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Abstract
In this paper, a stochastic SIRD model of Ebola with double saturated incidence rates
and vaccination is considered. Firstly, the existence and uniqueness of a global
positive solution are obtained. Secondly, by constructing suitable Lyapunov functions
and using Khasminskii’s theory, we show that the stochastic model has a unique
stationary distribution. Moreover, the extinction of the disease is also analyzed. Finally,
numerical simulations are carried out to portray the analytical results.

MSC: Primary 37H10; 60H10; secondary 92C60; 92D30

Keywords: Stochastic SIRD model; Ebola virus; Extinction; Stationary distribution

1 Introduction
Ebola virus is a potent virus which causes Ebola hemorrhagic fever in humans and pri-
mates. It is a very rare virus. After discovering its existence in southern Sudan and the
Ebola region of Congo in 1976, it attracted widespread attention in the medical commu-
nity. Ebola virus has a high mortality rate between 50 percent and 90 percent. It is mainly
transmitted by contacting with the blood, body fluids, and infected corpses of animals or
human. For the spread of Ebola virus, on the basis of models (see e.g. Refs. [1–6]), we di-
vide the total group into four categories: susceptible group S, infected group I , recovered
group R, and infected corpse group D. The infected corpse can spread disease through
contacting with the susceptible, and its infection rate is higher than that of an infected
individual.

Considering the above discussion, the deterministic SIRD epidemic model is formulated
as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS
dt = A – β1S(t)I(t)

1+α1I(t) – β2S(t)D(t)
1+α2D(t) – μS(t) – qS(t),

dI
dt = β1S(t)I(t)

1+α1I(t) – β2S(t)D(t)
1+α2D(t) – (ρ + μ + δ)I(t),

dR
dt = ρI(t) + qS(t) – μR(t),
dD
dt = (μ + δ)I(t) – γ D(t),

(1.1)

where A is a constant input rate, β1 and β2 represent the transmission coefficient. Func-
tions β1S(t)I(t)

1+α1I(t) and β2S(t)D(t)
1+α2D(t) represent two different types of saturated incidence rates. μ is
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the natural mortality rate of S, I , and R compartments, δ is mortality due to diseases, 1
γ

represents the average period of infectiousness after death in human corpses, and ρ is the
recovery rate. On the basis of biological significance, all parameter values are assumed to
be positive, and the quantity of infected corpse is less than the quantity of infected indi-
viduals, that is, I(t) > D(t), see [7].

Noticing that R has no influence on the transmission dynamics, we can exclude the third
equation. Therefore, we only need to study the following subsystem:

⎧
⎪⎪⎨

⎪⎪⎩

dS
dt = A – β1S(t)I(t)

1+α1I(t) – β2S(t)D(t)
1+α2D(t) – μS(t) – qS(t),

dI
dt = β1S(t)I(t)

1+α1I(t) – β2S(t)D(t)
1+α2D(t) – (ρ + μ + δ)I(t),

dD
dt = (μ + δ)I(t) – γ D(t).

(1.2)

Obviously, the feasible region of system (1.2) is R3
+. Referring to [8], we have the basic

production number of system (1.2), its expression is

�0 =
β1Aγ + β2A(μ + δ)
(μ + q)γ (ρ + μ + δ)

.

It is easy to draw two conclusions about system (1.2).

Lemma 1.1 If �0 < 1, the disease-free equilibrium E0 = ( A
μ+q , 0, 0) exists, and the E0 is glob-

ally asymptotically stable.

Lemma 1.2 If �0 > 1, the endemic equilibrium E∗ = (S∗, I∗, D∗) exists, and the E∗ is globally
asymptotically stable.

As mentioned above, we show that the epidemic model is depicted by deterministic
model. However, epidemic models are inevitably influenced by multifarious unpredictable
environmental noise types because of the actual situations. Owing to this reason, many
authors have studied epidemic models with stochastic perturbations (see e.g. Refs. [9–
18]). But as far as we know, the studies on the dynamics of the stochastic SIRD model of
Ebola seem to be rare. In this paper, we assume that stochastic perturbations are of the
white noise type which are directly proportional to S(t), I(t), D(t), influenced on the Ṡ(t),
İ(t), Ḋ(t) in system (1.2) respectively, then we build the following stochastic model:

⎧
⎪⎪⎨

⎪⎪⎩

dS(t) = (A – β1S(t)I(t)
1+α1I(t) – β2S(t)D(t)

1+α2D(t) – μS(t) – qS(t)) dt + σ1S(t) dB1(t),

dI(t) = ( β1S(t)I(t)
1+α1I(t) + β2S(t)D(t)

1+α2D(t) – (ρ + μ + δ)I(t)) dt + σ2I(t) dB2(t),

dD(t) = ((μ + δ)I(t) – γ D(t)) dt + σ3D(t) dB3(t),

(1.3)

where σi (i = 1, 2, 3) denotes the intensities of the white noises which satisfy nonnegativity.
Bi(t) (i = 1, 2, 3) is a standard Brownian motion that is defined on a complete probability
space (Ω , F, P) with a filtration {Ft}t∈R+ satisfying the usual conditions, that is, {Ft}t∈R+

is right continuous and F0 contains all P-null sets. Other parameters are the same as for
system (1.2).

Compared with model (1.2), model (1.3) has the advantage of introducing stochastic
perturbations, which makes the model closer to reality. Of course, the results of model
(1.3) are more refined.
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This paper is arranged as follows. In Sect. 2, we study the existence of an ergodic sta-
tionary distribution of stochastic system (1.3). In Sect. 3, we deduce the conditions for
extinction of the disease. Numerical simulations are given to support our theoretical re-
sults in Sect. 4. Finally, Sect. 5 presents some conclusions.

2 Stationary distribution of system (1.3)
In this section, we construct a suitable Lyapunov function to obtain the conditions of the
existence of a unique ergodic stationary distribution to system (1.3). Before this, we intro-
duce the following lemma.

Lemma 2.1 ([19]) The Markov process X(t) has a unique ergodic stationary distribution
π (·) if a bounded domain Dε ⊂ Rd with regular boundary Γ exists and

(H1) there is a constant M > 0 satisfying
∑d

i,j=1 aij(x)ξiξj ≥ M|ξ |2, x ∈ Dε , ξ ∈ Rd ;
(H2) there exists a nonnegative C2-function V such that LV is negative for any Rd \ Dε .

Then

P
{

lim
t→∞

1
T

∫ T

0
f
(
X(t)

)
dt =

∫

D
f (x)π (dx)

}

= 1

for all x ∈ D, where f (·) is an integrable function with respect to the measure π .

Theorem 2.1 For any initial value (S(0), I(0), D(0)) ∈ �3
+, there exists a unique positive

solution (S(t), I(t), D(t)) of system (1.3) for t ≥ 0, and the solution will remain in �3
+ with

probability one.

The proof of this theorem is standard and we omit it.

Theorem 2.2 If

�s
0 :=

β1

(μ + q + σ 2
1
2 )(ρ + μ + δ + σ 2

2
2 )

> 1,

then system (1.3) has a unique stationary distribution π (·), and the solution (S(t), I(t), D(t))
of system (1.3) is ergodic.

Proof The diffusion matrix of system (1.3) is

A =

⎛

⎜
⎝

σ 2
1 S2 0 0
0 σ 2

2 I2 0
0 0 σ 2

3 D2

⎞

⎟
⎠ .

Let M = min(S,I,D)∈Dσ
{σ 2

1 S2,σ 2
2 I2,σ 2

3 D2}, then we can get

3∑

i,j=1

aij(x)ξiξj = σ 2
1 S2ξ 2

1 + σ 2
2 I2ξ 2

2 + σ 2
3 D2ξ 2

3 ≥ M|ξ |2, (S, I, D) ∈ Dσ , ξ ∈ R3
+.

Therefore, condition (H1) in Lemma 2.1 is proven.
Next, the validity of condition (H2) in Lemma 2.1 will be verified.
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We define a C2-function V (S, I, D): R3 → R as follows:

V (S, I, D) = M
(

S +
(

1 +
α1

ρ + μ + δ
I
)

+ 2D – c1 ln S – c2 ln I
)

– ln S – ln D +
1

m + 1
(S + I + D)m+1

:= MV1 + V2 + V3 + V4, (2.1)

where M, c1, c2 will be determined later. m and δ are positive constants and satisfy the
following inequality:

ρ := δ –
m
2

(
σ 2

1 ∨ σ 2
2 ∨ σ 2

3
)

> 0, δ = min{μ + q,ρ,γ }.

Obviously,

lim
k→∞,(S,I,D)∈R3\Uk

V (S, I, D) = +∞,

herein, Uk = ( 1
k , k) × ( 1

k , k) × ( 1
k , k). Then, V (S, I, D) is a continuous function and has a

minimum point (S0, I0, D0) in the interior of R3
+. A nonnegative C2-function V (S, I, D):

R3 → R can be defined as

V (S, I, D) = V (S, I, D) – V (S0, I0, D0).

Making use of Itô’s formula, we get

LV1 = A –
β1SI

1 + α1I
–

β2SD
1 + α2D

– μS – qS

+
α1β1SI

(ρ + μ + δ)(1 + α1I)
+

α1β2SD
(ρ + μ + δ)(1 + α2D)

– α1I + 2(μ + δ)I – 2γ D

– c1
A
S

+ c1
β1I

1 + α1I
+ c1

β2D
1 + α2D

+ c1(μ + q) +
c1

2
σ 2

1

– c2
β1S

1 + α1I
– c2

β2SD
I(1 + α2D)

+ c2(ρ + μ + δ) +
c2

2
σ 2

2

≤ –α1I – 1 – c1
A
S

– c2
β1S

1 + α1I
+ 1 + A +

α1S
ρ + μ + δ

[
β1I

1 + α1I
+

β2D
1 + α2D

]

+ 2(μ + δ)I + c1

[
β1I

1 + α1I
+

β2D
1 + α2D

]

+ c1(μ + q) +
c1

2
σ 2

1

+ c2(ρ + μ + δ) +
c2

2
σ 2

2

≤ –3(Aβ1c1c2)
1
3 + c1

(

μ + q +
σ 2

1
2

)

+ c2

(

ρ + μ + δ +
σ 2

2
2

)

+ 1 + A

+
α1S

ρ + μ + δ

(
β1

α1
+

β2

α2

)

+ 2(μ + δ)I + c1

(
β1

α1
+

β2

α2

)

. (2.2)
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Choosing

c1 =
A

μ + q + σ 2
1
2

, c2 =
A

ρ + μ + δ + σ 2
2
2

,

we have

LV1 ≤ – 3
[

A3β1

(μ + q + σ 2
1
2 )(ρ + μ + δ + σ 2

2
2 )

] 1
3

+ 3A + 1 +
α1S

ρ + μ + δ

(
β1

α1
+

β2

α2

)

+ 2(μ + δ)I +
A

μ + q + σ 2
1
2

(
β1

α1
+

β2

α2

)

= – 3A
((�S

0
) 1

3 – 1
)

+ 1 +
α1S

ρ + μ + δ

(
β1

α1
+

β2

α2

)

+ 2(μ + δ)I

+
A

μ + q + σ 2
1
2

(
β1

α1
+

β2

α2

)

:= – λ + 1 +
α1S

ρ + μ + δ

(
β1

α1
+

β2

α2

)

+ 2(μ + δ)I +
A

μ + q + σ 2
1
2

(
β1

α1
+

β2

α2

)

,

where λ = 3A((�S
0) 1

3 – 1) > 0.
Applying Itô’s formula, we have

LV2 = –
A
S

+
β1I

1 + α1I
+

β2D
1 + α2D

+ (μ + q) +
σ 2

1
2

≤ –
A
S

+
β1

α1
+

β2

α2
+ (μ + q) +

σ 2
1

2
,

LV3 = –(μ + δ)
I
D

+ γ +
σ 2

3
2

,

and

LV4 = (S + I + D)m(A – μS – qS – ρI – γ D)

+
m
2

(S + I + D)m–1(σ 2
1 S2 + σ 2

2 I2 + σ 2
3 D2)

≤ (S + I + D)m[
A – δ(S + I + D)

]
+

m
2

(
σ 2

1 ∨ σ 2
2 ∨ σ 2

3
)
(S + I + D)m+1

= A(S + I + D)m –
[

δ –
m
2

(
σ 2

1 ∨ σ 2
2 ∨ σ 2

3
)
]

(S + I + D)m+1

= F –
ρ

2
(S + I + D)m+1

≤ F –
ρ

2
(
Sm+1 + Im+1 + Dm+1),

where

F = sup
(S,I,D)∈R3

+

{

A(S + I + D)m –
ρ

2
(S + I + D)m+1

}

< ∞.
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Therefore,

LV ≤ –Mλ + M +
α1MS

ρ + μ + δ

(
β1

α1
+

β2

α2

)

+ 2M(μ + δ)I +
MA

μ + q + σ 2
1
2

(
β1

α1
+

β2

α2

)

–
A
S

+
β1

α1
+

β2

α2
+ (μ + q + γ ) – (μ + δ)

I
D

+
σ 2

1 + σ 2
3

2

+ F –
ρ

2
(
Sm+1 + Im+1 + Dm+1). (2.3)

We can choose a positive constant M such that

–Mλ + E ≤ –2,

herein,

E = sup
(S,I,D)∈R3

+

{

M +
α1MS

ρ + μ + δ

(
β1

α1
+

β2

α2

)

+
MA

μ + q + σ 2
1
2

(
β1

α1
+

β2

α2

)

+
(

β1

α1
+

β2

α2

)

+ (μ + q + γ ) +
σ 2

1 + σ 2
3

2
+ F –

ρ

2
(
Sm+1 + Im+1 + Dm+1)

}

.

Now, we construct the following bounded closed set:

Dε =
{

(S, I, D) ∈ R3
+ : ε ≤ S ≤ 1

ε
, ε ≤ I ≤ 1

ε
, ε2 ≤ D ≤ 1

ε2

}

,

where ε > 0 is a sufficiently small constant. In the set R3
+ \ Dε , we can choose ε sufficiently

small and the following conditions hold:

–
A
ε

+ G ≤ –1, (2.4)

–Mλ + 2M(μ + δ)ε + E ≤ –1, (2.5)

–
μ + δ

ε
+ G ≤ –1, (2.6)

–
ρ

4
1

εm+1 + H ≤ –1, (2.7)

–
ρ

4
1

εm+1 + J ≤ –1, (2.8)

–
ρ

4
1

ε2m+2 + N ≤ –1, (2.9)

where G, H , J , N will be determined later. Hence,

R3
+ \ Dε = Dc

1 ∪ Dc
2 ∪ Dc

3 ∪ Dc
4 ∪ Dc

5 ∪ Dc
6,

with

Dc
1 =

{
(S, I, D) ∈ Ω , 0 < S < ε

}
, Dc

2 =
{

(S, I, D) ∈ Ω , 0 < I < ε
}

,
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Dc
3 =

{
(S, I, D) ∈ Ω , 0 < D < ε, I ≥ ε

}
, Dc

4 =
{

(S, I, D) ∈ Ω , S >
1
ε

}

,

Dc
5 =

{

(S, I, D) ∈ Ω , I ≥ 1
ε

}

, Dc
6 =

{

(S, I, D) ∈ Ω , D >
1
ε2

}

,

then we will prove that LV (S, I, D) ≤ –1 on R3
+ \ Dε .

Case 1. If (S, I, D) ∈ Dc
1, we achieve that

LV ≤ – Mλ + M +
α1MS

ρ + μ + δ

(
β1

α1
+

β2

α2

)

+ 2M(μ + δ)I +
MA

μ + q + σ 2
1
2

(
β1

α1
+

β2

α2

)

–
A
S

+
(

β1

α1
+

β2

α2

)

+ (μ + q + γ ) +
σ 2

1 + σ 2
3

2
+ F

–
ρ

2
(
Sm+1 + Im+1 + Dm+1)

≤ –
A
S

+ G

≤ –
A
ε

+ G, (2.10)

where

G = sup
(S,I,D)∈R3

+

{

M +
α1MS

ρ + μ + δ

(
β1

α1
+

β2

α2

)

+ 2M(μ + δ)I +
MA

μ + q + σ 2
1
2

(
β1

α1
+

β2

α2

)

+
(

β1

α1
+

β2

α2

)

+ (μ + q + γ ) +
σ 2

1 + σ 2
3

2
+ F –

ρ

2
(
Sm+1 + Im+1 + Dm+1)

}

.

Making use of (2.4), we have that LV ≤ –1 for all (S, I, D) ∈ Dc
1.

Case 2. If (S, I, D) ∈ Dc
2, we obtain that

LV ≤ – Mλ + M +
α1MS

ρ + μ + δ

(
β1

α1
+

β2

α2

)

+ 2M(μ + δ)I +
MA

μ + q + σ 2
1
2

(
β1

α1
+

β2

α2

)

–
A
S

+
(

β1

α1I
+

β2

α2

)

+ (μ + q + γ ) +
σ 2

1 + σ 2
3

2
+ F

–
ρ

2
(
Sm+1 + Im+1 + Dm+1)

≤ – Mλ + 2M(μ + δ)I + E

≤ – Mλ + 2M(μ + δ)ε + E. (2.11)

By inequality (2.5), we can achieve that LV ≤ –1 for all (S, I, D) ∈ Dc
2.

Case 3. If (S, I, D) ∈ Dc
3, we get that

LV ≤ – (μ + δ)
I
D

+ M +
α1MS

ρ + μ + δ

(
β1

α1
+

β2

α2

)

+ 2M(μ + δ)I +
MA

μ + q + σ 2
1
2

(
β1

α1
+

β2

α2

)

+
(

β1

α1I
+

β2

α2

)

+ (μ + q + γ ) +
σ 2

1 + σ 2
3

2
+ F –

ρ

2
(
Sm+1 + Im+1 + Dm+1)

≤ –
μ + δ

ε
+ G. (2.12)
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Applying (2.6), we have that LV ≤ –1 for all (S, I, D) ∈ Dc
3.

Case 4. If (S, I, D) ∈ Dc
4, we have that

LV ≤ –
1
4

[

δ –
m
2

(
σ 2

1 ∨ σ 2
2 ∨ σ 2

3
)
]

Sm+1 –
1
4

[

δ –
m
2

(
σ 2

1 ∨ σ 2
2 ∨ σ 2

3
)
]

Sm+1

–
1
2

[

δ –
m
2

(
σ 2

1 ∨ σ 2
2 ∨ σ 2

3
)
]
(
Im+1 + Dm+1) + M +

α1MS
ρ + μ + δ

(
β1

α1
+

β2

α2

)

+ 2M(μ + δ)I +
MA

μ + q + σ 2
1
2

(
β1

α1
+

β2

α2

)

+
(

β1

α1I
+

β2

α2

)

+ (μ + q + γ )

+
σ 2

1 + σ 2
3

2
+ F

≤ –
ρ

4
Sm+1 + H

≤ –
ρ

4
1

εm+1 + H , (2.13)

where

H = sup
(S,I,D)∈R3

+

{

–
1
4

[

δ –
m
2

(
σ 2

1 ∨ σ 2
2 ∨ σ 2

3
)
]

Sm+1

–
1
2

[

δ –
m
2

(
σ 2

1 ∨ σ 2
2 ∨ σ 2

3
)
]
(
Im+1 + Dm+1)

+ M +
α1MS

ρ + μ + δ

(
β1

α1
+

β2

α2

)

+ 2M(μ + δ)I +
MA

μ + q + σ 2
1
2

(
β1

α1
+

β2

α2

)

+
(

β1

α1I
+

β2

α2

)

+ (μ + q + γ ) +
σ 2

1 + σ 2
3

2
+ F

}

.

Combining with (2.7), it can be obtained that LV ≤ –1 for all (S, I, D) ∈ Dc
4.

Case 5. If (S, I, D) ∈ Dc
5, we can see that

LV ≤ –
1
4

[

δ –
m
2

(
σ 2

1 ∨ σ 2
2 ∨ σ 2

3
)
]

Im+1 –
1
4

[

δ –
m
2

(
σ 2

1 ∨ σ 2
2 ∨ σ 2

3
)
]

Im+1

–
1
2

[

δ –
m
2

(
σ 2

1 ∨ σ 2
2 ∨ σ 2

3
)
]
(
Sm+1 + Dm+1) + M +

α1MS
ρ + μ + δ

(
β1

α1
+

β2

α2

)

+ 2M(μ + δ)I +
MA

μ + q + σ 2
1
2

(
β1

α1
+

β2

α2

)

+
(

β1

α1I
+

β2

α2

)

+ (μ + q + γ )

+
σ 2

1 + σ 2
3

2
+ F

≤ –
ρ

4
Im+1 + J

≤ –
ρ

4
1

εm+1 + J , (2.14)

where

J = sup
(S,I,D)∈R3

+

{

–
1
4

[

δ –
m
2

(
σ 2

1 ∨ σ 2
2 ∨ σ 2

3
)
]

Im+1
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–
1
2

[

δ –
m
2

(
σ 2

1 ∨ σ 2
2 ∨ σ 2

3
)
]
(
Sm+1 + Dm+1)

+ M +
α1MS

ρ + μ + δ

(
β1

α1
+

β2

α2

)

+ 2M(μ + δ)I +
MA

μ + q + σ 2
1
2

(
β1

α1
+

β2

α2

)

+
(

β1

α1I
+

β2

α2

)

+ (μ + q + γ ) +
σ 2

1 + σ 2
3

2
+ F

}

.

According to inequality (2.8), it can be achieved that LV ≤ –1 for all (S, I, D) ∈ Dc
5.

Case 6. If (S, I, D) ∈ Dc
6, we can see that

LV ≤ –
1
4

[

δ –
m
2

(
σ 2

1 ∨ σ 2
2 ∨ σ 2

3
)
]

Dm+1 –
1
4

[

δ –
m
2

(
σ 2

1 ∨ σ 2
2 ∨ σ 2

3
)
]

Dm+1

–
1
2

[

δ –
m
2

(
σ 2

1 ∨ σ 2
2 ∨ σ 2

3
)
]
(
Sm+1 + Im+1) + M +

α1MS
ρ + μ + δ

(
β1

α1
+

β2

α2

)

+ 2M(μ + δ)I +
MA

μ + q + σ 2
1
2

(
β1

α1
+

β2

α2

)

+
(

β1

α1I
+

β2

α2

)

+ (μ + q + γ )

+
σ 2

1 + σ 2
3

2
+ F

≤ –
ρ

4
Dm+1 + N

≤ –
ρ

4
1

ε2m+2 + N , (2.15)

where

N = sup
(S,I,D)∈R3

+

{

–
1
4

[

δ –
m
2

(
σ 2

1 ∨ σ 2
2 ∨ σ 2

3
)
]

Dm+1

–
1
2

[

δ –
m
2

(
σ 2

1 ∨ σ 2
2 ∨ σ 2

3
)
]
(
Sm+1 + Im+1)

+ M +
α1MS

ρ + μ + δ

(
β1

α1
+

β2

α2

)

+ 2M(μ + δ)I +
MA

μ + q + σ 2
1
2

(
β1

α1
+

β2

α2

)

+
(

β1

α1I
+

β2

α2

)

+ (μ + q + γ ) +
σ 2

1 + σ 2
3

2
+ F

}

.

By inequality (2.9), it can be seen that LV ≤ –1 for all (S, I, D) ∈ Dc
6.

Thus condition (H2) of Lemma 2.1 holds. By Lemma 2.1, we know that the solution of
system (1.3) is ergodic and system (1.3) has a unique stationary distribution π (·).

This completes the proof. �

Remark 1 Here, we construct a C2-function, and then we are going to do a step by step
calculation of the function, to make the calculation process more logical. Then, the dis-
cussion is divided into six cases. Finally, the ideal result is obtained.

3 Extinction
In this section, we give the sufficient conditions that lead to the extinction of the disease.
For convenience, we introduce the following notation and lemma.
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If f (t) is an integral function on [0,∞), define 〈f (t)〉 = 1
t
∫ t

0 f (τ ) dτ .

Lemma 3.1 Let (S(t), I(t), D(t)) be the solution of system (1.3) with the initial value
(S(0), I(0), D(0)) ∈ R3

+. Then S(t) + I(t) ≤ A
μ

, D(t) ≤ A(μ+δ)
γμ

.

Proof Summing the first two equations of system (1.3), we can get

d(S(t) + I(t))
dt

≤ A – μ
(
S(t) + I(t)

)
,

so we have

lim sup
t→∞

(
S(t) + I(t)

) ≤ A
μ

.

In the same way, we have

lim sup
t→∞

D(t) ≤ A(μ + δ)
γμ

.

Therefore, the positive invariant set of system (1.3) is

Ω =
{

(S, I, D) ∈ R3
+ : 0 ≤ S, I ≤ A

μ
, 0 ≤ D ≤ A(μ + δ)

γμ

}

.

This completes the proof of Lemma 3.1. �

Lemma 3.2 Let (S(t), I(t), D(t)) be the solution of system (1.3) with the initial value
(S(0), I(0), D(0)) ∈ Ω . Then

lim
t→∞

∫ t
0 σ1S(τ ) dB1(τ )

t
= 0, lim

t→∞

∫ t
0 σ2I(τ ) dB2(τ )

t
= 0.

Proof Let M1(t) =
∫ t

0 σ1S(τ ) dB1(τ ), M1(t) is an integral and corresponds to the Brownian
motion and it is local continuous martingale. Also, if we replace the upper bound with
t = 0 in M1(t), then we have M(0) = 0. Next, we can discover the quadratic variation and
get the following limits:

lim sup
t→∞

〈M1, M1〉t

t
≤ σ 2

1 A2

μ2 < ∞.

Applying the strong law of large numbers [9], we can deduce that

lim
t→∞

M1(t)
t

= 0 a.s.

Let M2(t) =
∫ t

0 σ2I(τ ) dB2(τ ). Similarly, we can get

lim sup
t→∞

〈M2, M2〉t

t
≤ σ 2

2 A2

μ2 < ∞,
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then

lim
t→∞

M2(t)
t

= 0 a.s.

This completes the proof of Lemma 3.2. �

Theorem 3.1 Let (S(t), I(t), D(t)) be the solution of system (1.3) with the initial value
(S(0), I(0), D(0)) ∈ �3

+. If

�̃s
0 :=

(β1 + β2)A

(μ + q)(ρ + μ + δ + σ 2
2
2 )

< 1,

then

lim sup
t→∞

ln I(t)
t

≤
(

ρ + μ + δ +
σ 2

2
2

)
(�̃s

0 – 1
)

< 0 a.s.,

that is,

lim
t→∞ I(t) = 0 a.s.,

which means the disease dies out with probability one.
Moreover,

lim
t→∞ S(t) =

A
μ + q

a.s., lim
t→∞ D(t) = 0 a.s.

Proof Integrating system (1.3), we get

S(t) – S(0)
t

+
I(t) – I(0)

t
= A – (μ + q)

〈
S(t)

〉
– (ρ + μ + δ)

〈
I(t)

〉

+
σ1

t

∫ t

0
σ1S(τ ) dB1(τ ) +

σ2

t

∫ t

0
σ2I(τ ) dB2(τ ), (3.1)

which means

〈
S(t)

〉
=

A
μ + q

–
ρ + μ + δ

μ + q
〈
I(t)

〉
+ Φ(t), (3.2)

where

Φ(t) =
1

μ + q

[
σ1

t

∫ t

0
S(τ ) dB1(τ ) +

σ2

t

∫ t

0
I(τ ) dB2(τ ) –

S(t) – S(0)
t

–
I(t) – I(0)

t

]

.

By Lemma 3.1 and Lemma 3.2 we can obtain

lim
t→∞Φ(t) = 0 a.s. (3.3)

Applying Itô’s formula to system (1.3), we get that

d ln I(t) =
β1S(t)

1 + α1I(t)
+

β2S(t)D(t)
I(t)(1 + α2D(t))

– (ρ + μ + δ) –
σ 2

2
2

+ σ2dB2(t). (3.4)
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Integrating both sides of (3.4) from 0 to t and division by t lead to the following equation:

ln I(t)
t

= β1

〈
S(t)

1 + α1I(t)

〉

+ β2

〈
S(t)D(t)

I(t)(1 + α2D(t))

〉

– (ρ + μ + δ) –
σ 2

2
2

+
σ2B2(t)

t

≤ β1
〈
S(t)

〉
+ β2

〈
S(t)

〉
– (ρ + μ + δ) –

σ 2
2

2
+

σ2B2(t)
t

= (β1 + β2)
[

A
μ + q

–
ρ + μ + δ

μ + q
〈
I(t)

〉
+ Φ(t)

]

– (ρ + μ + δ) –
σ 2

2
2

+
σ2B2(t)

t

=
(β1 + β2)A

μ + q
–

(β1 + β2)(ρ + μ + δ)
μ + q

〈
I(t)

〉
+ (β1 + β2)Φ(t)

– (ρ + μ + δ) –
σ 2

2
2

+
σ2B2(t)

t

=
(

ρ + μ + δ +
σ 2

2
2

)
(�̃s

0 – 1
)

–
(β1 + β2)(ρ + μ + δ)

μ + q
〈
I(t)

〉

+ (β1 + β2)Φ(t) +
σ2B2(t)

t

≤
(

ρ + μ + δ +
σ 2

2
2

)
(�̃s

0 – 1
)

+ (β1 + β2)Φ(t) +
σ2B2(t)

t
. (3.5)

From strong law of large numbers [9], we have

lim
t→∞

σ2B2(t)
t

= 0 a.s. (3.6)

Combining (3.3) and (3.6), then taking the limit superior of both sides of (3.5), we have

lim sup
t→∞

ln I(t)
t

≤
(

ρ + μ + δ +
σ 2

2
2

)
(�̃s

0 – 1
)

a.s.

This implies that if �̃s
0 < 1, then

lim
t→∞ I(t) = 0 a.s.

According to system (1.3), the third equation with limiting system becomes

dD(t) = –γ D(t) dt,

thus, we obtain

lim
t→∞ D(t) = 0 a.s.

Similarly, according to the first equation of (1.3), we have

lim
t→∞ S(t) =

A
μ + q

a.s.

This completes the proof of Theorem 3.1. �



Wang and Jia Advances in Difference Equations        (2019) 2019:433 Page 13 of 16

Figure 1 Distributions of S(t), I(t), and D(t) of system (1.3) with σ1 = σ2 = σ3 = 0.1

Remark 2 Theorem 3.1 shows that the disease will become extinct if �̃s
0 < 1. Note that

�̃s
0 < 1 independent of σ1 and σ3, that is to say, when �̃s

0 < 1, even if the white noises σ1

and σ3 are zero, the disease is still extinct.

4 Numerical simulations
In this section, we use the Milstein method [20] and numerical simulations to verify the
conclusions in this paper. The discrimination equations of system (1.3) are presented as
follows:

Si+1 = Si +
(

A – Si
β1Ii

1 + α1Ii
– Si

β2Di

1 + α2Di
– μSi – qSi

)

�t

+ Si

(

σ1ξi
√

�t +
σ 2

1
2

(
ξ 2

i – 1
)
�t

)

,

Ii+1 = Ii +
(

Si
β1Ii

1 + α1Ii
+ Si

β2Di

1 + α2Di
– (ρ + μ + δ)Ii

)

�t

+ Ii

(

σ2ηi
√

�t +
σ 2

2
2

(
η2

i – 1
)
�t

)

,

Di+1 = Di +
(
(μ + δ)Ii – γ Di

)
�t + Di

(

σ3ζi
√

�t +
σ 2

2
2

(
ζ 2

i – 1
)
�t

)

,

where ξi, ηi, ζi (i = 1, 2, . . .) are independent N-distributed Gaussian random variables.
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Figure 2 Extinction: the stochastic trajectory and deterministic trajectory of S(t), I(t), D(t)

Example 4.1 We take the parameters in system (1.3) as follows: A = 5, α1 = 2, α2 = 2,
β1 = 0.35, β2 = 0.45, μ = 0.06, δ = 0.3, ρ = 0.05, q = 0.7, γ = 0.5, σ1 = 0.1, σ2 = 0.1, σ3 = 0.1,
and the initial value is (S(0), I(0), D(0)) = (0.7, 0.2, 0.1). We can obtain that

�s
0 :=

β1

(μ + q + σ 2
1
2 )(ρ + μ + δ + σ 2

2
2 )

= 1.1024 > 1.

Theorem 2.2 implies that system (1.3) has a unique stationary distribution(Fig. 1). From
Fig. 1, we can see that the numbers of susceptible group, infected group, and infected
corpse group are normally distributed.

Example 4.2 We take the parameters as follows: A = 2, α1 = 2, α2 = 2, β1 = 0.05, β2 = 0.2,
μ = 0.1, δ = 0.5, ρ = 0.1, q = 0.7, γ = 0.5, σ1 = 0.5, σ2 = 0.2, σ3 = 0.2, and the initial value
is (S(0), I(0), D(0)) = (0.7, 0.2, 0.1). We can easily calculate the basic reproduction number
�0 = β1Aγ +β2A(μ+δ)

(μ+q)γ (ρ+μ+δ) = 1.036 > 1.

�̃s
0 =

(β1 + β2)A

(μ + q)(ρ + μ + δ + σ 2
2
2 )

= 0.7576 < 1,

which satisfies the condition of Theorem 3.1. So, the disease will go to extinction, that is to
show that the white noise may lead to the extinction of disease. However, for deterministic
models (1.2), the disease persists since �0 > 1. Thus, the numerical simulations validate
our theoretical results (Fig. 2). Figure 2 shows the change curves of the numbers of sus-
ceptible group, infected group, and infected corpse group over time. We can also see that
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the comparison of curves of the same variable makes the numerical simulation of model
(1.3) closer to the reality.

5 Conclusions
In this paper, a new SIRD epidemic model of Ebola with double saturated incidence rates
and vaccination is proposed and studied. Firstly, we construct suitable Lyapunov func-
tions, we get that if �s

0 = β1

(μ+q+
σ2

1
2 )(ρ+μ+δ+

σ2
2
2 )

> 1, then system (1.3) has a unique stationary

distribution. Next, we find that if �̃s
0 = (β1+β2)A

(μ+q)(ρ+μ+δ+
σ2

2
2 )

< 1, then the disease dies out with

probability one. Finally, numerical simulations are shown to verify our results.
Some interesting topics deserve further consideration. On the one hand, one may pro-

pose some more realistic but complex models, such as considering the effects of impulsive
perturbations on system (1.3). On the other hand, in our model (1.2), we only introduce
the white noise into it, one can also introduce the colored noise into model (1.2). More-
over, our model is autonomous, it is interesting to investigate the nonautonomous system.
We will leave these problems as our future work.
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