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Abstract
We establish new quantum Hermite–Hadamard and midpoint types inequalities via a
parameter μ ∈ [0, 1] for a function F whose |αDqF|u is η-quasiconvex on [α,β] with
u ≥ 1. Results obtained in this paper generalize, sharpen, and extend some results in
the literature. For example, see (Noor et al. in Appl. Math. Comput. 251:675–679, 2015;
Alp et al. in J. King Saud Univ., Sci. 30:193–203, 2018) and (Kunt et al. in Rev. R. Acad.
Cienc. Exactas Fís. Nat., Ser. A Mat. 112:969–992, 2018). By choosing different values of
μ, loads of novel estimates can be deduced. We also present some illustrative
examples to show how some consequences of our results may be applied to derive
more quantum inequalities.
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1 Introduction
Quantum calculus is generally described as the ordinary calculus without limits. The q-
calculus and h-calculus are the main branches of the quantum calculus. In this article, we
shall discuss within the framework of the q-calculus. Quantum calculus has been found
to be useful in many areas of mathematics such as orthogonal polynomials, basic hyper-
geometric functions, combinatorics, the calculus of variations, mechanics, and the theory
of relativity. Analogues of many results in the classical calculus have been established in
the q-calculus sense. We start by presenting some of the recently published results in this
direction. But before that, the following definitions are needed in the sequel:

A function F : [α,β] ⊂R→ R is termed quasiconvex if, for all x, y ∈ [α,β] and τ ∈ [0, 1],
we have

F
(
τx + (1 – τ )y

) ≤ max
{

F(x), F(y)
}

.

All convex functions are also quasiconvex, but not all quasiconvex functions are convex, so
quasiconvexity is a generalization of convexity. Quasiconvex functions have applications
in mathematical analysis, in mathematical optimization, in game theory, and economics.
In 2016, the concept of quasiconvexity was generalized in the following way.
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Definition 1 ([6]) A function F : [α,β] →R is called η-quasiconvex on [α,β] with respect
to η : R×R→R if

F
(
τx + (1 – τ )y

) ≤ max
{

F(y), F(y) + η
(
F(x), F(y)

)}

for all x, y ∈ [α,β] and τ ∈ [0, 1].

In the field of mathematical analysis, many estimates have been established via this gen-
eralized convexity and quasiconvexity. For instance, estimates of the Hermite–Hadamard,
trapezoid, midpoint, Simpson types have all been obtained for this class of functions. We
invite the interested reader to see [3, 5, 7, 11, 18].

Embedded in the proof of their main results, Noor et al. [14], Latif et al. [13], and Alp et
al. [2] recently established the following quantum inequalities for the class of quasiconvex
functions.

Theorem 2 ([14]) Let F : [α,β] → R be a q-differentiable function on (α,β) with αDqF
continuous on [α,β] where 0 < q < 1. If |αDqF|u is quasiconvex on [α,β] for u ≥ 1, then the
following inequality holds:

∣∣
∣∣

1
β – α

∫ β

α

F(r) αdqr –
qF(α) + F(β)

1 + q

∣∣
∣∣

≤ (β – α)
2q

(1 + q)3

[
max

{∣∣
αDqF(α)

∣∣u,
∣∣
αDqF(β)

∣∣u}] 1
u . (1)

Theorem 3 ([13]) Let F : [α,β] → R be a q-differentiable function on (α,β) with αDqF
continuous on [α,β] where 0 < q < 1. If |αDqF|u is quasiconvex on [α,β] for u > 1 with
1
u + 1

v = 1, then the following inequality holds:

∣∣∣
∣

1
β – α

∫ β

α

F(r) αdqr –
qF(α) + F(β)

1 + q

∣∣∣
∣

≤ q(b – a)
1 + q

[∫ 1

0

∣∣1 – (1 + q)τ
∣∣v

0dqτ

] 1
v [

max
{∣∣

αDqF(α)
∣∣u,

∣∣
αDqF(β)

∣∣u}] 1
u .

Theorem 4 ([2, 12]) Let F : [α,β] → R be a q-differentiable function on (α,β) with αDqF
continuous on [α,β] where 0 < q < 1. If |αDqF|u is quasiconvex on [α,β] for u ≥ 1, then the
following q-midpoint type inequality holds:

∣∣
∣∣F

(
qα + β

1 + q

)
–

1
β – α

∫ β

α

F(r) αdqr
∣∣
∣∣

≤ (β – α)
2q

(1 + q)3

[
max

{∣∣
αDqF(α)

∣∣u,
∣∣
αDqF(β)

∣∣u}] 1
u .

Theorem 5 ([2, 12]) Let F : [α,β] → R be a q-differentiable function on (α,β) with αDqF
continuous on [α,β] where 0 < q < 1. If |αDqF|u is quasiconvex on [α,β] for u > 1 with



Nwaeze and Tameru Advances in Difference Equations        (2019) 2019:425 Page 3 of 12

1
u + 1

v = 1, then the following q-midpoint type inequality holds:

∣∣
∣∣F

(
qα + β

1 + q

)
–

1
β – α

∫ β

α

F(r) αdqr
∣∣
∣∣

≤ q(β – α)
[
max

{∣∣
αDqF(α)

∣
∣u,

∣
∣
αDqF(β)

∣
∣u}] 1

u

×
[(

1
(1 + q)v+1

1 – q
1 – qv+1

) 1
v
(

1
1 + q

) 1
u

+
(∫ 1

1
1+q

(
1
q

– τ

)v

0dqr
) 1

v
(

q
1 + q

) 1
v
]

.

The goal of this article is to extend Theorems 2–5 to a more general class of functions.
We do this by means of a parameter μ ∈ [0, 1] and obtain results for a function F whose
|αDqF|u is η-quasiconvex on [α,β] for u ≥ 1. Our first result sharpens Theorem 2 (see
Remark 17); whereas Theorems 3–5 are special cases of our theorems (see Remarks 19,
21, and 23). In addition, we apply our results to some special means to get more results in
this direction.

This paper is structured as follows: Sect. 2 contains a quick overview of the quantum cal-
culus. The main results are then framed and justified in Sect. 3. Some illustrative examples
are then presented in Sect. 4.

2 Preliminaries
In this section, we present some quick overview of the theory of quantum calculus. For
an in-depth study of this subject, we invite the interested reader to the book [8]. We start
with the following basic definitions.

Definition 6 ([21]) Suppose that F : [α,β] ⊂ R → R is a continuous function and z ∈
[α,β]. Then the expression

αDqF(z) =
F(z) – F(qz + (1 – q)α)

(1 – q)(z – α)
, z �= α, αDqF(α) = lim

z→α
αDqF(z) (2)

is called the q-derivative on [α,β] of the function at z.

We say that F is q-differentiable on [α,β] provided αDqF(z) exists for all z ∈ [α,β].

Definition 7 ([21]) Let F : [α,β] → R be a continuous function. Then the q-integral on
[α,β] is defined as

∫ z

α

F(r) αdqr = (1 – q)(z – α)
∞∑

k=0

qkF
(
qkz +

(
1 – qk)α

)
(3)

for z ∈ [α,β]. Moreover, if c ∈ (α, z), then the q-integral on [α,β] is defined as

∫ z

c
F(r) αdqr =

∫ z

α

F(r) αdqr –
∫ c

α

F(r) αdqr. (4)

Remark 8 In view of Definitions 6 and 7, we make the following observations:
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1. By taking α = 0, the expression in (2) reduces to the well-known q-derivative, DqF(z),
of the function F(z) defined by

DqF(z) =
F(z) – F(qz)

(1 – q)z
.

2. Also, if α = 0, then (3) amounts to the classical q-integral of a function F : [0,∞) →R

defined by

∫ z

0
F(r) 0dqr = (1 – q)z

∞∑

k=0

qkF
(
qkz

)
.

Analogues of some known results in the continuous calculus sense are also given in what
follows.

Theorem 9 ([4]) Let F , G : [α,β] → R be two continuous functions and suppose F(r) ≤
G(r) for all r ∈ [α,β]. Then

∫ z

α

F(r) αdqr ≤
∫ z

α

G(r) αdqr.

Theorem 10 ([21]) Let F : [α,β] →R be a continuous function. Then

αDq

∫ z

α

F(r) αdqr = F(z);

∫ z

c
αDqF(r) αdqr = F(z) – F(c), for c ∈ (α, z).

Theorem 11 ([21]) Let F , G : [α,β] → R be continuous functions and γ ∈ R. Then, for
z ∈ [α,β] and c ∈ (α, z), we have

∫ z

α

[
F(r) + G(r)

]
αdqr =

∫ z

α

F(r) αdqr +
∫ z

α

G(r) αdqr;

∫ z

α

γ F(r) αdqr = γ

∫ z

α

F(r) αdqr;

∫ z

c
F(r)αDqG(r) αdqr = F(z)G(z) – F(c)G(c) –

∫ z

c
G

(
qr + (1 – q)α

)
αDqF(r) αdqr.

3 Main results
The succeeding lemmas will be needed in the proof of our theorems.

Lemma 12 ([22]) Let F : [α,β] →R be a continuous and q-differentiable function on (α,β)
with 0 < q < 1. If αDqF is integrable on [α,β], then for all μ ∈ [0, 1] the following identity
holds:

μF(β) + (1 – μ)F(α) –
1

β – α

∫ β

α

F(r) αdqr

= (β – α)
∫ 1

0
(qτ + μ – 1)αDqF

(
τβ + (1 – τ )α

)
0dqτ .



Nwaeze and Tameru Advances in Difference Equations        (2019) 2019:425 Page 5 of 12

Lemma 13 ([22]) Let F : [α,β] →R be a continuous and q-differentiable function on (α,β)
with 0 < q < 1. If αDqF is integrable on [α,β], then for all μ ∈ [0, 1] the following identity
holds:

F
(
μβ + (1 – μ)α

)
–

1
β – α

∫ β

α

F(r) αdqr

= (β – α)
[∫ μ

0
qταDqF

(
τβ + (1 – τ )α

)
0dqτ

+
∫ 1

μ

(qτ – 1)αDqF
(
τβ + (1 – τ )α

)
0dqτ

]
.

Lemma 14 ([22]) Let λ,μ ∈ [0, 1], k ∈ [0,∞), and 0 < q < 1. Then

∫ 1

0
τ k∣∣qτ – (1 – λμ)

∣∣ 0dqτ

=

⎧
⎨

⎩

(1–q)(1–λμ)
1–qk+1 – q(1–q)

1–qk+2 , λμ + q ≤ 1,
2(1–q)2(1–λμ)k+2

(1–qk+1)(1–qk+2) + q(1–q)
1–qk+2 – (1–q)(1–λμ)

1–qk+1 , λμ + q > 1.

Lemma 15 ([22]) Let λ,μ ∈ [0, 1], θ ∈ [1,∞), and 0 < q < 1. Then

Ωq(λ;μ; θ ) :=
∫ 1

0

∣∣qτ – (1 – λμ)
∣∣θ 0dqτ

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1 – q)
∑∞

k=0 qk(1 – λμ – qk+1)θ , 0 ≤ λμ ≤ 1 – q,

(1 – q)(1 – λμ)θ+1 ∑∞
k=0 qk–1(1 – qk)θ

+ (1 – q)
∑∞

k=0 qk(qk+1 – 1 + λμ)θ

– (1 – q)(1 – λμ)θ+1 ∑∞
k=0 qk–1(qk – 1)θ , 1 – q < λμ ≤ 1.

Let f be an η-quasiconvex function on [α,β]. We shall use the following notation:

Q
β
α(f ;η) := max

{
f (α), f (α) + η

(
f (β), f (α)

)}
.

Theorem 16 Let F : [α,β] →R be a q-differentiable function on (α,β) with αDqF contin-
uous on [α,β] where 0 < q < 1. If |αDqF|u is η-quasiconvex on [α,β] for u ≥ 1, then, for all
μ ∈ [0, 1], the following inequality holds:

∣
∣∣
∣μF(β) + (1 – μ)F(α) –

1
β – α

∫ β

α

F(r) αdqr
∣
∣∣
∣

≤
⎧
⎨

⎩

(1–μ–μq)(β–α)
1+q [Qβ

α(|αDqF|u;η)] 1
u , 0 ≤ μ ≤ 1 – q,

(2μ2+μ(q–3)+1)(β–α)
1+q [Qβ

α(|αDqF|u;η)] 1
u , 1 – q < μ ≤ 1.

(5)

Proof The η-quasiconvexity of |αDqF|u on [α,β] implies that, for all τ ∈ [0, 1], one has:

∣∣
αDqF

(
τβ + (1 – τ )α

)∣∣u

≤ max
{∣∣

αDqF(α)
∣∣u,

∣∣
αDqF(α)

∣∣u + η
(∣∣

αDqF(β)
∣∣u,

∣∣
αDqF(α)

∣∣u)}

=: Qβ
α

(|αDqF|u;η
)
. (6)
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Taking the absolute values of both sides of Lemma 12 and then using (6) together with
Hölder’s inequality gives

∣
∣∣
∣μF(β) + (1 – μ)F(α) –

1
β – α

∫ β

α

F(r) αdqr
∣
∣∣
∣

≤ (β – α)
∫ 1

0
|qτ + μ – 1|∣∣αDqF

(
τβ + (1 – τ )α

)∣∣ 0dqτ

= (β – α)
∫ 1

0
|qτ + μ – 1| u–1

u |qτ + μ – 1| 1
u
∣∣
αDqF

(
τβ + (1 – τ )α

)∣∣ 0dqτ

≤ (β – α)
[(∫ 1

0
|qτ + μ – 1| 0dqτ

)1– 1
u

×
(∫ 1

0
|qτ + μ – 1|∣∣αDqF

(
τβ + (1 – τ )α

)∣∣u
0dqτ

) 1
u
]

≤ (β – α)
[(∫ 1

0
|qτ + μ – 1| 0dqτ

)1– 1
u

×
(∫ 1

0
|qτ + μ – 1| 0dqτ

) 1
u (
Q

β
α

(|αDqF|u;η
)) 1

u

]

= (β – α)
∫ 1

0
|qτ + μ – 1| 0dqτ

(
Q

β
α

(|αDqF|u;η
)) 1

u .

Now, putting k = 0 and λ = 1 in Lemma 14, we get

Ωq(1;μ; 1) :=
∫ 1

0
|qτ + μ – 1| 0dqτ =

⎧
⎨

⎩

1–μ–μq
1+q , 0 ≤ μ ≤ 1 – q,

2μ2+μ(q–3)+1
1+q , 1 – q < μ ≤ 1.

Hence, that completes the proof. �

Remark 17 Let η(x, y) = x – y and μ = 1
1+q . Then 1

1+q > 1 – q and (5) boils down to

∣∣
∣∣
F(β) + qF(α)

1 + q
–

1
β – α

∫ β

α

F(r) αdqr
∣∣
∣∣

≤ (β – α)
2q2

(1 + q)3

[
max

{∣∣
αDqF(α)

∣
∣u,

∣
∣
αDqF(β)

∣
∣u}] 1

u . (7)

Clearly, 2q2 < 2q. Therefore, the new inequality (7) sharpens (1) and thus, provides a better
estimate. If, in addition, we let q → 1–, we get from (7)

∣∣
∣∣
F(β) + F(α)

2
–

1
β – α

∫ β

α

F(r) dr
∣∣
∣∣ ≤ β – α

4
[
max

{∣∣F ′(α)
∣
∣u,

∣
∣F ′(β)

∣
∣u}] 1

u . (8)

Inequality (8) is already known in the literature. See [1, Theorem 6].

Theorem 18 Let F : [α,β] →R be a q-differentiable function on (α,β) with αDqF contin-
uous on [α,β] where 0 < q < 1. If |αDqF|u is η-quasiconvex on [α,β] for u > 1 with 1

u + 1
v = 1,
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then for all μ ∈ [0, 1] the following inequality holds:

∣
∣∣∣μF(β) + (1 – μ)F(α) –

1
β – α

∫ β

α

F(r) αdqr
∣
∣∣∣

≤ (β – α)
[
Ωq(1;μ; v)

] 1
v
(
Q

β
α

(|αDqF|u;η
)) 1

u , (9)

where Ωq(1;μ; v) is defined in Lemma 15.

Proof Using Lemma 12, (6), an Hölder’s inequality with the conjugate pair (u, v), we get

∣∣∣
∣μF(β) + (1 – μ)F(α) –

1
β – α

∫ β

α

F(r) αdqr
∣∣∣
∣

≤ (β – α)
∫ 1

0
|qτ + μ – 1|∣∣αDqF

(
τβ + (1 – τ )α

)∣∣ 0dqτ

≤ (β – α)
[(∫ 1

0
|qτ + μ – 1|v 0dqτ

) 1
v
(∫ 1

0

∣∣
αDqF

(
τβ + (1 – τ )α

)∣∣u
0dqτ

) 1
u
]

≤ (β – α)
(∫ 1

0
|qτ + μ – 1|v 0dqτ

) 1
v (
Q

β
α

(|αDqF|u;η
)) 1

u

= (β – α)
[
Ωq(1;μ; v)

] 1
v
(
Q

β
α

(|αDqF|u;η
)) 1

u .

This completes the proof. �

Remark 19 If we take η(x, y) = x – y and μ = 1
1+q in Theorem 18, then we regain Theorem 3.

By taking μ = 1
2 and η(x, y) = x – y in (9), we deduce the following:

∣∣
∣∣
F(β) + F(α)

2
–

1
β – α

∫ β

α

F(r) αdqr
∣∣
∣∣

≤ (β – α)
[
Ωq

(
1;

1
2

; v
)] 1

v [
max

{∣∣
αDqF(α)

∣∣u,
∣∣
αDqF(β)

∣∣u}] 1
u .

Next, we present a generalization of Theorems 4 and 5 involving a parameter.

Theorem 20 Let F : [α,β] →R be a q-differentiable function on (α,β) with αDqF contin-
uous on [α,β] where 0 < q < 1. If |αDqF|u is η-quasiconvex on [α,β] for u ≥ 1, then for all
μ ∈ [0, 1] the following inequality holds:

∣
∣∣
∣F

(
μβ + (1 – μ)α

)
–

1
β – α

∫ β

α

F(r) αdqr
∣
∣∣
∣

≤ (β – α)(2qμ2 – (1 + q)μ + 1)
1 + q

[
Q

β
α

(|αDqF|u;η
)] 1

u . (10)
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Proof We get, by taking the absolute values of both sides of Lemma 13 and then using
Hölder’s inequality and the η-quasiconvexity of |αDqF|u on [α,β], the following estimates:

∣
∣∣
∣F

(
μβ + (1 – μ)α

)
–

1
β – α

∫ β

α

F(r) αdqr
∣
∣∣
∣

≤ (β – α)
[∫ μ

0
qτ

∣∣
αDqF

(
τβ + (1 – τ )α

)∣∣ 0dqτ

+
∫ 1

μ

|qτ – 1|∣∣αDqF
(
τβ + (1 – τ )α

)∣∣ 0dqτ

]

≤ (β – α)
[

q
(∫ μ

0
τ 0dqτ

)1– 1
u
(∫ μ

0
τ
∣∣
αDqF

(
τβ + (1 – τ )α

)∣∣u
0dqτ

) 1
u

+
(∫ 1

μ

|qτ – 1| 0dqτ

)1– 1
u
(∫ 1

μ

|qτ – 1|∣∣αDqF
(
τβ + (1 – τ )α

)∣∣u
0dqτ

) 1
u
]

≤ (β – α)
[

q
(∫ μ

0
τ 0dqτ

)1– 1
u
(∫ μ

0
τ 0dqτ

) 1
u

+
(∫ 1

μ

|qτ – 1| 0dqτ

)1– 1
u
(∫ 1

μ

|qτ – 1| 0dqτ

) 1
u
]
[
Q

β
α

(|αDqF|u;η
)] 1

u

≤ (β – α)
[

q
∫ μ

0
τ 0dqτ +

∫ 1

μ

|qτ – 1| 0dqτ

]
[
Q

β
α

(|αDqF|u;η
)] 1

u . (11)

Now, using Definition 3, we get that

∫ μ

0
τ p

0dqτ = (1 – q)
∞∑

k=0

μp+1q(p+1)k =
μp+1(1 – q)

1 – qp+1 (12)

for any p ≥ 0. So, for p = 1,

∫ μ

0
τ 0dqτ =

μ2

1 + q
. (13)

Also, using (4) and the fact that qτ < 1, we obtain that

∫ 1

μ

|qτ – 1| 0dqτ =
∫ 1

μ

(1 – qτ ) 0dqτ

=
∫ 1

0
(1 – qτ ) 0dqτ –

∫ μ

0
(1 – qτ ) 0dqτ

=
∫ 1

0
1 0dqτ – q

∫ 1

0
τ 0dqτ –

∫ μ

0
1 0dqτ + q

∫ μ

0
τ 0dqτ

= 1 –
q

q + 1
– μ +

qμ2

1 + q

=
qμ2 – (1 + q)μ + 1

1 + q
. (14)

We get the intended result by combining (11), (13), and (14). �
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Remark 21 If we take η(x, y) = x – y and μ = 1
1+q in Theorem 20, then we recover Theo-

rem 4.

Substituting μ = 0, μ = 1, and μ = 1
2 with η(x, y) = x – y in (10), we get, respectively, the

following:

∣
∣∣
∣F(α) –

1
β – α

∫ β

α

F(r) αdqr
∣
∣∣
∣ ≤ β – α

1 + q
[
max

{∣∣
αDqF(α)

∣∣u,
∣∣
αDqF(β)

∣∣u}] 1
u ,

∣
∣∣
∣F(β) –

1
β – α

∫ β

α

F(r) αdqr
∣
∣∣
∣ ≤ q(β – α)

1 + q
[
max

{∣∣
αDqF(α)

∣∣u,
∣∣
αDqF(β)

∣∣u}] 1
u ,

and

∣∣
∣∣F

(
α + β

2

)
–

1
β – α

∫ β

α

F(r) αdqr
∣∣
∣∣ ≤ β – α

2(1 + q)
[
max

{∣∣
αDqF(α)

∣
∣u,

∣
∣
αDqF(β)

∣
∣u}] 1

u . (15)

Theorem 22 Let F : [α,β] →R be a q-differentiable function on (α,β) with αDqF contin-
uous on [α,β] where 0 < q < 1. If |αDqF|u is η-quasiconvex on [α,β] for u > 1 with 1

u + 1
v = 1,

then for all μ ∈ [0, 1] the following inequality holds:

∣
∣∣∣F

(
μβ + (1 – μ)α

)
–

1
β – α

∫ β

α

F(r) αdqr
∣
∣∣∣

≤ (β – α)
[

q
(

μv+1(1 – q)
1 – qv+1

) 1
v
μ

1
u +

(
Θq(v;μ)

) 1
v (1 – μ)

1
u

](
Q

β
α

(|αDqF|u;η
)) 1

u ,

where Θq(v;μ) =
∫ 1
μ

|qτ – 1|v 0dqτ .

Proof Applying, again, Lemma 13 and Hölder’s inequality, we obtain

∣
∣∣
∣F

(
μβ + (1 – μ)α

)
–

1
β – α

∫ β

α

F(r) αdqr
∣
∣∣
∣

≤ (β – α)
[

q
∫ μ

0
τ
∣
∣
αDqF

(
τβ + (1 – τ )α

)∣∣ 0dqτ

+
∫ 1

μ

|qτ – 1|∣∣αDqF
(
τβ + (1 – τ )α

)∣∣ 0dqτ

]

≤ (β – α)
[

q
(∫ μ

0
τ v

0dqτ

) 1
v
(∫ μ

0

∣∣
αDqF

(
τβ + (1 – τ )α

)∣∣u
0dqτ

) 1
u

+
(∫ 1

μ

|qτ – 1|v 0dqτ

) 1
v
(∫ 1

μ

∣
∣
αDqF

(
τβ + (1 – τ )α

)∣∣u
0dqτ

) 1
u
]

≤ (β – α)
[

q
(∫ μ

0
τ v

0dqτ

) 1
v
(
Q

β
α

(|αDqF|u;η
)∫ μ

0
1 0dqτ

) 1
u

+
(∫ 1

μ

|qτ – 1|v 0dqτ

) 1
v
(
Q

β
α

(|αDqF|u;η
) ∫ 1

μ

1 0dqτ

) 1
u
]

. (16)
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From relation (4), we deduce that

∫ 1

μ

1 0dqτ = 1 – μ. (17)

The desired result is obtained by substituting (12) and (17) into (16). �

Remark 23 Theorem 5 is recaptured by putting η(x, y) = x – y and μ = 1
1+q in Theorem 22.

If μ = 0 and μ = 1 with η(x, y) = x – y in Theorem 22, then we get, respectively, the
following inequalities:

∣∣
∣∣F(α) –

1
β – α

∫ β

α

F(r) αdqr
∣∣
∣∣

≤ (β – α)

[

(1 – q)
∞∑

k=0

qk(1 – qk+1)v
] 1

v [
max

{∣∣
αDqF(α)

∣
∣u,

∣
∣
αDqF(β)

∣
∣u}] 1

u

and
∣
∣∣∣F(β) –

1
β – α

∫ β

α

F(r) αdqr
∣
∣∣∣

≤ q(β – α)
(

1 – q
1 – qv+1

) 1
v [

max
{∣∣

αDqF(α)
∣
∣u,

∣
∣
αDqF(β)

∣
∣u}] 1

u .

4 Application
The following special means of real numbers will be used here.

1. Arithmetic mean:

A(u, v) =
u + v

2
.

2. Generalized logarithmic mean:

Lm(u, v) =
[

vm+1 – um+1

(m + 1)(v – u)

] 1
m

, m ∈N, u �= v.

Example 24 Let 0 < α < β and 0 < q < 1. Then

∣∣
∣∣
β2 + qα2

1 + q
–

(1 + q)β2 + 2q2αβ + q(1 + q2)α2

(1 + q)(1 + q + q2)

∣∣
∣∣

≤ (β – α)
2q2

(1 + q)3 max
{

2α, (1 + q)β + (1 – q)α
}

. (18)

Proof Let F(x) = x2. Then, by the properties of the q-integral, we have

∫ β

α

F(r) αdqr =
∫ β

α

r2
αdqr

=
∫ β

α

(r – α + α)2
αdqr
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=
∫ β

α

(r – α)2
αdqr + 2α

∫ β

α

(r – α) αdqr + α2
∫ β

α

1 αdqr

=
(β – α)3

1 + q + q2 + 2α
(β – α)2

1 + q
+ α2(β – α)

=
(β – α)[(1 + q)β2 + 2q2αβ + q(1 + q2)α2]

(1 + q)(1 + q + q2)
.

Also, for x �= α,

αDqF(x) =
x2 – (qx + (1 – q)α)2

(1 – q)(x – α)

=
(1 + q)x2 – 2qαx – (1 – q)α2

x – α

= (1 + q)x + (1 – q)α.

For x = α, we have αDqF(α) = limx→α(αDqF(x)) = 2α. The function |αDqF(x)| is convex and
hence quasiconvex on [α,β]. The desired inequality is obtained by using (7) with u = 1. �

If we let q → 1– in (18), we obtain

∣∣A
(
α2,β2) – L2

2(α,β)
∣∣ ≤ β(β – α)

2
.

Example 25 Let 0 < α < β and 0 < q < 1. Then

∣∣
∣∣A

2(α,β) –
(1 + q)β2 + 2q2αβ + q(1 + q2)α2

(1 + q)(1 + q + q2)

∣∣
∣∣

≤ β – α

2(1 + q)
max

{
2α, (1 + q)β + (1 – q)α

}
. (19)

Proof In this case, we apply (15) to the function F(x) = x2 and proceed as in Example 24. �

If we let q → 1–, then (19) boils down to

∣∣A2(α,β) – L2
2(α,β)

∣∣ ≤ β(β – α)
2

.

5 Conclusion
By introducing a parameter μ ∈ [0, 1], we established some quantum inequalities by means
of the η-quasiconvexity. Our results sharpen, generalize, and extend some known results
as can be seen in Remarks 17, 19, 21, and 23. Some examples are also given to show how
new estimates can be obtained from our main results. We anticipate that these novel es-
timates will stimulate further investigation in this regard. Some recent results concerning
quasiconvexity and its generalization can be found in [9, 10, 15–20].
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