ρ, t) dt dρ
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= μ
αI

β
r

[ n∏
i�=p

gγi
i gσ

p (x)

]
μ
αI

λ
r

[
(x – r)ϑ

n∏
i=1

gγi
i (x)

]

+ μ
αI

λ
r

[ n∏
i�=p

gγi
i gσ

p (x)

]
μ
αI

β
r

[
(x – r)ϑ

n∏
i=1

gγi
i (x)

]

– μ
αI

β
r

[
(x – r)ϑ

n∏
i�=p

gγi
i gσ

p (x)

]
μ
αI

λ
r

[ n∏
i=1

gγi
i (x)

]

– μ
αI

λ
r

[
(x – r)ϑ

n∏
i�=p

gγi
i gσ

p (x)

]
μ
αI

β
r

[ n∏
i=1

gγi
i (x)

]
. (14)

Hence, dividing both sides of (14) by

μ
αI

β
r

[
(x–r)ϑ

n∏
i�=p

gγi
i gσ

p (x)

]
μ
αI

λ
r

[ n∏
i=1

gγi
i (x)

]
+μ

αI
λ
r

[
(x–r)ϑ

n∏
i�=p

gγi
i gσ

p (x)

]
μ
αI

β
r

[ n∏
i=1

gγi
i (x)

]
,

we get the desired proof. �

Corollary 3 Let (gi)i=1,2,3,...,n be n positive continuous and decreasing on [r, s]. Let r < x ≤ s,
ϑ > 0, σ ≥ γp > 0 for any fixed p ∈ {1, 2, 3, . . . , n}. Then, for R-L type fractional conformable
integral (3), we have

αI
β
r [

∏n
i�=pgγi

i gσ
p (x)]αIλ

r [(x – r)ϑ
∏n

i=1gγi
i (x)] + αI

β
r [

∏n
i�=pgγi

i gσ
p (x)]αIλ

r [(x – r)ϑ
∏n

i=1gγi
i (x)]

αI
λ
r [(x – r)ϑ

∏n
i�=pgγi

i (x)]αIβ
r [

∏n
i=1gγi

i (x)] + αI
β
r [(x – r)ϑ

∏n
i�=pgγi

i (x)]αIλ
r [

∏n
i=1gγi

i (x)]

≥ 1, (15)

where β ,λ ∈C, α ∈ (0, 1], �(β) > 0, and �(λ) > 0.

Corollary 4 Let (gi)i=1,2,3,...,n be n positive continuous and decreasing on [r, s]. Let r < x ≤ s,
ϑ > 0, σ ≥ γp > 0 for any fixed p ∈ {1, 2, 3, . . . , n}. Then, for R-L fractional integral (5), we
have

I
β
r [

∏n
i�=pgγi

i gσ
p (x)]Iλ

r [(x – r)ϑ
∏n

i=1gγi
i (x)] + I

β
r [

∏n
i�=pgγi

i gσ
p (x)]Iλ

r [(x – r)ϑ
∏n

i=1gγi
i (x)]

Iλ
r [(x – r)ϑ

∏n
i�=pgγi

i (x)]Iβ
r [

∏n
i=1gγp

i (x)] + I
β
r [(x – r)ϑ

∏n
i�=pgγi

i (x)]Iλ
r [

∏n
i=1gγi

i (x)]

≥ 1, (16)

where β ,λ ∈C, �(β) > 0, and �(λ) > 0.

Remark 3 Applying Theorem 2 for β = λ, we get Theorem 1. Again, the inequality will
reverse if (gi)i=1,2,3,...,n are increasing functions on the interval [r, s]. If we let α = 1, μ = 0,
then Theorem 1 will lead to Theorem 3.4 [8]. Moreover, setting μ = 0, α = β = λ = n = 1,
x = s, then again Theorem 1 reduces to the well-known Theorem 3 [15].

Theorem 3 Let (gi)i=1,2,3,...,n and h be positive continuous on the interval [r, s] such that h is
increasing and (gi)i=1,2,3,...,n are decreasing functions on [r, s]. Let r < x ≤ s, ϑ > 0, σ ≥ γp > 0
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for any fixed p ∈ {1, 2, 3, . . . , n}. Then, for generalized fractional conformable integral (1),
we have

μ
αI

β
r [

∏n
i�=p gγi

i gσ
p (x)]μαI

β
r [hϑ (x)

∏n
i=1 gγi

i (x)]
μ
αI

β
r [hϑ (x)

∏n
i�=p gγi

i gσ
p (x)]μαIβ

r [
∏n

i=1 gγi
i (x)]

≥ 1, (17)

where β ∈C, α ∈ (0, 1], μ ∈R, α + μ �= 0, and �(β) > 0.

Proof Under the conditions stated in Theorem 3, we can write

(
hϑ (ρ) – hϑ (t)

)(
gσ–γp

p (t) – gσ–γp
p (ρ)

) ≥ 0, (18)

where r < x ≤ s, ϑ > 0, σ ≥ γp > 0, t,ρ ∈ [r, x] and for any fixed p ∈ {1, 2, 3, . . . , n}.
Define a function

μ
αI

β
r (x,ρ, t) =

1
Γ (β)

(
xα+μ – tα+μ

α + μ

)β–1

×
∏n

i=1 gγi
i (t)

t1–α–μ

(
hϑ (ρ) – hϑ (t)

)(
gσ–γp

p (t) – gσ–γp
p (ρ)

)
. (19)

We observe that the above function satisfies all the assumptions stated in Theorem 3, and
hence the function μ

αI
β
r (x,ρ, t) is positive for all t ∈ (r, x) (x > r). Therefore, integrating

both sides of (19) with respect to t over (r, x), we have

0 ≤
∫ x

r

μ
αI

β
r (x,ρ, t) dt

=
1

Γ (β)

∫ x

r

(
xα+μ – tα+μ

α + μ

)β–1

×
n∏

i=1

gγi
i (t)

(
hϑ (ρ) – hϑ (t)

)(
gσ–γp

p (t) – gσ–γp
p (ρ)

) dt
t1–α–μ

=

[
h(ρ)ϑμ

αI
β
r

n∏
i�=p

gγi
i gσ

p (x)

]
+ gσ–γp

p (ρ)μαI
β
r

[
hϑ (x)

n∏
i=1

gγi
i (x)

]

– hϑ (ρ)gσ–γp
p (ρ)

[
μ
αI

β
r

n∏
i=1

gγi
i (x)

]
– μ

αI
β
r

[
hϑ (x)

n∏
i=1

gγi
i (x)

]
. (20)

Multiplying (20) by 1
Γ (β) ( xα+μ–ρα+μ

α+μ
)β–1

∏n
i=1 gγi

i (ρ)
ρ1–α–μ and integrating the resultant identity with

respect to ρ over (r, x), we have

0 ≤
[

μ
αI

β
r

n∏
i�=p

gγi
i gσ

p (x)

]
μ
αI

β
r

[
hϑ (x)

n∏
i=1

gγi
i (x)

]

– μ
αI

β
r

[
hϑ (x)

n∏
i�=p

gγi
i gσ

p (x)

][
μ
αI

β
r

n∏
i=1

gγi
i (x)

]
,

which completes the desired inequality (17) of Theorem 3. �
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Corollary 5 Let (gi)i=1,2,3,...,n and h be positive continuous on [r, s] such that h is increasing
and (gi)i=1,2,3,...,n are decreasing functions on the interval [r, s]. Let r < x ≤ s, ϑ > 0, σ ≥ γp > 0
for any fixed p ∈ {1, 2, 3, . . . , n}. Then, for R-L type fractional conformable integral (3), we
have

αI
β
r [

∏n
i�=p gγi

i gσ
p (x)]αIβ

r [hϑ (x)
∏n

i=1 gγi
i (x)]

αI
β
r [hϑ (x)

∏n
i�=p gγi

i gσ
p (x)]αIβ

r [
∏n

i=1 gγi
i (x)]

≥ 1, (21)

where β ∈C, α ∈ (0, 1], and �(β) > 0.

Corollary 6 Let (gi)i=1,2,3,...,n and h be positive continuous on [r, s] such that h is increasing
and (gi)i=1,2,3,...,n are decreasing functions on the interval [r, s]. Let r < x ≤ s, ϑ > 0, σ ≥ γp > 0
for any fixed p ∈ {1, 2, 3, . . . , n}. Then, for R-L fractional integral (5), we have

I
β
r [

∏n
i�=p gγi

i gσ
p (x)]Iβ

r [hϑ (x)
∏n

i=1 gγi
i (x)]

I
β
r [hϑ (x)

∏n
i�=p gγi

i gσ
p (x)]Iβ

r [
∏n

i=1 gγi
i (x)]

≥ 1, (22)

where β ∈C and �(β) > 0.

Theorem 4 Let (gi)i=1,2,3,...,n and h be positive continuous functions on [r, s] such that h is
increasing and (gi)i=1,2,3,...,n are decreasing functions on the interval [r, s]. Let r < x ≤ s, ϑ > 0,
σ ≥ γp > 0 for any fixed p ∈ {1, 2, 3, . . . , n}. Then, for generalized fractional conformable
integral (1), we have

μ
αI

β
r [

∏n
i�=pgγi

i gσ
p (x)]μαIλ

r [hϑ (x)
∏n

i=1gγi
i (x)] + μ

αI
λ
r [

∏n
i�=pgγi

i gσ
p (x)]μαI

β
r [hϑ (x)

∏n
i=1gγi

i (x)]
μ
αI

β
r [hϑ (x)

∏n
i�=pgγi

i gσ
p (x)]μαIλ

r [
∏n

i=1gγi
i (x)] + μ

αI
λ
r [hϑ (x)

∏n
i�=pgγi

i gσ
p (x)]μαIβ

r [
∏n

i=1 gγi
i (x)]

≥ 1, (23)

where β ,λ ∈C, α ∈ (0, 1], μ ∈R, α + μ �= 0, �(β) > 0, and �(λ) > 0.

Proof Multiplying (20) by 1
Γ (λ) ( xα+μ–ρα+μ

α+μ
)λ–1

∏n
i=1 gγi

i (ρ)
ρ1–α–μ then integrating with respect to ρ

over (r, x), we have

0 ≤
[

μ
αI

β
r

n∏
i�=p

gγi
i gσ

p (x)

]
μ
αI

λ
r

[
hϑ (x)

n∏
i=1

gγi
i (x)

]

+

[
μ
αI

λ
r

n∏
i�=p

gγi
i gσ

p (x)

]
μ
αI

β
r

[
hϑ (x)

n∏
i=1

gγi
i (x)

]

– μ
αI

β
r

[
hϑ (x)

n∏
i�=p

gγi
i gσ

p (x)

][
μ
αI

λ
r

n∏
i=1

gγi
i (x)

]

– μ
αI

λ
r

[
hϑ (x)

n∏
i�=p

gγi
i gσ

p (x)

][
μ
αI

β
r

n∏
i=1

gγi
i (x)

]
.

After simplification, we get the desired result. �
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Remark 4 Applying Theorem 4 for β = λ, we get Theorem 3.

Corollary 7 Let (gi)i=1,2,3,...,n and h be positive continuous on [r, s] such that h is increasing
and (gi)i=1,2,3,...,n are decreasing functions on the interval [r, s]. Let r < x ≤ s, ϑ > 0, σ ≥ γp > 0
for any fixed p ∈ {1, 2, 3, . . . , n}. Then, for R-L type fractional conformable integral (3), we
have

αI
β
r [

∏n
i�=pgγi

i gσ
p (x)]αIλ

r [hϑ (x)
∏n

i=1gγi
i (x)] + αI

λ
r [

∏n
i�=pgγi

i gσ
p (x)]αIβ

r [hϑ (x)
∏n

i=1gγi
i (x)]

αI
β
r [hϑ (x)

∏n
i�=pgγi

i gσ
p (x)]αIλ

r [
∏n

i=1gγi
i (x)] + αI

λ
r [hϑ (x)

∏n
i�=pgγi

i gσ
p (x)]αIβ

r [
∏n

i=1gγi
i (x)]

≥ 1, (24)

where β ,λ ∈C, α ∈ (0, 1], �(β) > 0, and �(λ) > 0.

Corollary 8 Let (gi)i=1,2,3,...,n and h be positive continuous on [r, s] such that h is increasing
and (gi)i=1,2,3,...,n are decreasing on the interval [r, s]. Let r < x ≤ s, ϑ > 0, σ ≥ γp > 0 for any
fixed p ∈ {1, 2, 3, . . . , n}. Then, for R-L fractional integral (5), we have

I
β
r [

∏n
i�=pgγi

i gσ
p (x)]Iλ

r [hϑ (x)
∏n

i=1 gγi
i (x)] + Iλ

r [
∏n

i�=pgγi
i gσ

p (x)]Iβ
r [hϑ (x)

∏n
i=1gγi

i (x)]

I
β
r [hϑ (x)

∏n
i�=pgγi

i gσ
p (x)]Iλ

r [
∏n

i=1gγi
i (x)] + Iλ

r [hϑ (x)
∏n

i�=pgγi
i gσ

p (x)]Iβ
r [

∏n
i=1gγi

i (x)]

≥ 1, (25)

where β ,λ ∈C, �(β) > 0, and �(λ) > 0.

Theorem 5 Let (gi)i=1,2,3,...,n and h be positive continuous on [r, s], and let for any fixed
p ∈ {1, 2, 3, . . . , n},

(
gϑ

p (t)hϑ (ρ) – gϑ
p (ρ)hϑ (t)

)(
gσ–γp

p (t) – gσ–γp
p (ρ)

) ≥ 0,

r < x ≤ s, ϑ > 0, σ ≥ γp > 0, then we have

μ
αI

β
r [

∏n
i�=pgγi

i gσ+ϑ
p (x)]μαI

β
r [hϑ (x)

∏n
i=1gγi

i (x)]
μ
αI

β
r [hϑ (x)

∏n
i�=pgγi

i gσ
p (x)]μαIβ

r [gϑ
p
∏n

i=1gγi
i (x)]

≥ 1, (26)

where β ∈C, α ∈ (0, 1], μ ∈R, α + μ �= 0, and �(β) > 0.

Proof The proof of Theorem 5 is similar to the proof of Theorem 3 if we replace hϑ (ρ) –
hϑ (t) by (gϑ

p (t)hϑ (ρ) – gϑ
p (ρ)hϑ (t)). �

Theorem 6 Let (gi)i=1,2,3,...,n and h be positive continuous functions on [r, s], and let for any
fixed p ∈ {1, 2, 3, . . . , n},

(
gϑ

p (t)hϑ (ρ) – gϑ
p (ρ)hϑ (t)

)(
gσ–γp

p (t) – gσ–γp
p (ρ)

) ≥ 0,
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r < x ≤ s, ϑ > 0, σ ≥ γp > 0, then we have

(
μ
αI

β
r

[ n∏
i�=p

gγi
i gσ+ϑ

p (x)

]
μ
αI

λ
r

[
hϑ (x)

n∏
i=1

gγi
i (x)

]

+ μ
αI

λ
r

[ n∏
i�=p

gγi
i gσ+ϑ

p (x)

]
μ
αI

β
r

[
hϑ (x)

n∏
i=1

gγi
i (x)

])

/(
μ
αI

β
r

[
hϑ (x)

n∏
i�=p

gγi
i gσ+ϑ

p (x)

]
μ
αI

λ
r

[
gϑ

p

n∏
i=1

gγi
i (x)

]

+ μ
αI

λ
r

[
hϑ (x)

n∏
i�=p

gγi
i gσ+ϑ

p (x)

]
μ
αI

β
r

[
gϑ

p

n∏
i=1

gγi
i (x)

])

≥ 1, (27)

where β ,λ ∈C, α ∈ (0, 1], μ ∈R, α + μ �= 0, �(β) > 0, and �(λ) > 0.

Proof The proof of Theorem 6 runs parallel as to the proof of Theorem 4 if we replace
hϑ (ρ) – hϑ (t) by (gϑ

p (t)hϑ (ρ) – gϑ
p (ρ)hϑ (t)). �

Remark 5 In a similar way, we can get the inequalities for the generalized right FCIO (2)
and special cases for integrals (4) and (6).
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