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1 Introduction

The usual Kaup—Boussinesq system which reads

Up = Upxyx + Z(MV)xy

Ve = Uy + Vy,

describes the motion of water wave, where u(x, t) is the height of the water surface above
a horizontal bottom and v(x, £) is the horizontal velocity. The solutions of the nonlinear
system have been studied from several aspects, and some interesting phenomena have
been discovered [1-6]. For example, Smirnov obtained its real finite-gap regular solution
[1], Borisov et al. studied its proliferation scheme [2], Kamchatnov et al. constructed the
asymptotic soliton train solutions [3], and so on.

In general, it is difficult to study the exact dynamical behavior for nonlinear evolution
problems. Therefore, some powerful methods, such as Ma and Lee’s transformed rational
function method [7], Liu’s canonical-like transformation method [8] and trial equation
method [9-14], Ma and Zhu’s multiple exp-function method [15], and other direct ex-
pansion methods [16], and so forth, have been proposed to solve such problems. On the
other hand, we can use the complete discrimination system for polynomial method to
classify exact solutions for some nonlinear differential equations [17-25]. These methods
have been extensively developed and applied to a lot of nonlinear problems [26—37]. Liu’s
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renormalization method and its applications can be found in [38—45]. Some new methods
and results on fractional differential equations can be seen in [46—57] and the references
therein.

In the paper, we will study a dual Kaup—Boussinesq system. By proposing a coupled trial
equation method and using symmetry reduction and a complete discrimination system
for polynomial, we obtain its exact solutions which describe the dynamical behavior of
the system. In particular, we find a cosine function solution which shows an important
periodic motion.

This paper is organized as follows. In Sect. 2, we propose a coupled trial equation
method. In Sect. 3, we give the reduction of the dual Kaup—Boussinesq system according
to the symmetry property and the proposed trial equation method. In Sect. 4, we give the
exact solutions by using the complete discrimination system for polynomial. In particular,
we get an interesting periodic cosine solution. The last section is a short conclusion.

2 Trial equation method for a coupled system
We propose a generalization of Liu’s trial equation method [9-14] to coupled differential
equations systems as follows. Consider the coupled system:

Nl(u’ V, Uty Vi, Uy, Vx1~~) 07 (1)

NZ(”: ViUt Vi Uy Vs -« ) 0. (2)

Under the traveling wave transformation u(x, t) = u(§), v(x,t) = v(§), where £ = x — ct, the
above system of equations becomes a coupled ordinary differential equations system

M (w,v,u,v,...) =0, (3)

My (u,v,u,v,...) =0. (4)

We take trial equations as follows:

u = H(u), (5)

V= G(M), (6)
or

vV =H(v), (7)

u=G(), (8)

where H and G are two unknown functions which need to be determined. Substituting
these trial equations into the coupled system, we solve H and G, and then integrate the
trial equation (5) or (7) to give the corresponding exact solutions such as

du
E-b=[ 7  v=Gu. )
(u)
If H is a polynomial, we will use the complete discrimination system for polynomial to
classify the exact solutions. In the next section, we give the application of the proposed

trial equation method to a dual Kaup—Boussinesq system.
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3 Symmetry and reduction
The considered new dual Kaup—Boussinesq (for simplicity, KB) system is taken as follows:

Unne + Utk + U2 + u® + 2uv), = 0,

(10)
Ve + (uv), = 0.
By taking the traveling wave transformation u = u(§), v = v(§), § = x — ct, we have
—ctt" + (uu” + () + u® +2uv) =0
(11)

—cv' + (uv) =0.
It is easy to see that the above equations are invariant under the translational transfor-

mation of £, so we can reduce the system. Substituting trial equations (5) and (6) into the
above system and integrating them yield

(u—c)H'H + H?> + u? + 2uv = ¢y,

(12)
v=Glu) = Z,
where ¢; and ¢, are two arbitrary constants. And then the above system becomes
, 5 o 2ucy
(u-cHH+H" +u”+ =c1. (13)
u-c
Furthermore, we take the following transformation:
H*=W, (14)
and get
2 2c —u? - 22
W)+ —2— W) = ZATE ), (15)
u-c u-c

This is a first order linear non-homogeneous differential equation whose general solution
is given by

2

¢ —ut-2u%
W(u) = e‘f%d”{/Z—l U=c ef%d"dbwca,}

u-—-=c¢

—dut+ Zeu® + (201 - 200)u? — 2cciu + ¢
= , (16)
(u—c)?
that is,
1.4 .2 3 2
—su*+ Scu’ + (2¢1 — 2¢o)u” — 2cciu + ¢
(M/)ZZHZ(M)Z 2 3 ( 1 2) 1 3’ (17)
(u—c)?

which is just our needed result. Rewrite it as the form of elementary integrals

\f €-e- | o) du , (18)
\/ (u* - —cu3 (4cy — 4ey)u?

—4dcciu + 2¢3)
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from which we can give exact solutions. In fact, we can further simplify it by taking

1
—u-—c 19
w=u-gc (19)
and hence
1 (w—%c)dw
+/ 5 -%0) = : (20)
2 V—(@* + po? + qo + 1)
where
7, 1, 8, 20 8
p=—=c" —4c; +4cy, q=—=c"——C ——cic+ =C,
9 9 27 3 3
(21)
20 9
r="—cic+ —cc® + 2
g et ge 3.

In the next section, we give exact solutions for the KB coupled system (10) according to
the above integral (20).

Remark 1 If we consider (#')? as kinetic energy and the right-hand side of (17) as negative
potential energy, then (17) gives a first integral, that is, conservation of energy.

4 Exact solutions
Denote F(w) = w* + pw? + qo + r. Then its complete discrimination system is given by [25]

Dl =4,
D2 = —}7,
D3 = -2p® + 8pr — 94, (22)

Dy = —p*q* +4p*r + 36pgPr — 32p*r* — Zg* + 6417,
E, =9¢% - 32pr.

According to the discrimination system [25], and considering the special form of integrand
in (20), we have the following four families of solutions.

Family 1 D, =0, D3 >0, D, > 0. Then we have
F() = (@-a)*(@-B)@-7y), (23)

where &, 8, y are real numbers, and 8 > y. When y <« < 8, we have

\/7(5 &) = ————arctan 4= ﬁu+__):+2arctan uts- ):,(24)
V(B - a)()/ ) Vy-ap-u-3 B-u-3

and when « > 8 and w > B8, or when o < y and w < y, we have

1 200 — y—o B-u-% u+ < —
+/-(E-&)= r-c 1 ’ + 2arctan 2 )Z (25)
2 \/(C(—ﬁ)()/—a) ap U5y 4 B-u—3
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Family 2 D, =0, D3 =0, D, >0, E; =0. Then we have
F(w) = (a)—a)s(a)—ﬂ), (26)

where «, § are real numbers. The solution is given by

1 20[ u+ E Y u+ ¢ _ Yy
+./=( - 3 2arctan | ————. 27
JOSE Y v .
Family 3 Dy >0, D3 >0, D; > 0. Then we have
F(w) = (0 - a1)(@ — a)(w - a3)(@ — ay), (28)

where o, @, a3, oy are real numbers, and 7 > «p > a3 > as. The solutions can be repre-
sented in terms of the first and second kinds of elliptic integrals. We can also give more

simple forms by taking the transformation

w1 = » (29)

where A = (a1 — a2) (1 — @3)(t; — @a). The corresponding integral becomes

1 dowy
oo
2(5 ) / w1y/~(w1 = B1)(@1 — Ba) (w1 — B3)

f (ory — )A 3da)1 (30)
w1y/~(@1 = B1) (@1 — Bo) (w1 — Bs)
where 8 = afj),l:ﬂz o P =o e
Family 4 D, <0, D;D3 > 0. Then we have
F(w)=(@-a)-B)((0-h)*+s}), (31)

where «, 8, /1, and s; are real numbers, and o > 8 >, s; > 0. The solutions can be repre-

sented in terms of the first and second kinds of elliptic integrals.

From Remark 1, we know that the above result gives the classification of all solutions of
integral (20).

Remark 2 Here we only write the expressions of #, by which v can be given from (4). For

simplicity, we omit v.

In particular, we find that there is an interesting periodic cosine function solution al-

though all the above solutions are implicit forms. Indeed, if we take the wave velocity to
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be a constant ¢ = 2«, we get the periodic solution

2 -
u=ﬂ—§+(%—ﬂ—y>cosz<i\/§)>, (32)

where £ =x — %‘"t. This is a periodic traveling wave with constant velocity.

In fact, we only need to take the first term to be zero in solution (24) or (25) or (27), and
then we have

i\/g(é —&0) =

by which we get the above periodic solution.

(33)

From solution (32), we know that the dual KB system shows an important periodic dy-

namical behavior.

5 Conclusion

A dual Kaup—Boussinesq system is solved by symmetry reduction and a coupled trial
equation method. The result includes four families of exact single traveling wave solu-
tions for this system. Among those, if we consider £ as the functions of u or v respectively,
the solutions are given by the explicit functions, and reversely, the solutions are repre-
sented by implicit functions. In particular, when the wave propagation velocity is taken as
a special constant, the KB system has a periodic cosine function solution. This solution
shows an important periodic dynamical behavior. In summary, according to these exact

solutions, a variety of evolution patterns for the coupled KB system are obtained.
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